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This article examines how a breakdown of a locally Lorentz-invariant, pointlike description of nature at

tiny space-time intervals would translate into a distinctive set of signals in the primordial power spectrum

generated by inflation. We examine the leading irrelevant operators that are consistent with the spatial

translations and rotations of a preferred, isotropically expanding, background. A few of the resulting

corrections to the primordial power spectrum do not have the usual oscillatory factor, which is sometimes

taken to be characteristic of a ‘‘trans-Planckian’’ signal. Perhaps more interestingly, one of these leading

irrelevant operators exactly reproduces a correction to the power spectrum that occurs in effective

descriptions of the state of the field responsible for inflation.
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I. INTRODUCTION

General relativity postulates that it is always possible to
treat the immediate vicinity of any place and time as
though it were completely free of the influence of gravity.
Near any point, space and time look flat, regardless of the
wider and more complicated environment in which it
happens to be situated. Looking from one place and time
to another, the theory tells precisely how these locally flat
frames fit together so that the global effects of gravity
become apparent.

To all appearances, this postulate seems to be a reason-
able principle on which to build a description of our uni-
verse. From terrestrial distances to the size of the
observable universe, no discrepancy with the predictions
of relativity has been found. So far, the only somewhat
unsettling observation is that during the last five billion
years or so, the rate at which the universe is expanding
appears to have begun accelerating. But whether this fact
can be attributed to a failure of the theoretical ideas behind
relativity or to not having correctly accounted for all of the
ingredients of the universe is still unknown.

At the opposite extreme, the idea of a locally flat refer-
ence frame is also central for quantum field theory. How
quantum fields propagate through space and how they
interact with each other are both strongly constrained if
they are assumed to transform consistently with the sym-
metries of flat space. This idea additionally influences how
to choose an unambiguous and unique lowest energy vac-
uum state. And as long as these quantum interactions occur
over large enough distances for the possible quantum
influences of gravity to be negligible, it is safe to treat
space and time as fixed.

Continuing to still smaller distances, a significant
threshold is crossed. At intervals smaller than this thresh-
old, the standard description of gravity begins to be
strongly interacting, if viewed as a quantum theory. But
since gravity corresponds to the dynamics of space-time
itself, at such distances it is no longer entirely self-evident
that the vicinity of any point can be locally approximated
by flat space.
Many of the attempts thus far to reconcile gravity with

the character of a quantum theory have in some way
introduced a new length scale, whose role only becomes
apparent at very short intervals. This scale is typically
assumed to be close to that same threshold where gravity
becomes strongly interacting. In most of these approaches,
space-time at these intervals no longer has the structure and
the symmetry of a classical, locally flat background.
If nature is not locally flat at short distances, some of the

usual assumptions about a quantum field theory break
down. The class of allowed interactions could be larger,
since how fields interact only needs to be consistent with a
reduced set of symmetries. Moreover, what is the true
vacuum state will generally not match with a standard
Lorentz-invariant vacuum at these short intervals.
Whether or not such signals of a breakdown of local
Lorentz invariance are seen can provide important guid-
ance as to what postulates should be imposed when at-
tempting to incorporate general relativity into a quantum
picture of the universe.
Under ordinary circumstances, what happens at such

tiny intervals would largely decouple from the interactions
and space-time symmetries relevant for any currently ac-
cessible experiments, but there is one important exception.
If the universe underwent a stage of accelerated expan-
sion—or inflation [1]—during an early epoch, the ordinary
fluctuations of any quantum fields present would be dra-
matically stretched. With enough of this stretching, fluctu-
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ations that were initially tiny would quickly grow beyond
the influence of any subsequent causal process—at least
while this stage of accelerated expansion lasts. Once this
phase has ended and the universe starts growing at a
decelerating rate, an observer sees farther and farther
over time and these fluctuations—until then essentially
frozen into the background space-time—can again be
seen and come to influence the features of the universe at
ever larger scales. This mechanism for generating a pattern
of primordial fluctuations in the background space-time is
an essential element of inflation.

If some form of inflation did in fact occur and provided
this stage of accelerated expansion lasted sufficiently long,
then it should be possible to see any signals of the violation
of local Lorentz invariance through characteristic distor-
tions in the pattern of primordial fluctuations. In practice,
these fluctuations are not observed directly, but instead
they are seen through their influence on the other ingre-
dients of the universe, appearing eventually among the
features of the cosmic microwave background radiation
[2,3] and the distribution of matter on large scales [4].

As mentioned, one constraint imposed by local Lorentz
invariance is on the choice of the vacuum state for the fields
present during the inflation. A fair amount of effort [5–13]
has already been made to understand how particular de-
partures from this invariance would appear in the micro-
wave background if they arose in new structures in the
vacuum state. Most of this work examined the leading
effect, without considering the radiative corrections.
These corrections can actually be quite subtle [14–17]
when the vacuum departs dramatically from the flat-space
choice at these short intervals. To treat them properly
requires either imposing very stringent constraints on the
behavior of the state at short distances—essentially re-
stricting to just the adiabatic states [18]—or modifying
the propagator to account correctly for the influence of
the initial, nonadiabatic state [19–21]. Despite the fact that
many of the previous works have considered models that—
in essence—violate local, classical Lorentz invariance in
one way or another, none have studied the perhaps simpler
problem of determining the influence of symmetry-
breaking operators in the effective Lagrangian for inflation.

This article examines how violations of classical
Lorentz invariance through such irrelevant symmetry-
breaking operators influence the primordial fluctuations
produced by inflation. To isolate the effects of these op-
erators from those produced by departures of the vacuum
state from the standard form, we shall choose a conven-
tional vacuum [22] throughout—one that matches with the
flat-space vacuum over infinitesimal intervals. So our goal
here is twofold—partially we would like to constrain
whether coordinate invariance could be broken at very
short distances, but we also wish to learn the extent to
which the signatures predicted by choosing nonadiabatic
states during inflation can be mimicked by a less radical
modification of the theory.

The next section introduces a preferred frame that
breaks the symmetry between the spatial and temporal
directions and that is appropriate for an inflationary back-
ground [23]. In this section we also list all of the distinct
leading irrelevant operators transforming consistently with
this background. Section III then evaluates the effect of
each of these operators on the simplest moment of the
pattern of primordial fluctuations—its two-point correlator
or power spectrum. In Sec. IV, we compare these effects
with the comparable signals due to nonadiabatic vacuum
states. In some cases we find something familiar but we
also find distinctive features too. Section V concludes with
a brief summary and discussion of our results.

