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We take for granted that it is always possible to treat
the vicinity of a place and time as though it were free

of the influence of gravity

Local Lorentz invariance

Physically:  we can choose a locally Lorentzian frame

Mathematically:  space-time has a manifold structure

suppose that
you are here



Looking from one place to another,
general relativity how

these flat frames all fit together

Local Lorentz invariance

The theory works well from terrestrial distances
up to the size of the observable universe*



For the past five or so billion years the universe
has been expanding at an accelerating rate

Troubles at large scales (?)

Is this the failure of our theoretical ideas or
our understanding of the ingredients of the universe?



Quantum field theory is usually formulated in flat space

The opposite extreme

But what happens if we proceed to ever smaller distances?

which is a good approximation for
most experimental settings



More importantly, gravitational self-interactions are small

The Planck threshold
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c
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" 1.6 #10$33 cm

At typical experimental scales, gravity is completely
negligible compared to other interactions

But something interesting happens at distances
smaller than a Planck length

10 fm VEM = 144 keV

Vgravity = 76 ! 10–37 keV



If we treat gravity as an effective quantum theory

The Planck threshold

At Planck scales ("x ! Lpl) it would be strongly interacting
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that is, all the terms in the action are equally important



The Planck threshold

So beyond the Planck scale, is it sensible to treat
space-time as locally flat?

But gravity = the dynamics of space-time itself

Two approaches:

I. Look for symmetry breaking effects at long distances

II. Look for symmetry breaking effects at short distances

“High energy tests of Lorentz invariance” – Coleman & Glashow

add relevant local symmetry-breaking operators

if decoupling holds, how can we possibly see such things?

inflation and the early universe
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A preferred reference frame

At large scales and at early times, the universe
appears highly isotropic and homogeneous

The metric for such a space-time can be written in
a standard ‘Robertson-Walker’ form

a(!) is the scale factor; the rate at which it changes defines
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Let us use this metric to define a ‘preferred frame’



Building symmetry-breaking operators

Our preferred frame as fewer symmetries (only six)

we have translations & rotations
in every surface orthogonal to

the induced metric along these surfaces is
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nµ = a("),0,0,0( )
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hµ" = gµ" # nµn" $ hµ" dxµdx" = #a2
(%)dx &dx

how these surfaces are embedded in the full
space-time is encoded in the extrinsic curvature
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Building symmetry-breaking operators

So, in addition to the usual tensors

we shall also use
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gµ" ,#µ ,R$µ"% , ...

    

! 

nµ ,hµ" ,Kµ" , ...

thus, for example, we can build
dimension three operators
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K"
2

to construct the operators for our theory

" is a scalar field, e.g. the inflaton



A peculiar derivative operator

To model some signals from effective states,
we include one further ingredient

a peculiar one-derivative operator

In a momentum representation,
it just extracts a power of the momentum
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The leading irrelevant operators

For our (invariant) free theory, we take
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consider a fairly general set of dimension five operators
that are quadratic in " (and assuming H’ << H2)
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The leading irrelevant operators

The free theory
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Goals:

I.  test the limits of preferred frame effects during inflation

II.  mimic signals from effective vacuum states
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What inflation accomplishes

Two types of universes
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In a matter or radiation-dominated 
universe, over time, we see farther 
and fartherIn flat space, a(!) $ 1

how far we see defines a ‘horizon’

things only can enter our horizon

so why does the early universe 
look so uniform?

the longer you wait, the more of the universe you see

us

us
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What inflation accomplishes

Two types of universes
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In a matter or radiation-dominated 
universe, over time, we see farther 
and farther

Inflation is a mechanism for hiding 
stuff behind the horizon

In an inflating space,

how far we see defines a ‘horizon’

things only can enter our horizon

so why does the early universe 
look so uniform?

requires a stage of accelerating 
expansion

things can now leave the horizon

once something has left, we shall 
never see it again as long as the 
inflation lasts

the longer you wait, the less universe you see

In co-moving coordinates [note ! = – ", …, 0]
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What inflation accomplishes

Two types of universes
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In a matter or radiation-dominated 
universe, over time, we see farther 
and farther

