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Abstract

It is possible to define a general initial state for a quantum field by introducing a
contribution to the action defined at an initial-time boundary. The propagator for
this theory is composed of two parts, one associated with the free propagation of
fields and another produced by the operators of this initial action. The derivation
of this propagator is shown for the case of a translationally and rotationally in-
variant initial state. In addition to being able to treat more general states, these
techniques can also be applied to effective field theories that start from an initial
time. The eigenstates of a theory with interacting heavy and light fields are differ-
ent from the eigenstates of the theory in the limit where the interactions vanish.
Therefore, a product of states of the noninteracting heavy and light theories will
usually contain excitations of the heavier state once the interactions are included.
Such excitations appear as nonlocal effects in the effective theory, which are sup-
pressed by powers of the mass of the heavy field. By appropriately choosing the
initial action, these excitations can be excised from the state leaving just effects
that would be produced by a local action of the lighter fields.

QUANTUM field theory is typically used for systems in simple quantum states. For
describing scattering processes this is appropriate. To an excellent approximation the
particles that participate in or result from a scattering process can be treated as the
free-particle states of a noninteracting theory when looking long before or long after
a collision has occurred. Propagation is always made in reference to vacuum states
defined in a far past and a distant future. Being able to use these states brings many
boons. Subtleties such as which vacuum to use—the ground state of the free or of
the interacting theory—largely do not matter, diagrammatic calculations permit many
short-cuts such as the amputation of external legs, and the propagator which is the basis
of the perturbative description of processes is of the simplest possible form.

However, in other physical settings being limited to only the asymptotic vacuum
and the free particle states is a bit too restrictive. It might not be practical, or even
theoretically sound, in a particular system to define a state in an infinitely distant past.
Avoiding general excited states also means missing out on the possibility of describing
other interesting dynamics—for example, systems which are not in an equilibrium state
or the behaviour of quantum fields in the very early universe.

Given the central role of scattering processes in the development of quantum field
theory, it is not surprising that the treatment of more complicated quantum states, other
than the thermal state, have received far less attention. But the importance of quantum
fields in cosmology has encouraged an interest in a broader understanding of fields in
more general quantum states. Recently, for example, the authors of [1] have shown
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how to implement the choice of a particular initial state through an initial action of the
fields. Nonlocal operators in this initial action are related to the correlated structures
and excitations of the field that are present at a particular moment. The propagation of
fields in this state are then affected by the presence of the operators in the initial action.

Our purpose with this article is to make the connection between a choice of an
initial state and the form of the propagator a little clearer. This connection of course
can be viewed from either side: we could either start with a particular state and derive
its propagator or ask how we should choose the state so as to arrive at a particular
propagator. Along the way we shall also see how the standard interaction picture of
quantum field theory generalizes so that it includes the effects of an initial state. We
illustrate these techniques with two examples. We first show how to select an ordinary
thermal state through an initial action. The second example is a little more involved and
shows how the ideas of effective field theory can be implemented in a theory with an
initial time by choosing an appropriate initial state.

I. The propagator for the free vacuum

Consider a theory of a spinless field in a flat space-time,

S dt d3x 1
2 µ

µ 1
2m

2 2 U

U is a potential from which the quadratic term has been removed. We have written
U as though it only depended on the field to make it simpler to go between the
Lagrangian and Hamiltonian, but this is done mainly for illustration. Nothing hinders
us from including derivative interactions as well.

In the interaction picture, the free Hamiltonian determines how the field evolves,

H0 d3x 1
2
˙2 1

2
1
2m

2 2

The theory can be equivalently expressed in a momentum representation as

H0
d3k
2 3

1
2
˙
k
˙
k

1
2

2
k k k

where k is the energy of an excitation, k k2 m2, writing k k . The rest of
the action, which contains all of the self-interactions of the field,

HI d3x U

generates the evolution of states. So, for example, the evolution of the free vacuum state
0 t from t to t,

0 t UI t t 0 t

is produced by the following time-ordered operator,

UI t t Te i t
t dt HI t Te i t

t dt d3x U

which is determined by the interacting parts of the theory, HI .
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We see that the time-dependence of the expectation value of an operator t occurs
in two places: in the operator itself and in both appearances of the state,