II. PRELIMINARIES

A. Geometry

When we consider the possible dynamics of a field
theory, it is usually assumed that the underlying symmetry
of nature is deeper and more extensive than what is actually
realized in the particular background in which it happens to
be propagating. As a simple example, the complete set of
invariant quadratic operators that govern the propagation
of a scalar field ’ and that are invariant under a general
change of coordinates is

L C ¼ 1
2g

��@�’@�’� 1
2�R’

2 � 1
2m

2’2; (2.1)

where R is the scalar curvature associated with the metric
g��. The field ’ corresponds to the inflaton, the field

responsible for the inflationary phase, and whose fluctua-
tions, combined with the scalar component of the fluctua-
tions of the metric, results in the primordial perturbations
in the background space-time.
Here we examine the signatures of short-distance opera-

tors that break this general coordinate invariance, though in
a way that is still consistent with the geometry of the
background. LC will therefore receive corrections. These
new operators are characterized by whether their impor-
tance grows (relevant or marginal corrections) or dimin-
ishes (irrelevant corrections) at larger and larger distances.
Let us begin with an isotropically expanding universe,

described by a Robertson-Walker metric,

ds2 ¼ a2ð�Þ���dx
�dx� ¼ a2ð�Þ½d�2 � d~x � d~x�: (2.2)

The rate at which the scale factor að�Þ changes defines a
natural energy scale associated with this geometry,

Hð�Þ ¼ a0

a2
¼ 1

a2
da

d�
; (2.3)

the Hubble scale. Except in the case of a de Sitter [að�Þ !
�1=ðH�Þ] or a Minkowski [að�Þ ! 1] space-time, this
background does not have the maximal, ten-dimensional,
possible set of symmetries. We shall use this metric to
define a ‘‘preferred frame’’ for our theory, one where the
space-time is organized into spatial slices orthogonal to the
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vector,

n� ¼ ðað�Þ; 0; 0; 0Þ: (2.4)

Because spatial symmetries—translations and rotations—
are preserved by this frame, we shall allow only those
operators that remain invariant under this smaller set of
symmetries.

By removing the components of the metric that lie along
the same direction, the normal defines an induced metric
for the spatial surfaces orthogonal to it,

h�� ¼ g�� � n�n�: (2.5)

In our Robertson-Walker frame, this induced metric is flat,

h��dx
�dx� ¼ �a2ð�Þd~x � d~x; (2.6)

being only rescaled from one surface to the next through
the appearance of the scale factor.

We can use each of these tensors to construct two more
by projecting the derivative of n� onto the normal and the

transverse directions,

n�r�n� (2.7)

and

K�� ¼ h�
�r�n�: (2.8)

This latter tensor is the standard extrinsic curvature. In the
Robertson-Walker frame, the first vanishes while the sec-
ond is proportional to the Hubble scale,

K��dx
�dx� ¼ �a2Hd~x � d~x: (2.9)

Together with the standard covariant tensors,

g��;r�; R����; . . . (2.10)

we shall use these additional objects,

n�; h��; K��; (2.11)

to generate the corrections to the free field theory described
by LC.

One final ingredient we shall use is a nonanalytic op-
eratorD that essentially extracts a factor of the magnitude
of the spatial momentum,

D � ðh��r�r� � Kn�r�Þ1=2; (2.12)

despite its somewhat complicated form, D becomes more
familiar once we have written it in the Robertson-Walker
frame,

D ¼ 1

a
ð� ~r � ~rÞ1=2: (2.13)

Thus, for example, acting with D on the scalar field,
written in its operator expansion,

’ð�; ~xÞ ¼
Z d3 ~k

ð2�Þ3 ½Ukð�Þei ~k� ~xa ~k þU�
kð�Þe�i ~k� ~xay~k �;

(2.14)

yields

D’ð�; ~xÞ ¼
Z d3 ~k

ð2�Þ3
k

a
½Ukð�Þei ~k� ~xa ~k þU�

kð�Þe�i ~k� ~xay~k �:
(2.15)

B. Symmetry-breaking operators

It is now only a matter of constructing all the indepen-
dent operators that can be assembled from the elements just
described to learn how the signals of broken covariance
would appear. Most often, the focus is on the relevant or
marginal operators, since they grow most prominent at low
energies, where we have the most direct experience. While
we shall include such terms within our catalogue of opera-
tors here, our emphasis will instead be on the leading
irrelevant operators, since they are the ones that best imi-
tate the trans-Planckian signatures that are generated by a
nonadiabatic vacuum during inflation.
In a general, maximally asymmetric background, the

number of distinct symmetry-breaking operators at any
particular order can be quite large. In the Robertson-
Walker background, however, only a few of the symmetries
are broken. Its main feature is that it treats the temporal and
spatial directions differently, so the operators can be
largely characterized by their relative numbers of time
and space derivatives. The former scale maximally as
some power of H, the Hubble scale, while the latter scale

as powers of the spatial momentum, ~k.
The simplest class of corrections to modify the power

spectrum are those that are quadratic in the field, ’, so we
shall discuss operators with this structure. Starting at di-
mension three—the only dimension-two operator being
just the mass term—we have two possibilities: the opera-
tor,

1
3K’

2; (2.16)

and the nonanalytic operator,

’D’: (2.17)

These two are the only new relevant operators for this
background.
At the next order, the four independent dimension-four

terms are

1
9K

2’2; 1
3K’D’; �h��r�’r�’; (2.18)

beyond the standard kinetic and conformal terms which
appeared already in LC. Together these five operators
describe all the possible renormalizable corrections to the
covariant Lagrangian,
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L R ¼ 1
3c1MK’2 þ c2M’D’þ 1

9c3K
2’2

þ 1
3c4K’D’� c5h

��r�’r�’: (2.19)

Here we have introduced a new mass scale M associated
with whatever dynamics or principle are responsible for the
broken symmetry. In the Robertson-Walker frame, LR

becomes

LR ¼ c1MH’2 þ c2
a
M’ð� ~r � ~rÞ1=2’þ c3H

2’2

þ c4
a
H’ð� ~r � ~rÞ1=2’þ c5

a2
~r’ � ~r’: (2.20)

Our main interest here is the set of leading—dimension-
five—irrelevant operators. All of the standard covariant
terms must contain an even power of derivatives; so at
this order, the only possible operators are those explicitly
violating the coordinate invariance. The many ways of
contracting the many indices, combined with the choices
for how the derivatives act on the fields or on the back-
ground, means that the number of operators proliferates
very rapidly at higher orders. But in a fairly symmetric
background, such as the Robertson-Walker space-time,
only a small number of these produce distinct corrections.
Moreover, in an inflationary setting, the Hubble scale
typically changes only slowly, H2 � H0, so among the
terms where derivatives act on the background, those scal-
ing as H to some power produces the dominant effects.

Based upon these observations, we select four of the
dimension-five operators that are quadratic in the field and
that essentially capture all of distinctive scalings possible,

LNR ¼ d1
27M

K3’2 þ d2
9M

K2’D’� d3
3M

Kh��r�’r�’

þ d4
M

’D3’; (2.21)

which reduces to

L NR ¼ d1
M

H3’2 þ d2
aM

H2’ð� ~r � ~rÞ1=2’

þ d3
a2M

H ~r’ � ~r’þ d4
a3M

’ð� ~r � ~rÞ3=2’;
(2.22)

in the Robertson-Walker frame.

