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We begin with a simple question

How is the classical gravitational action affected by
the presence of a quantum field?

The various divergences in field—since it is a
source for gravity—lead to a need to renormalize
the parameters of the gravitational theory

(as long as the space-time symmetries are unbroken)



OverviewOverview

• Flat space—the cosmological constant

• An adiabatic description of a field

• Renormalization of classical gravity

• The energy-momentum tensor in an
expanding background

• A few words on boundary renormalization



• We begin with a simple and familiar
example, the renormalization of the vacuum
energy, or cosmological constant

• In ordinary quantum field theories there is
not usually an idea of absolute scales

• what we typically measure are transitions
from one state to another

– e.g. a decay, a scattering from one 2-particle
state to a different 2-particle state, etc.

• However, gravity—or classical gravity, at
any rate—is acutely sensitive to absolute
scales

– different values of the vacuum energy
produce dramatically different cosmologies
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• This talk will examine how we can still treat
a quantum field theory consistently even in
a curved, classical background

– divergences in the quantum theory lead to a
renormalization of the parameters of the
gravitational theory

– ultimate goal:  to understand the analogous
renormalization of the boundary divergences
of a particular initial state

• Consider the simplest possible example, a
free scalar field in Minkowski space

• The source for gravity is provided by the
distribution of matter and energy, which in
Einstein’s equations corresponds to the
energy-momentum tensor, Tμν

• In particular, the energy density contained
in the field corresponds to T0

0

A free scalar field in flat spaceA free scalar field in flat space
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• At this point, to relate the presence of the
field to its effect on the classical
gravitational background, we must reduce
the operator T0

0 to a classical quantity
– if the field is in a particular state, for

example the standard vacuum, we can
evaluate the expectation value of T0

0

• If we expand the field as a sum of creation
and annihilation operators,

the standard vacuum eigenmodes are

The energy densityThe energy density

energy density

    ρ = 0 00
0T

three assumptions fix the
form of the vacuum modes:

1. they obey the Klein-Gordon
equation

2. the field satisfies the equal
time commutation relation

3. positive energy eigenstates

3

   
ϕ

π
= +[ ]⋅ − ⋅∫ d

u t e a u t e ak
i

k
i

3

32
k

( )
k x

k
k x

k
≤( ) ( )*

u t
e

k mk

i t

k

k

k

( ) ,= = +
− ω

ω
ω

2
2 2

d u

dt
uk

k k

2

2
2= −ω

      «( , ), ( , ) ( )ϕ ϕ δt t ix y x y[ ] = − −3



• Evaluating the energy density contained
within the scalar field, we find an infinite
result

• What does this mean with respect to
gravity?

• The result becomes more transparent if we
also evaluate the pressure, p

• In this form, the pressure and density are
not particularly suggestive; but if we
dimensionally regularize the momentum
integrals we discover that

A divergent vacuum energyA divergent vacuum energy
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• The divergent part of the pressure is exactly
the same as the density in magnitude but
with the opposite sign

• Both are divergent, but both are also time-
independent so they have precisely the
form of a cosmological constant

• We can restore our flat background by
assuming that there is actually a “bare”
cosmological constant that precisely cancels
this vacuum energy density from the scalar
field

• Thus the presence of a quantum field ϕ and
the divergences associated with its energy-
momentum (ρ, p) has led to a need to
renormalize the gravitational part of the
theory

Renormalization of the cosmological constantRenormalization of the cosmological constant
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• Let us next generalize to an isotropically
expanding background, described by a
conformally flat metric

• When a quantum scalar field is placed in
this background, the spatial flatness still
allows an expansion in plane waves

where the modes satisfy

• We again can ask how this field affects the
gravitational background, particularly
through its short-distance divergences

An isotropically expanding universeAn isotropically expanding universe

metric
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• For now we shall choose the “vacuum”
modes; yet we seem to have reached an
impasse, since we do not have an explicit
solutions for even these modes in general

• However, since the divergences occur only
at short distances, it is sufficient to solve
only for the k → ∞ behavior of the modes

• First, we write the modes in a form
reminiscent of the flat space vacuum modes

•  Ωk(η) generalizes the flat space frequency
and satisfies its own Klein-Gordon eqn

The standard vacuum modesThe standard vacuum modes

vacuum modes
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• To isolate the leading k dependence, we
shall use an expansion based on assuming
that time-derivatives are small—an
adiabatic approximation

• More precisely, the derivatives of the nth

term determine the form of the (n+1)st term

• For example, the 0th and 1st order terms in
this approximation are shown to the right

• For the standard renormalization of gravity,
the first term is sufficient

– but more terms are needed when we extend
to a general initial state

An adiabatic approximationAn adiabatic approximation

zeroth order term
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• The renormalization of the cosmological
constant is simply the first example of a
general renormalization of the parameters
of the gravitational action required in the
presence of a quantum field

• As an effective theory, the gravitational
action can be expressed as a series arranged
by powers of derivatives

– in four dimensions the Gauss-Bonnet term is
purely topological

– the Weyl tensor vanishes for a conformally
flat metric

• Thus, in practice we shall require only one
of the the four-derivative terms

The renormalization of gravityThe renormalization of gravity

The Gauss-Bonnet term
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• Varying this action with respect to δgμυ
yields the gravitational contribution to the
equations of motion,