Inflation is a mechanism for hiding 
stuff behind the horizon

In an inflating space,

how far we see defines a ‘horizon’

things only can enter our horizon

so why does the early universe 
look so uniform?

requires a stage of accelerating 
expansion

things can now leave the horizon

once something has left, we shall 
never see it again as long as the 
inflation lasts

the longer you wait, the less universe you see

In physical coordinates [xphys = ax]
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Ingredients for inflation

Implementing inflation
An enormous variety of models with a few 
common elements

In a typical inflationary model
V(#)

#(t)
H2Mpl

2

divide the field into classical
and quantum parts

One (or more) scalar field—the inflaton

Slowly rolling down a nearly flat potential

Nearly constant vacuum energy
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d
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> 0

Vacuum energy $ 0 (almost)

Inflaton decays to other fields

At the end of inflation (reheating)

For simplicity, we shall consider the de Sitter limit

Constant vacuum energy density [H(!) $ H]
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"(#) = classical zero mode

$(#,x) = quantum fluctuation
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the Klein-Gordon equation



de Sitter space

the de Sitter space limit
Choose the “no-roll” limit—a space-time with
constant vacuum energy (de Sitter space)

The Klein-Gordon equation becomes
V(#)

#(t)
H2Mpl
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the de Sitter scale factor is

and the metric becomes
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de Sitter space

the de Sitter space limit
Choose the “no-roll” limit—a space-time with
constant vacuum energy (de Sitter space)

The Klein-Gordon equation becomes

Change variables (z = k!) and rescale (Uk= !3/2
 Z$ )

which is Bessel’s equation
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de Sitter space

the de Sitter space limit

Choose the standard “vacuum” state solution

In the massless limit ($ = 3/2)

V(#)
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Choose the “no-roll” limit—a space-time with
constant vacuum energy (de Sitter space)

The Klein-Gordon equation becomes
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de Sitter space—limits

Inflationary redshifting

a(!) =  – 1
H!

At the beginning of inflation, the interesting
modes should be smaller than the horizon,
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scale factor (de Sitter space)

which are the interesting modes?
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de Sitter space—limits

Inflationary redshifting

a(!) =  – 1
H!

    

! 

k

a(")
<< H

At the beginning of inflation, the interesting
modes should be smaller than the horizon,
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= kH" << H # k" << 1
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k"# 0
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k"0 #$%

But by the end, they should be much larger
than the horizon,

scale factor (de Sitter space)

which are the interesting modes?
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Hubble
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de Sitter space—limits

Inflationary redshifting

a(!) =  – 1
H!

At the beginning of inflation, the interesting
modes should be smaller than the horizon,
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k"# 0
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But by the end, they should be much larger
than the horizon,

Define a threshold wave number, k*,

scale factor (de Sitter space)

which are the interesting modes?

“Trans-Planckian” modes:  k > k*
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Making a lot of noise

Making a noisy universe
Inflation converts

into

The simplest measure of this noise is its 
two-point function

quantum noise inside a causal patch

classical noise spread throughout space-time

or its “power spectrum” Pk(!)

!0

!

causal
horizon

Hubble
horizon

(of course, there are higher moments or
n-point functions too)
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Making a noisy universe

To see this noise we fold it into something
we can measure, e.g. the microwave background

or its “power spectrum” Pk(!)

The simplest measure of this noise is its 
two-point function

or the distributions of galaxies, etc.

a “transfer function”

Making a lot of noise
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Making a noisy universe

As a 0th order result (for later comparisons)

or its “power spectrum” Pk(!)

!0

!

causal
horizon

Hubble
horizon

The simplest measure of this noise is its 
two-point function

In de Sitter space (and the k! $ 0 limit)

Making a lot of noise
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The effects of non-invariant operators

Now let us calculate the corrections from the
irrelevant operators
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to the two-point function, or power spectrum
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The effects of non-invariant operators

Time-evolve the state from the initial time
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where the interaction Hamiltonian, HI,
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The effects of non-invariant operators

The result —
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Modifying the vacuum state

Minkowski vacuum modes
Even in a curved space, assuming that space-time
looks flat locally strongly constrains the state

Look again at a general solution to the massless 
Klein-Gordon equation in de Sitter space