III. TRANS-PLANCKIAN CORRECTIONS TO THE
POWER SPECTRUM

The symmetry-breaking terms can have a small effect on
the pattern of primordial fluctuations which, in turn, influ-
ences the cosmic microwave background and the formation
of structures in the universe. To extract the basic signals of
these effects, we calculate the corrections to the power
spectrum of the scalar field due to the nonrenormalizable
terms, the leading representative set of which composes
LNR. We shall work in the de Sitter limit, which is the

simplest to treat analytically, although our operators are not
in fact invariant under all of the generators of the symmetry
group of de Sitter space.
The pattern of primordial perturbations imprinted on the

background can be characterized by how fluctuations at
different places are correlated with each other. For the
scalar fluctuations described here, such correlations are
captured by the expectation value of some number of fields
each evaluated at an arbitrary position,

h0ð�Þj’ð�; ~x1Þ’ð�; ~x2Þ � � �’ð�; ~xnÞj0ð�Þi: (3.1)

The perturbations associated with the field’ are initially
rather small so in practice it is easier to detect the lowest
order correlation functions, the simplest of which is the
two-point function,

h0ð�Þj’ð�; ~xÞ’ð�; ~yÞj0ð�Þi: (3.2)

The two-point function is often expressed in terms of its
Fourier transform, the power spectrum Pkð�Þ,

h0ð�Þj’ð�; ~xÞ’ð�; ~yÞj0ð�Þi¼
Z d3 ~k

ð2�Þ3e
i ~k�ð ~x� ~yÞ

�
2�2

k3
Pkð�Þ

�
:

(3.3)

In writing this matrix element thus—with some time de-
pendence in the state—we are implicitly working in the
interaction picture. There, the evolution of the field is
generated by the free Lagrangian, LC, and that of the state
is generated by the interacting parts, here LNR.
Our purpose is to extract the general signals in the power

spectrum generated by symmetry-breaking operators. We
are especially interested in the extent to which these signals
resemble some of the previously studied signatures of
trans-Planckian physics. Such effects usually arise when
the inflaton is in some nonadiabatic state; so to keep from
confusing or mixing with these effects, here we shall
evaluate the role of the symmetry-breaking operators in
the standard vacuum, the Bunch-Davies state, which we
define later in this section.
Once we have allowed the usual space-time symmetries

to be broken at short distances, we have the possibility for
dimension-five operators. They yield corrections to the
power spectrum nominally suppressed by H=M.
However, H is not the only scale available; spatial deriva-
tives are now possible and they appear in the form of k�0—
and k�—where �0 is the conformal time at which we start
the evolution of the two-point function. In this respect, the
symmetry-breaking operators more closely resemble some
of the previous effective theory approaches [19–21] to the
trans-Planckian problem, since they too produce correc-
tions proportional to powers of k�0.
Effects that depend nontrivially on the initial time �0

might seem a little unfamiliar at first; so before looking at
particular signatures, we should explain their meaning and
describe how they restrict our theory. While such effects
might seem odd, they are nothing more than an especially
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concrete manifestation of the trans-Planckian problem of
inflation.

Their physical meaning becomes clearer when we in-
troduce a scale k� associated with the wave number that is
exactly equal to the scale M at the ‘‘initial’’ time,

k�
jað�0Þj � M: (3.4)

Although we have referred to �0 as an initial time, because
it is when we start the evolution of the matrix elements, it
does not necessarily correspond to the actual beginning of
inflation. When quantum field theory is applied to scatter-
ing processes for particle experiments, we usually think in
terms of asymptotic states of free particles, beginning in
the far past; but we do not know whether such a picture
with asymptotically free states makes sense in an infla-
tionary background, so we are not generally guaranteed
that we can take �0 to the infinitely far past, �0 ! �1.

Therefore, our perspective here will be that our descrip-
tion of the universe only begins at �0 in the Bunch-Davies
state, without any assumptions about what preceded it—
although some of that earlier era is presumably encoded in
the symmetry-breaking operators that govern its subse-
quent evolution. Written in terms of k�, we shall find that
the ðH=MÞðk�0Þ corrections to the power spectrum are
proportional to k=k�. Such effects mean that our descrip-
tion is only applicable for scales with k < k�.

Note that only certain classes of operators, those with
larger numbers of spatial derivatives, produce these k=k�
effects. Most others are proportional to H=M and remain
small in the k�0 ! �1 limit. Even the presence of effects
scaling as k=k� does not imply that the power spectrum
diverges at short wavelengths, but rather that we have left
the perturbative regime for this framework. Beyond k=k�,
the total correction from all the symmetry-breaking effects
can still be small. Some of the noneffective theory ap-
proaches to the trans-Planckian problem represent non-
perturbative effects from this perspective—so these
different pictures give useful and complementary ways of
viewing the trans-Planckian problem.

A. de Sitter space

As mentioned, we evaluate the corrections to the power
spectrum in the limit of a pure de Sitter space-time. In
de Sitter space, the energy density of the vacuum remains
constant and so the rate of expansion is also a constant,
Hð�Þ ! H. de Sitter space is also one of the three maxi-
mally symmetric space-times, so the operators that we
introduced in the previous section explicitly break some
of the symmetries of the background. The scale factor in
this case becomes

að�Þ ¼ � 1

H�
; (3.5)

which is chosen so to agree with our previous stated con-

vention that � ! �1 indicates the far past; the infinitely
far future corresponds then to � ! 0.
Since the energy density is everywhere constant, the

curvature of de Sitter space is constant too, R ¼ 12H2,
so that there is no real distinction between the mass term
and the conformal-coupling term in the free Lagrangian,
LC, and so we set � ¼ 0. A free field in this background
then satisfies a simple Klein-Gordon equation,�

@2

@�2
� 2

�

@

@�
� ~r � ~rþ 1

�2

m2

H2

�
’ ¼ 0; (3.6)

which correspondingly implies a differential equation for
the mode functions,

U00
k �

2

�
U0

k þ
�
k2 þ 1

�2

m2

H2

�
Uk ¼ 0; (3.7)

where the Ukð�Þ are the eigenmodes associated with the
operator expansion of the field,

’ð�; ~xÞ ¼
Z d3 ~k

ð2�Þ3 ½Ukð�Þei ~k� ~xa ~k þU�
kð�Þe�i ~k� ~xay~k �:

(3.8)

If we rescale the mode functions with a suitable factor of

the conformal time, Ukð�Þ ¼ �3=2Z�ðk�Þ, and define a
dimensionless variable z ¼ k�, then the Klein-Gordon
equation for the modes assumes the form of Bessel’s
equation,

d2Z�

dz2
þ 1

z

dZ�

dz
þ

�
1� �2

z2

�
Z� ¼ 0; (3.9)

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
� m2

H2

s
: (3.10)

The normalization of the mode Ukð�Þ is entirely fixed by
the equal time commutation relation between the field ’
and its conjugate momentum, but the second constant of
integration is determined by the choice of the state. The
standard choice is the Bunch-Davies state [22], j0i, which
matches with the form of the Minkowski vacuum at short
distances and is functionally

Ukð�Þ ¼
ffiffiffiffi
�

p
2

H�3=2Hð2Þ
� ðk�Þ; (3.11)

where theHð2Þ
� ðk�Þ is a Hankel function of the second type.