0 t t 0 t 0 t U†
I t t t UI t t 0 t

To evaluate the right side of this expression we resort to a standard bit of notational
trickery. We introduce a t x field associated with the UI t t operator and a

t x field associated with the U †
I t t operator. The time-evolution of an expec-

tation value of an operator starting in its free vacuum is then given by

0 t t 0 t 0 T t e i t0
dt HI t HI t 0

Here, 0 0 t0 is a shorthand for the initial vacuum state.
Before going further it is worth pausing for a moment to make a few remarks about

this expression. (1) HI t means HI t x —the same potential as above is used,
except that now it is being written entirely in or fields as indicated by the su-
perscripts. (2) The time-ordering is extended to apply to the and fields in the
following sense: fields always occur after the fields, whatever the specific nu-
merical values of their arguments might be. This ordering puts the fields to the left,
which is the correct place for them; that is where the U †

I t t (with which they are as-
sociated) was in the first place. (3) The fields are further ordered in the opposite of
the usual sense,

T t x t y t y t x if t t
t x t y if t t

This ordering is inherited from the Hermitian conjugation in U †
I t t UI t t ; in

effect, time runs backwards within this operator. (4) The Hermitian conjugation is also
responsible for the relative minus signs between the two Hamiltonians in the exponent.
(5) This exponent is integrated from t0 to . The former is only a change in notation,
t t0; but t0 is better suited to denote an initial time. Setting the upper limit to be
, rather than t, is a convenient, though ultimately unnecessary, convention: nothing
beyond t ever contributes to the evolution. The theory dutifully obeys causality. (6)
t is an operator containing the fields and its derivatives which can be evaluated at

different points. t means that all of the ’s have been replaced with ’s. This is
completely arbitrary. t appeared betweenU †

I t t andUI t t so it could also have
been written with the ’s replaced by ’s without altering the expectation value.

The appearance of an initial time creates complications which are usually avoided
when setting up a scattering problem. Let us call the vacuum of the free theory at t t 0
0 t0 , and the vacuum of the interacting theory t0 . Speaking generally, these are
not equal, and it would be wrong to assume that

0 t t 0 t t t t ;

nor are we free, when t0 is fixed and finite, to take t0 , to recreate Gell-Mann
and Low’s technique for projecting away the effects of excitations above the vacuum.
So when speaking of the initial state, it is important to be careful and to know what is
really being meant.

When the interactions are small, the evolution of an expectation value can be found
perturbatively by expanding the exponential and taking the Wick contractions of the
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fields. There are two versions of fields, t x , and as a consequence the Wick con-
tractions lead to four propagators,

0 T t x t y 0 G t x; t y d3k
2 3 eik x y Gk t t

The time-ordering in this expression obeys the extended sense described before, viz.

Gk t t t t G t t t t G t t
Gk t t G t t
Gk t t G t t
Gk t t t t G t t t t G t t

Here G t t and G t t are the Wightman functions

0 t x t y 0 d3k
2 3 eik x y Gk t t

0 t y t x 0 d3k
2 3 eik x y Gk t t

For the free, Lorentz-invariant vacuum, these Wightman functions assume a familiar
form,

Gk t t
1
2 k

e i k t t and Gk t t
1
2 k

ei k t t

The propagatorG t x; t y , for example, is at once recognized for the standard Feyn-
man propagator,

G t x; t y
d3k
2 3

1
2 k

t t e i k t t eik x y t t ei k t t e ik x y

This expression could be converted into its more overtly Lorentz invariant form by
introducing the appropriate contour integrals over dk 0; but since the physical problem
here is to follow an expectation value as it evolves over finite intervals, starting at a
specific initial time, nothing is to be gained bywriting an integral over d 4k. We integrate
over all of space, but not (necessarily) over all of time.

In the following, the calculations have been typically written in terms of G k t t
and Gk t t rather than in terms of the specific Lorentz-invariant expressions. This
allows the results to be generalized with the effort of a moment to other space-times—
though to keep the results reasonably tractable, the background here is always assumed
to be translationally and rotationally invariant in the spatial directions.

II. The propagator for a more general initial state

With these preliminaries now out of the way, we next consider a scalar field which at
the initial time is in a more general state than its vacuum. It is still possible to work
in an interaction picture, but the choice of a different state means that the propagator
will also change. It is intuitively convenient to regard the propagator as having two
parts: a (free) vacuum part, telling how information in the field propagates from one
space-time point to another once we have settled on a meaning for positive and negative
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energy eigenstates, which is independent of the state, and a second part that tells how
the information contained in the initial state itself propagates forward.