At very short distances, k/H $ ",

and very short intervals, Ht $ 0,

the flat space massless
Klein-Gordon equation

flat space vacuum modes

Switch to other de Sitter coordinates
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We define the vacuum state by appealing to
its behavior at short distances

that is, short compared to the curvature scale, H,

So, we are defining the (quantum) vacuum using
a locally flat limit near distances where the idea of 

a classical geometry may even not make sense

Moreover, the background constantly and 
dramatically red-shifts scales

H k Mpl

< 1014 GeV 1019 GeV

<<

A somewhat disturbing logic



1. fk $ 0 as k $ 0

A few requirements
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"k (#) $
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1% fk fk
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Uk (#)+ fkUk
*
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2. the new state should be renormalizable

the standard
“vacuum” modes

3. theory is perturbative at large scales

An effective vacuum state

So, perhaps we should allow more general states,
once k > M (= Mpl ?)

This is the idea behind an effective vacuum state



Two approaches (and their predictions)

Effective state signal
Effective vacuum states (just described)

new structure in the modes

Particular models (a top-down approach)

Are these approaches renormalizable?

Can symmetry-breaking operators 
mimic either of these signals?

A ‘minimal length’ signal

boundary operators

boundary renormalization

some defined mode-by-mode

some defined on a time-like surface

Requires initial data in the propagator (?)

(any mode k > k* is “trans-Planckian”)

is the power spectrum from

a phase

when the slow-roll parameters are set
to zero (de Sitter); more realistically,
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Typical ‘modified vacuum’ signals

Representative trans-Planckian signals
for a modified vacuum states

1. a growing, amplitude and frequency
(eventually becomes non-perturbative)
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Both signals have some ‘ringing’

2. an inversely correlated amplitude and frequency
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The corrected power spectrum
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1. The correction from K3"2 $ H3"2

What is the effect on the power spectrum from the operator

The logarithm shows some long-distance sensitivity
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for the physically interesting modes (k! $ 0 and k!0 $ – ")

Comments:

The divergence should be tamed as we let m #  0

This signal is distinct from altered vacuum states



The corrected power spectrum
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2. The correction from K2"D" $ H2"(–%·%)1/2"

What is the effect on the power spectrum from the operator

The H/M correction is not
accompanied by any ringing
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Comments:

Including a spatial derivative does not
automatically produce k $ " divergences



The corrected power spectrum
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3. The correction from K hµ& %µ" %$" $ H %" · %"

What is the effect on the power spectrum from the operator

Again, the usual H/M suppression
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for the physically interesting modes (k! $ 0 and k!0 $ – ")

Comments:

However, the ringing is not inversely correlated
with the amplitude



The corrected power spectrum

    

! 

LNR = d4

1

M
"D

3
" + # # #

4. The correction from "D3" $ "(–%· %)3/2"

What is the effect on the power spectrum from the operator

This is essentially the same sort of signal as arose
from an effective vacuum state
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for the physically interesting modes (k! $ 0 and k!0 $ – ")

Comments:

Note that k* here is really associated with the
beginning of inflation (unlike the effective state)
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Higher order operators
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There is nothing special about the derivative operator D

    

! 

Pk (") =
H

2

4# 2
1$ d5

k
2

k*
2

cos 2
k

k*

M

H

% 

& 
' 

( 

) 
* + + + +

, 
- 
. 

/ . 

0 
1 
. 

2 . 

For example the dimension six operator

also produces terms that become non-perturbative
for trans-Planckian modes



A summary of what we have found

A fairly general set of dimension five operators that
violate local Lorentz invariance produce a variety of signatures

Others are not quite reproduced

Some of these signals look very much like those of an effective state
(to a degree, a state does break local Lorentz invariance)
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H/M suppression trans-Planckian divergence

no ringing ringing



A few concluding questions and comments

Can we reproduce all possible ‘trans-Planckian’ signals
in a conventional effective theory?

Provides another constraint on (local) Lorentz violation
(in addition to high energy tests)

What must we sacrifice (symmetries, etc.) to do so?

We already cannot allow simultaneously
certain operators and too much inflation

What can we learn about nature at the very shortest scales?

How does this knowledge constrain our ideas for a
quantum theory of gravity?

We used the standard Bunch-Davies vacuum throughout
(& the standard propagator)



the end