In an inflating universe, we can make one final simplify-
ing approximation since the effective mass of the scalar
field must be quite small compared with the Hubble scale,
m � H. Therefore we calculate the power spectrum in the
limit of a massless field, where � ¼ 3

2 ; the only danger in

doing so is that the strictly massless theory can introduce
infrared divergences which are an artifact of settingm ! 0
and which can be removed by taking a small but finite
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value for the mass of the scalar field. In the massless limit,
the Bunch-Davies mode functions simplify yet further to

Ukð�Þ ¼ H

k
ffiffiffiffiffi
2k

p ði� k�Þe�ik�: (3.12)

To have a point of comparison for the corrections from
the symmetry-breaking operators, let us calculate the
power spectrum of this simplest of settings,

Pkð�Þ ¼ k3

2�2
Ukð�ÞU�

kð�Þ ¼
H2

4�2
ð1þ k2�2Þ: (3.13)

The physically interesting modes—those that have been
stretched well outside the horizon during inflation to be-
come a sort of noise frozen into the background space-
time—correspond to those where k� ! 0. For these modes
the power spectrum is essentially flat.

B. Corrections

Although the symmetry-breaking terms are also qua-
dratic in the field, we shall assume that their effect is small
so that they can be treated as perturbations. Since we have
no knowledge of how long a stage of inflationary expan-
sion might have lasted or what might have preceded it,1 we
apply the Schwinger-Keldysh [25] approach for evaluating
the corrections to the two-point function.2 The Schwinger-
Keldysh formalism evolves both the state j0i and its dual
h0j from an initial configuration at �0 to an arbitrary later
time �,

h0ð�Þj’ð�; ~xÞ’ð�; ~yÞj0ð�Þi; (3.14)

where the time evolution of the state is given in the
interaction picture by

j0ð�Þi ¼ Te
�i
R

�

�0
d�0HIð�0Þj0i: (3.15)

Here we have written the initial state more succinctly as
j0ð�0Þi ¼ j0i. HI is the interaction Hamiltonian, which is,
considering only the irrelevant symmetry-breaking opera-
tors,

HIð�Þ ¼ �
Z

d3 ~x
ffiffiffiffiffiffiffi�g

p
LNR: (3.16)

Before evaluating the power spectrum to first order in
the corrections, we should first compare the initial and final
times used for the time evolution of the state with the
modes that are important for the later cosmology. For these
modes, k is very small compared with the conformal time
by the end of inflation, k� ! 0. Therefore, we shall neglect
terms that vanish in this limit. Since this is an inherently
long-distance limit, we shall occasionally meet with mild

divergences arising because we have neglected the mass of
the field, a property of the theory that also obviously
persists to long distances.
Furthermore, the modes responsible for the structures

we are observing today should have been well within the
horizon at the beginning of inflation, jk�0j � 1. We shall
therefore often take the limit where k�0 ! �1, neglect-
ing terms that are small in this limit. In terms of the pivot
momentum k� that we defined earlier, in a de Sitter back-
ground it is defined through

�0 ¼ � 1

k�
M

H
: (3.17)

As we shall see, the effects that scale with a sufficient
power of the spatial momentum are especially sensitive to
when the initial time is chosen.
Having established these preliminaries, we can evaluate

the leading corrections to the power spectrum from the
dimension-five symmetry-breaking operators, listed in
LNR in Eq. (2.22), to obtain

Pkð�Þ ¼ H2

4�2

�
1þ k2�2 � 2

H

M
½d1I4ðk�; k�0Þ

� d2I3ðk�; k�0Þ � d3I2ðk�; k�0Þ

� d4I1ðk�; k�0Þ� þ � � �
�
; (3.18)

where we have treated the corrections as small effects. The
function Inðz; z0Þ that appears in this expression corre-
sponds to the following dimensionless integral,

Inðz; z0Þ

¼
Z z

z0

dz0

z0n

�
½1� z2 þ 4zz0 � z02 þ z2z02� sin½2ðz� z0Þ�

� 2ðz� z0Þ½1þ zz0� cos½2ðz� z0Þ�
�
: (3.19)

At a first glance, and as expected, all of the new correc-
tions are suppressed by H=M, as is familiar from a variety
of models that include some nonstandard, short-distance
structure in the inflaton’s state [5–13]. However, this is not
the only dimensionless scale available. When we extract
the asymptotic behavior of these integrals in the limits,

k� ! 0; k�0 ! �1 (3.20)

we shall find that several of the corrections also depend
sensitively on k�0. Using these limits, we look at the four
corrections one by one.

1. The correction from K3’2 ! H3’2

The first of the corrections, which contains only time
derivatives, produces a small correction to the power spec-
trum,

1Even were we to assume an epoch of inflation extending
arbitrarily far into the past, an S-matrix description—just as for a
purely de Sitter background [24]—would not be appropriate.

2A description of the Schwinger-Keldysh approach as it is
applied to an inflationary setting is given in [19] and in [26].
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Pkð�Þ ¼ H2

4�2

�
1þ 4

3
d1

H

M
½lnj2k�j � 2þ �� þ � � �

�
:

(3.21)

The new terms are all accompanied by the standard small
factor of H=M, though there are already, even in this fairly
innocuous term, a few differences from more standard
trans-Planckian corrections. First, the correction contains
a mild logarithmic divergence, lnj2k�j. This divergence
occurs only in the long-distance, k� ! 0 limit, but its
origin is quite simple to understand. In a pure de Sitter
space-time, H is constant so the interaction between the
field and the background given byH3’2 is itself essentially
a mass term. If we take a very small (m � H), but finite
mass for the field, then leading contribution to the power
spectrum in the k� ! 0 limit scales as

Pkð�Þ ¼ H2

4�2

4��2ð�Þ
2�

jk�j3�2� þ � � � ; (3.22)

where � is given in Eq. (3.10). Expanding near �� 3
2 yields

exactly the same structure as this ‘‘trans-Planckian’’ cor-
rection,

Pkð�Þ ¼ H2

4�2

�
1þ 2

3

m2

H2
½lnj2k�j � 2þ �� þ � � �

�
;

(3.23)

if we replace

m2 ! 2d1
H3

M
: (3.24)

In the more realistic setting of a slowly rolling period of
inflation, however, H does contain some time dependence,
so the effect of this term no longer is equivalent to that of a
simple mass term.