A general state is specified by a density matrix t . Still working, as ever, in the
interaction picture, this state is completely determined at later times once it has been
specified at an initial time, 0 t0 . It evolves through the same operator UI t t
defined before,

t UI t t0 0U
†
I t t0

Assuming that we have not clumsily left anything out of our theory, so that no probabil-
ity is leaking away, t will be a Hermitian matrix. It is always possible to choose
a basis in which t is diagonal; but since we already have two distinct bases to
consider—one for the free particle theory and one for the fully interacting theory—
and since we do not wish to be bound to any particular choice for the basis from the
very beginning, we shall not bother to assume that t has been diagonalized.

The expectation value of an operator t is the weighted sum—a trace—over all
the possible excitations contained in the state t ,

t tr t t tr U†
I t t0 t UI t t0 0

The way that we shall fix the initial state is by defining a boundary action S 0 at t t0.
This idea was introduced in [1]. A particular configuration of the fields is then weighted
by a factor eiS0 . The sum over all possibilities must be equal to 1, since we have been
assuming that our theory captures everything relevant, so the density matrix for the
initial state is written as

0 Z 1eiS0

where Z tr eiS0. Any constant terms in the action can be absorbed into the normaliza-
tion and we leave out the possibility of sources or sinks in the initial state. This leaves
the simplest structures in S0 as the correlations between fields at two different points.
Still confining ourselves to states that are translationally and rotationally invariant, and
assuming that the density matrix is real 1, †

0 0, the most general structure that is
compatible with these restrictions and that is quadratic in the field is 2

S0
1
2

d3xd3y t0 x A x y t0 y t0 x A x y t0 y

t0 x iB x y t0 y t0 x iB x y t0 y

A x y is a complex function and B x y is a real one. The fact that the states have
correlated structures over perhaps arbitrarily large distances is perfectly fine. We do
not know how the state was prepared beforehand, and there is in principle an infinite
amount of time prior to t0 for a clever experimenter or the universe to do so. All of the
details of how the state is prepared are irrelevant for what comes after. The behaviour
after t0 is entirely determined by our knowledge of the state at this initial moment.

There is no a priori reason to stop at quadratic order in S 0, though there may be
practical reasons to hope that only the quadratic terms are ‘large.’ Quadratic terms pro-
duce linear equations of motion. Linear equations are much easier—which is usually

1Under Hermitian conjugation fields are replaced by fields and vice versa. Everything else is
complex conjugated.

2Quadratic in the field, not necessarily its derivatives. More generally, S 0 could also include structures
depending on ˙ t0 x , ¨ t0 x , etc.
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meant to say, possible—to solve. We shall therefore always imagine that any higher or-
der correlations amongst the fields are small. Then the operators on the boundary can be
separated into two parts, and the nonlinearity of the theory can be solved perturbatively
by extending the interaction picture in the following sense to include S 0:

(1) The ‘free’ part of the theory is declared to be the set of quadratic terms in the
action, limited to those with no more than two derivatives, together with all of the
quadratic terms in the boundary action. This free theory defines the propagator. In
effective theories, the quadratic action can also contain higher derivative terms. These
are the remnants of nonlocalities produced by the propagation of heavier fields that
have been left out of the effective theory. Such nonlocalities are expanded in powers
of the four-momentum and truncated at an appropriate order, determined by what can
be resolved experimentally. The derivative terms, beyond the standard kinetic term, are
then naturally small in an effective theory and can be conveniently grouped amongst
the interactions even though they too are quadratic in the field.

(2) All the rest of the terms in the action, and all of the operators in S 0 that are cubic
or higher order in the field are treated as interactions. For this theory to be solvable
in an approximate sense, both the sizes of the interactions in the action and the sizes
of the three-point and higher correlators in the initial state must be small enough for a
perturbative treatment to work.

Thus the thing to compute is the propagator for the initial state. Once it has been
found, the perturbative calculation of any expectation value follows along its familiar
course, aside from this change in the form of the propagator. To do so, we cast out
everything not needed for this purpose. This leaves just the free part of the action, H 0
once again,

H0 t d3x 1
2
˙2 1

2
1
2m

2 2

and the quadratic terms of the initial state, which can also be cast into a Hamiltonian
form,

HI t t t0 d3xd3y t0 x A x y t0 y t0 x A x y t0 y

t0 x iB x y t0 y t0 x iB x y t0 y

by introducing a trivial time-dependence through the -function. 3
The notation being used here is deliberately suggestive: the calculation will be

performed in a slightly different version of the interaction picture than the one that
we have just outlined. For the time being, H0 will be the free part and HI will be the
interacting part of the Hamiltonian. After we have found the propagator that includes
the two-point information in the initial state, both these parts can be put back together
and regarded as the free part of a more complicated theory, H0 H0 HI .