• The other component comes from the scalar
field.  Since the energy-momentum tensor is
an operator, we must take its expectation
value to learn its effect on gravity,

Renormalization of gravityRenormalization of gravity——equations of motionequations of motion
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• Before evaluating the divergences in
〈 0|Tμν|0 〉, it is helpful to use the
symmetries of the background to isolate the
independent components of this tensor

• The spatial flatness implies that this tensor
can be written—completely generally—as

• Although we shall evaluate both the density
and the pressure, there is in fact some
redundancy implied by ∇μTμ

λ = 0

• Thus,

Symmetries of the backgroundSymmetries of the background
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• Before proceeding, we should be a little more explicit
about some of our assumptions for the field

• Both the action and the state chosen respect the same
classical symmetries as the background

– therefore the divergences should have the same structure
as the previous gravitational terms

– states that break the classical symmetries of the
background can produce additional divergences that are
not of the form of the terms we have included thus far
(boundary terms)

• The standard approach, which we have been following,
is to reduce the field contribution to a classical function

– however, in a more general setting, this reduction may not
itself be sufficient to understand the renormalization

– we should instead treat the gravitational side quantum
mechanically (at tree level) so that it can properly respond
to the scalar field

A few assumptionsA few assumptions
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• In a curved background, the energy density
contained within the scalar field in is
standard vacuum is

which becomes (point-splitting)

• To apply our adiabatic approximation, to
isolate the leading short-distance behavior,
we rewrite the integrand in terms of Ωk(η ),

Divergences in the energy & momentumDivergences in the energy & momentum

vacuum modes
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• The adiabatic approximation allows us to
isolate the divergent behavior without
solving for the exact form of the modes,

• Even before evaluating the integrals, we can
see that the divergences have the same form
as the gravitational terms,

The adiabatic approximation of the densityThe adiabatic approximation of the density

general form
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• The structure of the momentum integrals
that diverge at short distances have a
structure similar to the standard form
encountered in an S-matrix calculation

– they are already purely spatial, so no Wick
rotation is necessary

• We regulate the integrals by extending the
number of spatial dimensions to 3 – 2ε

– since k is actually the comoving momentum
we include a factor of the scale a along with
the renormalization scale μ

– the logarithms thus do not depend on a(η)

• We then extract the poles by taking ε → 0

A little aside on dimensional regularizationA little aside on dimensional regularization
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• Extracting just the pole terms we discover
that the divergences in the energy density of
the scalar field,

precisely match the scale-dependences the
gravitational terms,

Renormalizing classical gravityRenormalizing classical gravity

e.g., in the MS scheme
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• Our ultimate interest is to derive the
analogous renormalization of the
background geometry that occurs when we
chose a more general effective initial state
for the scalar field

• Let us recall the philosophy behind an
effective initial state

– the usual vacuum is a derived based upon a
particular choice for the low energy theory,
which is extrapolated to arbitrary scales

• The true vacuum may differ from this state
– new dynamics at short distances
– broken or deformed symmetries
– new physical principles

• The effective state then provides a general
parameterizations of the possible
differences between the standard and the
true vacuum states

A few words on boundary renormalizationA few words on boundary renormalization

define the state at an initial
time through
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• A more general effective state produces new
divergences in the energy-momentum
tensor

– because of the oscillatory factor, these
divergences occur at the initial boundary

• These divergences then require modifying
the gravitational side of the theory, by
adding new boundary counterterms

– For example, in Minkowski space there is
only one possible surface counterterm—a
surface tension—but that is enough

– More generally we have terms built from the
extrinsic and intrinsic curvatures

• The calculation is more complicated, but the
approach is the same

– expand to the appropriate adiabatic order
– and counterterms with the same scale

dependence (subtlety—dynamics)

A few words on boundary renormalizationA few words on boundary renormalization

including the new contribution
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• Treating gravity completely classically,
however, may not be sufficient to capture
the effects we are seeking

– the state explicitly breaks some of the
background symmetries

– allow the geometry to adjust to match that of
the scalar field state

• However, by treating gravity on the same
footing as the scalar field—and at tree
level—it should be possible to resolve an
important question about the naturalness of
trans-Planckian initial conditions

– in this framework, there would be no fine-
tuning in the initial state as some groups
have previously claimed

– the subtle point concerns normal derivatives
in the boundary counterterms

A controversy and its possible resolutionA controversy and its possible resolution

simplified back-reaction
calculations:

  •  Porrati, 2004–2005
  •  Greene, Schalm, Shiu, &
       van der Shaar, 2004–2005
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• The purpose of this talk has been somewhat
modest—to show how the presence of
quantum fields in a classical gravitational
background leads to a renormalization of the
gravitational parameters

• as well as to provide a brief overview of the
new elements for the energy-momentum
associated with a general effective initial state

• Because the standard vacuum respects the
symmetries at arbitrarily short-distances, the
counterterms will be of exactly the same form
as those already in the action

– but for other states, the broken symmetries
mean that we can include other counterterms
consistent with the remaining unbroken
symmetry

– the field is, after all, the source for gravity

ConclusionsConclusions
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