The second difference, which appears in the next cor-
rection as well, is that the H=M is not accompanied by a
modulating factor, such as usually occurs in trans-
Planckian corrections. Very typically, imposing some cut-
off or some modification in the dispersion relation of the
inflaton introduces a ‘‘ringing’’ in the power spectrum.
This ‘‘ringing’’ appears as an oscillatory factor, such as
cosð2M=HÞ. The correlation between the amplitude of the
correction and the frequency of the modulation is often
taken as a distinctive sign of a trans-Planckian effect. Of
course, such a correlation can still be taken as a distinctive
signature of a state that incorporates some trans-Planckian
structure, as opposed to a theory where some symmetries
are explicitly broken in the Lagrangian in the trans-
Planckian regime. But in other instances, as we shall
soon see, this clear ability to distinguish the source of a
trans-Planckian effect breaks down.

2. The correction from K2’D’ ! H2’ð� ~r � ~rÞ1=2’
It might be thought that any operator that contains a

factor of the spatial momentum would inevitably give

corrections that diverge as k grows too large. However,

the correction from the next operator, H2’ð� ~r � ~rÞ1=2’,
shows that this fear is not realized,

Pkð�Þ ¼ H2

4�2

�
1þ d2

H

M

�
�þ cosð2k�0Þ

k�0

�
þ � � �

�
:

(3.25)

As with the previous correction, the observable effect of
this operator is small—unless the inflationary stage is very
short, so that some of the modes are near the k�0 ¼ �1
limit—with only a mild scale dependence that is implicit in
H when we leave the ideal realm of de Sitter space and
return to a slowly rolling space-time. Also, the modulating
factor is again absent in the leading effect. Note that in a
pure de Sitter space-time, where H is constant, this cor-
rection is largely unobservable since it describes only a
small rescaling.

3. The correction from Kh��r�’r�’ ! H ~r’ � ~r’
The first appearance of a direct sensitivity on the wave

number occurs in the next term,

Pkð�Þ ¼ H2

4�2

�
1þ d3

H

M
½3þ cosð2k�0Þ� þ � � �

�
;

(3.26)

or in terms of the threshold momentum, k�,

Pkð�Þ ¼ H2

4�2

�
1þ d3

H

M

�
3þ cos

�
2
k

k�
M

H

��
þ � � �

�
:

(3.27)

In this form, the effect of the initial time is rather benign,
since it only appears in the argument of the cosine factor. If
the modes that we observe today were much smaller than
the scale 1=M at the beginning of inflation, which corre-
sponds to k=k� being extremely large, such a term would
introduce some fundamental noise into the power spectrum
since we would not be able to resolve the frequency of the
modulation, though its amplitude (H=M) would still be
small.

4. The correction from ’D3’ ! ’ð� ~r � ~rÞ3=2’
We come now to the last and most interesting of the new

corrections, that which contains the maximal number of
spatial derivatives at this order. Its correction does depend
sensitively on the initial time, not only through an oscil-
latory term, but more importantly through its amplitude,

Pkð�Þ ¼ H2

4�2

�
1þ d4

H

M
k�0 cosð2k�0Þ þ � � �

�
(3.28)

or equivalently

Pkð�Þ ¼ H2

4�2

�
1� d4

k

k�
cos

�
2
k

k�
M

H

�
þ � � �

�
: (3.29)
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Since this correction depends linearly on the wave number
k, it cannot be treated perturbatively once k > k�, since all
of the higher order effects become comparable to it.

If such a symmetry-breaking operator is present in the
theory, then only a narrow window of modes responsible
for the features that we see in the cosmic microwave
background can be described perturbatively in this picture.
The widest allowed range,

H <
k

jað�0Þj<M; (3.30)

corresponds to when the minimal amount of inflation oc-
curs—that is, when a fluctuation of the order of the Hubble
horizon at the beginning of inflation was stretched just
enough to encompass the observed universe today. The
upper bound is fixed and is imposed by the requirement
that the corrections to the power spectrum, coming from an
operator such as ’D3’, should remain perturbative. In
de Sitter space, these bounds can also be written as

H

M
<

k

k�
< 1: (3.31)

Having more than this minimal amount of inflation further
constricts this range—the upper bound remains fixed, but
the lower bound increases since the largest observable
modes in the microwave background would have been
well within the Hubble horizon even at the beginning of
inflation.

We might worry that in the case of ‘‘just enough’’
inflation—where a fluctuation the size of the horizon at
the beginning of inflation is just reentering the horizon
today—some of the observable modes k=k� can be quite
small, of the order ofH=M. In this case we do not apply the
usual assumption that k�0 ! �1. However, the largest
allowed modes at the beginning of inflation can never have
jk�0j smaller than 1. Even in the limiting case, k�0 ¼ �1,
all of the integrals Inðz; z0Þ �Oð1Þ (for n ¼ 1, 2, 3, 4) up
to small, order Oðz2Þ corrections.

C. Higher order operators

Among the dimension-five operators that we have ana-
lyzed, the one with the most dramatic potential signal is the
operator ’D3’. As we shall see in the next section, its
signal is of the same form as one produced in an effective-
state treatment of the trans-Planckian problem. This op-
erator is admittedly of a rather peculiar form, since it
contains the nonanalytic derivative operator D, defined
in Eq. (2.12). However, none of the interesting effects
that it produces are unique to D and we find many ex-
amples of similar effects on the power spectrum produced
by higher dimensional operators.

As an example, let us consider the following dimension-
six operator,

d5
M2

ð ~r � ~r’Þ2
a4

; (3.32)

which we have already written for a Robertson-Walker
frame. Its contribution to the power spectrum, again eval-
uated in the k� ! 0 and k�0 ! �1 limits, is

Pkð�Þ ¼ H2

4�2

�
1� d5

H2

M2
ðk�0Þ2 cosð2k�0Þ þ � � �

�
(3.33)

or

Pkð�Þ ¼ H2

4�2

�
1� d5

k2

k2�
cos

�
2
k

k�
M

H

�
þ � � �

�
; (3.34)

in terms of the threshold wave number k�.
So we see that ðk=k�Þn effects are quite general and they

do not depend on having defined the operator D. The
existence of these effects limits the applicability of our
effective theory. Once k� k�, all operators of the general
form

1

M2n

1

a2nþ2
ð ~r � ~rÞnþ1’2 n ¼ 1; 2; 3; . . . ; (3.35)

contribute equally to the power spectrum and so the theory
no longer admits a perturbative description of processes.

D. Lower order operators

Although our interest has been primarily in the irrelevant
operators that break local Lorentz invariance, the relevant
operators can produce, in principle, a much larger effect on
the power spectrum and can therefore much more strongly
constrain the amount of symmetry breaking that could have
occurred at long distances during an inflationary era. For
example, the two dimension-three operators considered
earlier,

L R ¼ 1

3
c1MK’2 þ c2M’D’

¼ c1MH’2 þ c2
M

a
’ð� ~r � ~rÞ1=2’; (3.36)

produce the following effects in the power spectrum, again
in the de Sitter limit with a massless, minimally coupled
field,

Pkð�Þ ¼ H2

4�2

�
1þ k2�2 þ 2c1

M

H
I4ðk�; k�0Þ

þ 2c2
M

H
I3ðk�; k�0Þ þ � � �

�
: (3.37)

For the physically relevant modes (k� ! 0 and k�0 !
�1) we find effects with essentially the same behavior
as before,
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Pkð�Þ ¼ H2

4�2

�
1� 4

3
c1

M

H
½lnj2k�j � 2þ ��

þ c2
M

H

�
�þ cosð2k�0Þ

k�0

�
þ � � �

�
; (3.38)

except that, whereas anH=M suppression occurred before,
here the signals are enhanced by M=H and are therefore
much more strongly constrained by observations.