The calculation could be performed by treating this H0 as the ‘free’ Hamiltonian
from the beginning, but this approach would leave a degree of freedom undetermined.
We are still obliged to say which are the positive energy states of the theory. One
advantage of building up the propagator from the vacuum propagator, is that we thereby
define the sense of what is a positive energy excitation from the start. If we feel that
we have lost the freedom for making another choice of the energy states, it can be

3We are using the convention where t
t0 dt t t0 f t 1

2 f t0 , when the -function vanishes on
the boundary of the integral.
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reintroduced by transforming the modes of the vacuum propagator. Being careful and
performing the calculation in a suitably general way, it is very simple to make such a
transformation.

With the logic of the calculation out of the way, we are ready to find the propagators
appropriate for the initial states,

0 T t x t y e i t0
dt HI t 0 0 T t x t y eiS0 0

The time integral over the interaction Hamiltonian only contributes at the initial bound-
ary because of the -function in HI t .

The price of doing the calculation in this picture is that of course we must take the
sum of an infinite series of corrections. This turns out to be quite easy to do. The idea
is similar to one that is sometimes met as an elementary exercise in ordinary scattering
theory. Starting with an ordinary free, massive, spin zero particle,

d4x 1
2 µ

µ 1
2m

2 2

the massive propagator can be built from the massless one by treating the kinetic term
as the free part of the theory and the mass as the interaction, and then summing an
infinite series of corrections. The propagator is the same as would have resulted from
including the mass term in the free action from the start, as is more ordinarily done. The
calculation with an initial state is a bit more complicated for two reasons. (1) There are
seemingly four propagators to derive, not just one, and (2) there are more quadratic
interactions to insert: A , A , and i B B .

The first apparent complication turns out not to be a problem at all. The propagator
for the initial state has a general form

Gk t t Gk t t

The first term represents the vacuum propagator again while the latter is a common
term shared by all of the possible choices of for the two fields. Why the propagator
has such a structure is easily understood. The full propagator is found by summing an
infinite series of connected diagrams:

t x t y
0 t x t y t x t y t x t y

A A B A A B A A B

The first graph is the vacuum propagator. In all the rest of the graphs, if the diagram is
to be connected, the fields at x t x and y t y must be contracted with fields on
the initial surface. Because t0 is either the earliest possible time (in the sense) or the
latest possible time (in the sense), the Wightman function for t t t0 is determined
entirely by the index of the field on the initial surface,

Gk t t0 Gk t t0 Gk t t0 Gk t t0
This establishes that the sum of all the graphs that connect to the initial time—what we
called Gk t t —is the same for all the propagators, irrespective of the indices.

There is a second simplification for the internal propagators within a graph. An
internal propagator connects points confined to the initial surface. Whenever the times
in a propagator are the same, all four forms are the same, G̃k Gk t0 t0 . Thus, only
four time-dependent structures can appear,

Gk t t0 Gk t t0 Gk t t0 Gk t t0 Gk t t0 Gk t t0 and Gk t t0 Gk t t0
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Which one occurs depends on which of the internal fields, those at t 0, are being con-
tracted with the external fields, those at t or t .

Summing the series of connected graphs with insertions of the initial state operators
produces the following correction to the propagator,

Gk t t
1

1 iG̃k Ak Ak 2iBk
i Gk t t0 Gk t t0 Ak Gk t t0 Gk t t0 Ak

Gk t t0 Gk t t0 Gk t t0 Gk t t0 G̃k Ak
2 B2k

Gk t t0 Gk t t0 Gk t t0 Gk t t0 Bk G̃k Ak
2 B2k

This form can be used for any system that is translationally and rotationally invariant in
the spatial directions.

In a Lorentz-invariant space-time, the Wightman functions assume the forms given
earlier and G̃k 2 k

1. Expanding the complex function Ak in terms of two real
functions, Ak k i k, the structure of the initial state affects the subsequent theory
through the following addition to the propagator,

Gk t t
1
4 2

k

1
k k Bk

2 k k sin k t t 2t0

2 k k
2
k

2
k B2k cos k t t 2t0

2 kBk
2
k

2
k B2k cos k t t

III. Thermal states

Before applying this method to something new, it is instructive to see first how it can be
used to pick out a familiar state. One of the simplest examples, after the free vacuum, is
a thermal state. An ensemble of spin zero fields at a temperature T 1 is populated
according to a Bose-Einstein distribution. The number density n k of excitations with an
energy k follows a well known form,

nk
1

e k 1
The standard method for deriving the propagator for a thermal state is to apply a condi-
tion on the Wightman functions, which treats the temperature as an imaginary compo-
nent of the time,4

Gk t i t Gk t t
When combined with the other boundary conditions on the Green’s functions, the re-
sulting thermal state propagator is

Gk t t
nk
k
cos k t t

Comparing it with the initial state propagator that we just derived, we see that this
structure is arranged by choosing

k 0 k 2 k
n2k

2nk 1
Bk 2 k

nk nk 1
2nk 1

4This is the KMS condition of Kubo, Martin, and Schwinger.
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This corresponds to choosing the following initial action,

S0 i
d3k
2 3

k
2nk 1

n2k k k k k
nk nk 1

k k k k

In this case there is not an obvious reason to prefer fixing the thermal state thus rather
than applying the KMS condition. If anything, the latter is physically more intuitive;
however the former can be applied to a far wider class of states.

This expression for the initial action differs slightly from how it is sometimes given
elsewhere. The initial action in terms of k rather than nk assumes the form

S0 i d3k
2 3

k
2sinh k k k k k

cosh k k k k k

1
2 k k k k k

This action corresponds to an implicitly normal-ordered theory. The initial action for a
theory that has not been normal-ordered would have been missing the final term, 5

Ŝ0 i
d3k
2 3

k
2sinh k

k k k k
cosh k k k k k

The final term in S0 was needed for the initial action to vanish in the zero temperature
limit, or nk 0. The initial action, Ŝ0 , in contrast contains excitations even
in the nk 0 limit,

Ŝ0 i
d3k
2 3

1
2 k k k k k

Which is the correct initial action to use? The presence of this term produces a cor-
rection to the vacuum propagator even in the limit where the temperature vanishes.
Therefore it is the normal-ordered S0 and not Ŝ0 which is the proper initial action
for selecting the standard thermal propagator.

IV. Simplifying the propagator

Sometimes we have a particular initial physical state in mind for which we would like
to determine the propagator. But sometimes too, as the thermal state has illustrated, it
is the reverse question that we wish instead to answer: how should the initial state be
chosen to produce a particular propagator?

For this purpose, the general form for the propagator associated with a rotationally
and translationally invariant initial state can be parameterized by three momentum-
dependent functions, ak, bk, and ck, for the three corresponding independent time-
dependent structures,

Gk t t
1

k
ak sin k t t 2t0 bk cos k t t 2t0 ck cos k t t

5This expression is a straightforward generalization of the quantum-mechanical density matrix in equa-
tion (10.44) of Feynman and Hibbs [2].
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We have defined these functions to be dimensionless by extracting a common factor of
1 k. A choice of the propagator—or equivalently, a choice for ak, bk, and ck—in turn
implies that a particular choice for Ak k i k and Bk must have been made initially,

k
2 k ak

1 2bk 2ck

k 2 k bk
a2k

1 2bk 2ck

bk ck
2

1 2bk 2ck

Bk 2 k ck
a2k

1 2bk 2ck

bk ck
2

1 2bk 2ck

The relations between the two sets of real functions k k Bk and ak bk ck are
nonlinear; but since the propagator was derived by summing an infinite series, such
behaviour is hardly surprising.

The initial state action associated with this propagator is thus

S0
1
2

d3k
2 3

2 k ak
1 2bk 2ck k k k k

i k bk ck
1 2bk 2ck k k k k

i k bk ck
2a2k

1 2bk 2ck k k k k

The first term could be put into a form that more closely resembles the other two through
the identity

k k k k k k k k

For the thermal state, ak 0, bk 0, and ck nk.

V. Matching for effective initial states

We are now ready for a more interesting application. Effective field theories are usually
set up in an asymptotic vacuum state. The initial and final times are sent to t 0 and
t respectively. Suppose that instead we wish to use an effective theory that starts
in an initial state at a particular initial time. Intuitively we expect that in addition to the
usual matching between the ‘complete’ and ‘effective’ actions of a theory, we might
also need somehow to choose a suitable boundary action. This ‘boundary matching’—
what it means and how it is accomplished—is best illustrated with a simple example.