IV. MODELS OF TRANS-PLANCKIAN SIGNALS

By themselves, symmetry-breaking operators can pro-
vide a useful method for describing certain trans-Planckian
effects; but it is interesting to learn to what extent they can
be distinguished from other approaches that also produce
such effects. Most approaches to the trans-Planckian prob-
lem are characterized by the fact that they assume some
new principle or property of nature that only becomes
important at very short distances. This principle then un-
ambiguously fixes the state of the inflaton. What emerges
in these pictures is typically not the sort of adiabatic state
that is more ordinarily chosen, which is based on extrap-
olating the properties of nature from large scales to arbi-
trarily small ones.

Two broad philosophies are used for choosing these
nonadiabatic states. Each has some advantages over the
over, but each has its limitations as well. The first approach
is to assume a specific property of nature that fixes the state.
For example, we could imagine that the vacuum dispersion
relation or the standard uncertainty relation become modi-
fied at distances shorter than a Planck length. Since such a
property would apply continuously throughout the infla-
tionary epoch, there is no need to fix the state at a particular
initial time. However, what is learned from any one model
is not generic and might have nothing to do with our
universe—although with enough of these case studies the
general features of a typical trans-Planckian signal do
begin to emerge. Moreover, the radiative corrections in
these models have not yet been thoroughly checked;
whether their predictions are perturbatively stable and
how they are renormalized still needs to be studied
systematically.

The second approach is to apply an effective theory
philosophy for including nonadiabatic structures in the
state. This philosophy permits a much more general treat-
ment and has the potential to make predictions without
being restricted to any specific assumption about the short-
distance details of nature. Additionally, the loop correc-
tions from these new structures have been studied in some
detail and their divergences can be renormalized; the re-
sulting picture forms a sensible perturbative approach. Yet,
an effective theory is never meant to be a final description
of nature. It is applicable up to a scale M; but beyond it,
higher order corrections become comparable to lower or-
der ones and the perturbative description breaks down. In
an expanding background, not only does this situation

impose a limit on the energies for which our description
is useful, but it constrains how far back in time we can
define the theory too. As we look farther back during
inflation, the physical scales that we are studying will
sooner or later be blue-shifted above the scale M as well.
These two philosophies can also be distinguished by

when or where we typically define the modes. Let us
expand the inflaton ’ again,

’ð�; ~xÞ ¼
Z d3 ~k

ð2�Þ3 ½’kð�Þei ~k� ~xa ~k þ ’�
kð�Þe�i ~k� ~xay~k �;

(4.1)

except that now ’kð�Þ is no longer the Bunch-Davies
vacuum mode considered earlier. In quite a few models,
what is done is to define a mode’k only once it has crossed
the ‘‘trans-Planckian’’ threshold, that is, at the time �k its
physical wave number coincides the scale M,

k

jað�kÞj ¼ M: (4.2)

In contrast with this picture, the effective theory ap-
proach defines all the modes simultaneously at an initial
time, �0, just as we did for the symmetry-breaking opera-
tors. Because of the expansion, if we are interested in some
particular physical scale—for example some small feature
in the cosmic microwave background, or CMB, associated
with a wave number kCMB—then we must not choose �0

earlier than the time when that scale coincided with M,

kCMB

jað�0Þj <M: (4.3)

This condition is exactly the same one we encountered
earlier when the theory contains operators with the maxi-
mal number of number of spatial derivatives,

kCMB < k�; (4.4)

once we have written it in terms of k� rather than �0.
Of course, there is a direct correspondence between a

mode defined at �k as above and one of the modes on the
initial time surface, �0, given just by appropriately rescal-
ing the time,

k ¼ �0

�k

M: (4.5)

The entire range of k’s on the initial surface can thus be
obtained by letting �k range over all possible times. So it is
always possible to define the modes of both approaches
along a spacelike initial surface. But we have pointed out
this difference since it gives very different expectations for
what is the ‘‘natural’’ form of trans-Planckian corrections
to the power spectrum in either case. Structures defined at
some �k � �0 when rescaled to �0 will appear deeply
within the trans-Planckian regime, from the vantage of a
state defined along �0.
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When we define the modes only as they cross a thresh-
old, we are defining the state along a timelike surface, and
the natural effects are those that vary along this surface,
such as time derivatives of the scale factor, H ¼ a0=a2, or
time derivatives of the field. So, from this perspective, the
natural trans-Planckian correction to the power spectrum
tends to be suppressed by factors of H=M relative to the
Bunch-Davies prediction. As an illustration, when we take
the de Sitter limit of [11], which uses a truncated 	
vacuum, we find just such a correction,

Pkð�Þ ¼ H2

4�2

�
1� 2Oð1ÞH

M
cos

�
2
M

H
þ


��
; (4.6)

whereOð1Þ is a model-dependent, order one parameter and

 is an arbitrary phase. Now, in a pure de Sitter back-
ground, the Hubble scale H is a constant so it would be
nearly impossible to distinguish such a correction, which is
why the first article listed in [11] calculates the correction
for a more realistic, slowly rolling inflationary model. If
the universe experienced a stage of power-law inflation
where

að�Þ ¼ ð�H0�Þ�ð1=1��Þ; (4.7)

with � � 1 being one of the dimensionless slow-roll pa-
rameters, then we can see thatH is no longer constant since
it inherits some k dependence from each mode being set at
its own �k.

With such a mild k dependence we arrive at one of the
typical predictions for how trans-Planckian physics would
appear in the primordial power spectrum—as a small
modulation, or a ‘‘ringing,’’ about an otherwise flat spec-
trum, with an inversely related frequency and amplitude.

In contrast, the effective theory approaches contain more
general corrections, some scaling as H=M as before and
some scaling as k=k�, just as for the symmetry-breaking
operators that we have been considering in this article.
These latter corrections arise very naturally in this picture
since we define the theory along an initial spacelike sur-
face. One method [19,20] for describing how a state might
differ from the usual Bunch-Davies vacuum state is
through a series of short-distance structures scaling as
some power of k=M. These structures correspondingly
yield corrections to the power spectrum scaling as k=k�,
and the leading correction of this form [12,21] is

Pkð�Þ ¼ H2

4�2

�
1þOð1Þ k

k�
sin

�
2
k

k�
M

H

��
; (4.8)

which is exactly the same as that produced by the ’D3’
operator.