Consider a theory composed of a heavy field of massM and a light field of mass
m. At energies well below the mass of the heavier of the fields, it is possible to leave the
heavy field out altogether and to describe all of the relevant dynamics of the light field
in terms of an effective theory derived from the original theory. The operators included
in the effective theory are found by the familiar game of ‘matching’ and ‘running’: we
match the operators in the effective theory with those generated in the effective action
of the original theory by the ‘one-light-particle-irreducible’ graphs. 6 This matching is

6This is exactly as it sounds: these are the graphs that are not cut in two by cutting a light virtual line.
They do not exclude graphs that be cut in two if we cut a heavy virtual line.
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done at the energy scale µ M. It completely fixes the coefficients of the operators in
the effective version of the theory. Using the renormalization group, the coefficients are
then run down to the lower energies where we intend to use this theory.

This standard treatment is always done in an asymptotic vacuum state. Starting an
interacting theory abruptly in a state means that, through the mixing of the two fields, it
can contain excitations of the heavy fields, when expressed with respect to the basis of
the free theory. But the low energy effective theory should not include such excitations.
We need to find a way to remove them. This can be done by adding a boundary codicil
to our standard matching procedure.

We shall show the first perturbative step of this boundary matching through the
following example7, a theory with a light and a heavy scalar field,

S d4x 1
2 µ

µ 1
2m

2 2 1
24

4

1
2 µ

µ 1
2M

2 2 1
24

4 1
2g

2 2

This action contains all of the renormalizable operators for the light and heavy fields,
together with one interaction between them. We assume that m M so that an ef-
fective theory of a light is sensible, and we have imposed an invariance under the
transformations and .

One of the luxuries in treating asymptotic states—the sorts of states used in scat-
tering problems—is that we can use an LSZ reduction to amputate external propagator
legs from graphs. This trick does not necessarily work for the expectation value of an
operator evolved for a finite interval. We must resort to other measures.

One trick is to give the light field a classical expectation value, 0 t . We can
then learn about the renormalization properties of the theory by examining the one-
point function of the fluctuations about 0 t . Even with the more complicated time-
dependence, the one-point function of the fluctuations stays relatively simple: all the
graphs have a single external leg for the propagator for the light field. This leg can be
amputated. What remains after the amputation is an equation of motion for 0 t which
is supplemented by the quantum corrections generated by the interaction of with
and with itself.

So far we have spoken of 0 t as an expectation value, but we have not yet specified
in which state t x is being evaluated. Let us very naı̈vely put both fields in their free
vacuum states at t0 and evaluate the one-point function for the fluctuations about 0 t ,

0 t t x 0 t 0 t

At leading order in g and in heavy particle loops, this one-point function produces the
following condition on 0 t ,

¨
0 t m2 0 t

1
6

3
0 t

1
2
g 0 t

d3k
2 3

1
k

1
2
g2 0 t

t

t0
dt 2

0 t
d3k
2 3

sin 2 k t t
2
k

0

Since our purpose is to find what the existence of the heavy particle requires of the ef-
fective theory, we have not bothered to write graphs at the same order that are composed

7Some of the details of this example are examined more fully in [3]. We have included here only those
results of the calculations that are needed to figure out the leading ‘boundary matching condition’.
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entirely of light fields.8 The k here comes from the Wightman functions for the heavy
field, so k k2 M2 contains the mass of this field, M. The last term still has an
integral over the time. Through an infinite series of partial integrations, we transform
that term, and thus the equation for 0, into

¨
0 t m2

1
2
g

d3k
2 3

1
k

0 t
1
6

3
2
g2

d3k
2 3

1
3
k

3
0 t

g2

16 2 0 t
n 1

1 n

2n
n 1 !
2n 1 !!

1
M2n

d2n 2
0

dt2n

2g2 0 t
n 0

1 n d2n 2
0

dt2n t0

d3k
2 3

cos 2 k t t0
2 k

2n 3

2g2 0 t
n 0

1 n d2n 1 2
0

dt2n 1 t0

d3k
2 3

sin 2 k t t0
2 k

2n 4 0

Let us explain the meanings of the parts of this equation:
(1) The mass m2 and the coupling constant both receive divergent corrections due

to the heavy loops. Despite the difference in the physical setting, any good field theorist
will recognize these as structures that occur in the S-matrix analysis of this same theory.
If we dimensionally regularize these loop corrections, they become

d3k
2 3

1

k

M2

8 2
1

ln4 1 ln
M2

µ2

and
d3k
2 3

1
3
k

1
4 2

1
ln4 ln

M2

µ2

which makes this connection more obvious. For later it is useful to point out now that
the correction to the mass has the structure

g 0 t
d3k
2 3 Gk t t

This form, where we have written the general Wightman function and not its vacuum
form, generalizes the more readily to the loop correction in a nonvacuum initial state.

(2) Any good effective field theorist will also recognize the first infinite series of
corrections in the equation for 0 t . These are the relics of the propagation of heavy
fields, a nonlocal effect that appears here in the guise of an infinite series of local oper-
ators. Though they are terms in an equation for 0 t and not in the form of an effective
action for the quantum field t x , our effective field theorist is clever enough to see
that they require a series of derivative operators of the form

cn
M2n

2 2 n 2

8Because the same graphs appear in both the complete and effective versions of the theory: they already
match.
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in the effective theory. Since we have not given 0 t any spatial dependence, only the
time-derivatives appear in the 0-equation. In the effective theory, we truncate this at
some finite order, appropriate for what can be resolved experimentally.

(3) Our intentionwas to put the theory in the free vacua of the light and heavy fields.
The last two lines in the equation for 0 t show that we have been perhaps a little too
naı̈ve in thinking that this avoids any excitations of the heavy field. The eigenstates of
the free and interacting theories are not the same. The terms in these two series are each
nonlocal in time. For example, the leading term, in powers of 1 M, in the limit where
M t t0 1 is approximately

g2

4 0 t
2
0 t0

d3k
2 3

cos 2 k t t0
3
k

g2 2
0 t0

8 e 3 0 t
cos 2M t t0

3
4

2M t t0 3 2

The meaning of these terms is that the initial state contains excitations of the heavy
field. If we wait patiently, they will annihilate into light fields leaving only the usual
operators in the effective theory for . That is guaranteed by the decaying t t 0 3 2

power law. However, we could extend our matching prescription so that we include
whatever structures are needed in the initial state to remove these nonlocal remnants of
the heavy field completely.

We illustrate how this matching is done for the initial state at order g and at one-loop
order. We need to remove excitations of the heavy field, so we add a quadratic action
for t0 x at the boundary. The general form of the one loop correction to the mass
term then becomes

g 0 t
d3k
2 3 Gk t t g 0 t

d3k
2 3 Gk t t g 0 t

d3k
2 3 Gk t t

where the new term is

d3k
2 3 Gk t t

d3k
2 3

1
k
ak sin 2 k t t0 bk cos 2 k t t0 ck

This cancels the one-loop, order g2, nonlocalities when ck 0 and

ak 2g
n 0

1 n

2 k
2n 3

d2n 1 2
0

dt2n 1 t0

bk 2g
n 0

1 n

2 k
2n 2

d2n 2
0

dt2n t0

At very high energies, k k and the leading behaviour of these functions is

ak
g
4k3 0 t0 ˙0 t0 and bk

g
4k2

2
0 t0

The resulting contribution from the initial state to loops is in general much more con-
vergent at short distances than the contribution from the standard vacuum propagator.
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Leading behaviour
Setting ck 0 in the general expression for the boundary action produces

S0
1
2

d3k
2 3

2 k
1 2bk

ak k k k k

i bk a2k b2k k k k k

i a2k b2k k k k k

Both ak and bk are infinite series in 0, so the boundary action has a complicated,
nonlinear dependence on the expectation value 0. But by working in a limit appropriate
for the effective theory, we can put this action into a form where its physical meaning
is made a little more intuitive.

The effective theory is used when 0 and its derivatives all are roughly the size of a
common mass scale, which we shall call E, which is tiny when compared with the mass
of the heavy field, M. In this regime, the sizes of the terms in ak and bk form a series
of powers of the small ratio E k E M. In particular, ak contains odd powers of this
ratio, and bk is made up only of even powers. The leading term is thus the n 0 term
of bk,

bk
g
2 2

k

2
0 t0 1

If we expand S0 to leading order in this small quantity, we have as the leading boundary
operator,

S0
i
2

d3k
2 3

g

k

2
0 t0 k

t0 k
t0 k

t0 k
t0

We can return from our long sojourn in momentum space by transforming back to posi-
tion space, putting this leading part into a form fromwhichwe can extract its asymptotic
behaviour in various limits,

S0
ig
4 2 d3xd3y M

x y
K1 M x y 2

0 t0

t0 x t0 y t0 x t0 y

We now make a few remarks about the physical meaning of this action.
(1) Long distances: At large separations between the points x and y, the Bessel

function K1 has the asymptotic form K1 z 2
e z

z . The action is thus exponentially
suppressed for distances much larger than the Compton wavelength of the heavy field.
This is a reasonable thing for an effective theory: we do not expect large modifications
of the long-distance properties of the effective theory by the presence of the heavy
theory. This does not mean that the state in the effective theory cannot have any long
distance structures at all, only that they should not be associated with the heavy field.
We could have long distance structures in the effective state of light field if they are
already there in the higher energy theory.