Before comparing each of these corrections in more
detail with what the symmetry-breaking operators produce,
it is useful to comment on some of their features. Both
exhibit a characteristic ringing—a correlation between the
amplitude of the trans-Planckian modulation and its fre-
quency. But the frequencies and the amplitudes of these

two types otherwise differ quite dramatically. The H=M
modulation varies only slowly and presumably remains
small regardless of the duration of the inflationary epoch,
whereas the k=k� effect varies much more rapidly, espe-
cially at shorter wavelengths. The effective theory descrip-
tion moreover is only useful for a finite range of times and
breaks down once k� k�.
Most of the effects of the symmetry-breaking operators

are quite different from what appeared in either of these
two previous pictures. Two of the operators,

H3’2; H2’ð� ~r � ~rÞ1=2’; (4.9)

do not produce the ringing that is usually assumed to be the
characteristic feature of a trans-Planckian signal, while the
third operator,

H ~r’ � ~r’; (4.10)

behaves like a hybrid of the earlier two approaches, with an
amplitude scaling as H=M but with a more rapid fre-
quency, k=k�.
The fourth, dimension-five, operator,

’ð� ~r � ~rÞ3=2’; (4.11)

however, does exactly reproduce the signal predicted by
the effective initial state approaches [19–21], which per-
haps should not be entirely surprising. As soon as we have
included new structures in the effective state at short
distances, the state itself can break the same space-time
symmetries as this operator.
Yet, beneath the surface there is still an important dif-

ference between these two approaches that belies their
similar signatures. For the effective-state formalism to be
renormalizable, the propagator must be modified so that it
remains consistent with how we have defined the effective
state. For the more conventional symmetry-breaking op-
erators we have been studying here, we have used the
standard Feynman propagator and so the renormalization
also proceeds more or less conventionally—with none of
the boundary renormalization needed for an effective state.
For example, if we consider operators that are quartic in the
field such as

L ð4Þ
NR ¼ 1

36
�1K’

4 þ 1

6
�2’

3D’; (4.12)

or in the Robertson-Walker frame,

L ð4Þ
NR ¼ �1

12

H

M
’4 þ �2

6

1

aM
’3ð� ~r � ~rÞ1=2’; (4.13)

these operators generate one-loop divergent corrections.
The infinite parts of these corrections can then be readily
removed by including counterterms of the form

K’2; ’D’: (4.14)

So ultimately we can regard the symmetry-breaking
operators as a second, alternative effective theory descrip-
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tion. As such, it does much better at describing the signals
for previous effective theory approaches to the trans-
Planckian problem—based either on an effective initial
state [19,20] or on initial boundary operators that fix the
initial state [21]—than for theories where the modes are
each fixed separately. From the perspective of these effec-
tive approaches, this mode-by-mode approach appears to
define the state deeply in the ultraviolet regime at the initial
time; such effects look nonperturbative to the effective
theory and are not very readily captured. We saw this
feature in the typical frequencies of the modulations.
Even for different amplitudes, the operators here produced
oscillating corrections with frequencies scaling as k=k� and
not as M=H, though presumably such effects could be
constructed with the appropriate series of higher dimen-
sional operators.

To illustrate some of the differences between these two
basic philosophies a little further, we shall examine a
particular case in more detail. In particular, in
Appendix A we consider how a theory with a modified
dispersion relation [10] would appear from the perspective
of these symmetry-breaking operators.

V. CONCLUSIONS

One of our goals here was to learn whether and to what
extent simple symmetry-breaking operators could repro-
duce any of the various signatures generated by short-
distance, ‘‘trans-Planckian’’ structures in the state of the
inflaton. These structures arise when nature is assumed to
have some new physical principle—a shortest length scale,
a noncommutativity, or a quantum deformation of the
classical symmetries of space-time, among many other
possibilities—that would cause the actual vacuum to differ
substantially from the flat-space vacuum at extremely short
intervals.

Although many such ideas have been applied to the
vacuum state, they can largely be distinguished by whether
they are established on a spacelike or a timelike surface.
Within the former class are the ‘‘effective-state’’ treat-
ments [19–21]. One their more distinctive signatures, a
correction to the power spectrum scaling as

k

k�
cos

�
2
k

k�
M

H

�
; (5.1)

can be exactly reproduced by a particular symmetry-
breaking operator, described in Sec. III B 4. Note that in
this work, since we have assumed a standard Bunch-Davies
vacuum throughout, we have not needed to modify the
propagator as in the effect state approach [19–21] to keep
it consistent with the trans-Planckian structures in the state.
This close agreement between the predictions of these two
effective approaches provides a new insight into the physi-
cal meaning of the effective states examined in [19,20]
since we can now see what sorts of more conventional

symmetry-breaking operators are needed to produce the
same effects.
The other class of vacuum states, whose structure is

modified in the trans-Planckian regime, usually defines
its states along a timelike surface. In practice, what hap-
pens is that new eigenmodes of a quantum field are con-
stantly being created to replenish earlier modes which have
already red-shifted to longer wavelengths. Each mode is
first defined at a time�k when its wave number is equal to a
cutoff scale, M,

k

að�kÞ ¼ M: (5.2)

Since all of the modes are defined in exactly the same way,
the ‘‘ringing’’ frequency in these models does not depend
explicitly on k. Instead, it depends solely on the natural
time-evolution scale of the background, H, in addition to
M. Therefore, the typical correction to the power spectrum
of this class,

H

M
cos

�
2
M

H

�
; (5.3)

cannot be so readily mimicked by irrelevant symmetry-
breaking operators. In fact, such a signal might not ever be
very naturally reproduced in an effective theory. When we
fix all the modes simultaneously at an initial time, such
modes must be precisely chosen at all scales, including
arbitrarily fine ones which lie beyond the applicability of
the effective theory. Without knowing the organizing prin-
ciple that sets them, from an effective perspective such
modes do not seem very natural.
Most of the work so far on testing Lorentz invariance has

understandably concentrated on the possible signals of
symmetry-breaking effects in high energy theory experi-
ments [27]. Since the distances accessible to an accelerator
experiment are extremely large, at least in comparison to
the Planck scale, the experimentally important operators
are the relevant or marginal ones. Given a particular pre-
ferred frame—for example, one such as the spatially sym-
metric background that we studied here—it is not too
difficult to determine all of the allowed operators in the
standard model which are consistent with this symmetry
[28].
In an inflationary setting, the irrelevant symmetry-

breaking operators can also produce measurable effects,
at least in principle, since the dramatically rapid expansion
of the universe effectively stretches short-distance struc-
tures to extremely large scales. Although our emphasis
here has been on these operators, we should note that the
constraints on relevant operators, such as K’2 and ’D’,
are even more stringent, since their relative contribution to
the power spectrum scales as M=H. Since very general
irrelevant symmetry-breaking operators, such as those
mentioned at the end of Sec. IV, tend to require relevant
operators for their renormalization, some fine-tuning of the
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parameters is inevitable if we are to keep small the con-
tribution from these lower dimension operators in the
renormalized theory. However, our interest is primarily to
compare with models with nonadiabatic vacuum struc-
tures—and moreover inflation is already plagued with
many fine-tunings—so we have not much examined the
question of naturalness here.