(2) Short distances: Even at short distances, the action is dominated by the local
part of the operator since

K1 M x y
1

M x y
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for M x y 1. The nonlocality of the operator is not able to be resolved by the
dynamics of the light field at low energies.

(3) Dimensional analysis: A part of the point of giving the light field a background
value is to learn as much as possible without the need to calculate higher-order cor-
relation functions of the quantum field t x directly. Earlier, we inferred the exis-
tence of the operators 2 2 M2 n 2 in the effective theory from the presence of the
M 2n 2

0 d2n dt2n 2
0 terms in the equation for the background. We could have found

the same operators by evaluating the four-point function of t x , but it would have
required considerably more effort. Similarly, what we have been treating as a quadratic
action in the heavy field should really be seen as the leading term in a tower of bound-
ary operators in both fields. This term in particular is a quartic operator, 2

0
2 2 2.

From the perspective of the three-dimensional Euclidean boundary field theory, this is
an irrelevant operator—just what we should expect would be needed to cancel the un-
wanted short-distance parts of the state. It is not a local operator of the boundary theory,
but then we did not expect it to be so in the first place.

Once we start to consider an operator of the form 2 2, we are no longer looking
at a ‘simple’ modification of the two-point structure of the initial state. Then we should
be using the standard vacuum propagator9 while the modifications to the initial state
are included amongst the interactions rather than the free parts of the theory. This is
only tractable as long as these interactions can be treated perturbatively. But this is
exactly what is happening here—in fact it is doubly so. There is a suppression from
the (presumably) small coupling g and there is a further suppression by k, which is
small in the limit where the effective theory is applicable. It was in fact for this purpose,
to postpone analysing such complications for as long as possible, that we introduced the
background expectation value for the light field t x in the first place.

VI. A few last remarks

Our purpose here has been to treat the evolution of matrix elements in a quantum theory
that starts from a more general initial state and at an arbitrary time. There are many
interesting questions that might be addressed through this formalism.

(1) The presence of interactions in a quantum theory leads to a renormalization
of its parameters—masses, couplings, etc. These same interactions might similarly
alter the structure of the initial state, so it seems reasonable that the initial action will
require some renormalization as well. How is this renormalization performed? Can we
formulate a set of systematic rules for doing so?

(2) An initial time might be naturally imposed by a physical system; but seen more
generally, there could be some arbitrariness in the exact choice of this time. If we have
a particular state in mind, the time-evolution itself generates a flow in the parameters
that we choose—e.g. Ak and Bk—to select it. We can thus think of a flow in time,
t0 t0, equivalently as a flow in the space of initial actions, S 0 t0 S0 t0 , such
that we stay within the same state. From the perspective of the expectation value of an
operator, t , at times t t0 t0 it should not matter whichwe choose. Are there any
interesting properties about the theory that can be learned from this independence? And
what happens in an expanding background, such as de Sitter space, where an evolution
in time is related to a flow in energies?

9assuming that we are choosing the free vacuum state for the light field. Even in the effective theory
we are still free to consider initial states that contain low energy excitations of the light field.
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(3) We have, in the second example, illustrated how the idea of an effective theory
can be applied when starting at a finite initial time. By allowing ourselves to choose
more complicated initial states, the standard matching procedure of effective field the-
ories needs to be extended to include a matching prescription for the boundary actions
too. We have only shown how this matching is done for the leading one-loop term that
is linear in the coupling. What is the general prescription for the boundary matching?
We would like to arrange a very clear matching procedure paralleling what is usually
done to determine the operators in an effective theory.10 What the boundary matching
is telling us is how to write the state perturbatively in the interacting theory so that it
contains no excitations of the heavy fields.

(4) These techniques can be used whenever we need to describe a quantum field that
starts in a state other than an asymptotically defined one—a condensed matter system
in an excited or nonequilibrium state or quantum fields in the very early universe, for
example. For the latter, we can avoid defining the quantum fluctuations in a nearly
de Sitter background in the asymptotically distant past by simply defining it instead
at a finite time in the past. We can then methodically treat the possible influences
of any earlier stages, or the effects of other fields, by considering various correlated
structures in the initial action. By comparing with observations, these structures can be
constrained or eliminated empirically.
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