Tests of local Lorentz invariance provide insights into
the structure of space-time at the tiniest scales. Such tests
continue to be important since there seems to be a basic
incompatibility between the tenets of quantum field theory
and those of general relativity at distances smaller than the
Planck length. Because of this impasse, it is especially vital
to have some experimental guidance as to which of the
postulates behind these two approaches ought to be pre-
served when formulating a yet more fundamental, inclu-
sive theory of nature.
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APPENDIX A: THE CASE STUDY OFA MODIFIED
DISPERSION RELATION

We mentioned that there are some differences in the
general form of the corrections to the power spectrum
depending on how we have defined the Lorentz-violating
character of the theory. These differences are perhaps best
illustrated though a detailed study of a particular example.
For instance, one of the ways to introduce new trans-
Planckian effects is by altering a field’s dispersion relation
at short distances, as was done in [10] which used the
following modified dispersion relation,

!2
kð�Þ ¼

k2

a2
� 	

M2

k4

a4
þ �

M4

k6

a6
: (A1)

Here, 	 and � are some positive constants.3

To connect with the local Lorentz-violating operators
that we have been discussing in this article, we begin with
the following action,

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

g��@�’@�’

þ 	

M2
ðgij@i@j’Þðgkl@k@l’Þ

þ �

M4
gijðgkl@i@k@l’Þðgmn@j@m@n’Þ

�
; (A2)

where the Latin indices run only over the spatial dimen-
sions. The symmetry-breaking operators here are higher
order, of dimension six and eight. In an isotropically ex-
panding background, expressed in conformally flat coor-
dinates as in Eq. (2.2), this action becomes

S ¼ 1

2

Z
d4x

�
a2’02 � a2 ~r’ � ~r’þ 	

M2
ð ~r � ~r’Þ2

� �

a2M4

ij@ið ~r � ~r’Þ@jð ~r � ~r’Þ

�
; (A3)

where ~r � ~r ¼ 
ij@i@j as before. Varying with respect to

the field then yields an equation of motion with the desired
dispersion relation,

’00
k þ 2

a0

a
’0

k þ a2!2
k’k ¼ 0; (A4)

once we have expanded the field in its eigenmodes, ’k, as
in Eq. (4.1).
We can next proceed in either of two ways, each of

which involves its own approximation scheme. In princi-
ple, we could apply the full dispersion relation throughout
inflation by solving the modes with aWKB approximation,
as long as the frequency !k remains above the inflationary
Hubble scale H. When !k dips below H, this approxima-
tion does not apply and we must therefore solve the modes
in each interval separately—an interval being defined by
whether !k is larger or smaller than H—and then match
these solutions on the boundary. Unfortunately even for a
simple dispersion relation as in Eq. (A1), it is difficult to
solve for the modes, so [10] approximates its important
features with a piecewise linear dispersion relation of the
form,

a!k ¼
8><
>:
k; k <M
�s1kþ ð1þ s1ÞM; M < k <M�
s2kþ ð1þ s1ÞM� ðs1 þ s2ÞM�; k > M�

(A5)

where s1, s2 > 0 are slope parameters. Even with such an
approximation, if we would like to be able to describe the
corrections to the power spectrum perturbatively, we must
further assume that the time spent in the regime where !k

temporarily dips below the Hubble scale is brief, which is
equivalent to requiring the following dimensionless pa-
rameter to be small.

" � s1
s2

� 1þ s1
s2

ðs2 � s1ÞM�ffiffiffi
2

p
H � ð1� s1ÞM

� 1: (A6)3In the notation used in [10], 2b11 ¼ 	=M2 and 2b12 ¼
�=M4.
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The resulting power spectrum, in a pure de Sitter back-
ground, expressed as a power series in this parameter "
assumes a rather complicated form,4

Pkð�Þ

¼ H2

4�2

�
1þ "

�
2

ffiffiffi
2

p þ 1� s1
2

M

H
� 3ð1� s1Þ2

8
ffiffiffi
2

p M2

H2

�

	 sin

� ffiffiffi
2

p � 1þ ð1� s1ÞMH ln

�
1� s1 �

ffiffiffi
2

p H

M

��

þOð"2Þ
�
: (A7)

It does exhibit the usual oscillatory behavior, except that
now the relation between the frequency and the amplitude
is no longer nearly so simple as it was before.

Alternatively, if instead of starting from the modified
dispersion relation directly we were to treat the new terms
as the small corrections to a free, massless scalar theory,

ffiffiffiffiffiffiffi�g
p

Ldisp ¼ 1

2

	

M2
ð ~r � ~r’Þ2

� 1

2

�

a2M4

ij@ið ~r � ~r’Þ@jð ~r � ~r’Þ; (A8)

then, following the approach described in Sec. III, we
would arrive at the following leading corrections to the
power spectrum in 	 and �,

Pkð�Þ ¼ H2

4�2

�
1þ k2�2 þ 	

H2

M2
I0ðk�; k�0Þ

þ �
H4

M4
I�2ðk�; k�0Þ

�
; (A9)

in a purely de Sitter background, as well as an 	2ðH4=M4Þ
effect as well, which would be of the same order as the �
correction. But since both are ultimately subleading com-
pared with the 	 correction, we shall not write it here.

At a first glance, the corrections appear to be small,
being suppressed by at least H2=M2, but of course we
must expand the dimensionless integrals I0 and I�2 in
the limit where k� ! 0 and k�0 ! �1. We then find that
the leading behavior, as long as k < k�, is

Pkð�Þ ¼ H2

4�2

�
1þ 	

2

k2

k2�
cos

�
2
k

k�
M

H

�
þ � � �

�
: (A10)

Comparing these two predictions for the power spec-
trum, in Eq. (A7) and (A10), we can immediately see that
they cover quite complementary regimes. To their credit,
the symmetry-breaking operators are able to apply the
dispersion relation directly, without needing to appeal to
any piecewise linear approximation. Moreover, this ap-
proach does not constrain the shape of the dispersion
relation to limit the time spent in the !k < H trough, as

was needed for Eq. (A6). However, since the effective
theory is limited to scales where k < k�, it does not very
readily capture some of the interesting features that are
within the trans-Planckian regime—in particular the dip in
the dispersion relation near

k ¼ aMffiffiffiffiffiffiffi
3�

p
�
	þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � 3�

q �
1=2

: (A11)

To see the effect of this feature would require pushing back
�0, or correspondingly decreasing k�, until the perturbative
description breaks down and we would then need to resum
the graphs associated with multiple insertions of the inter-
actions in Eq. (A8).

APPENDIX B: INTEGRALS

This short appendix describes some of the asymptotic
behavior of the dimensionless integrals that we encoun-
tered when we calculated the corrections to the power
spectrum from the symmetry-breaking operators. Recall
that the general form of these integrals is

Inðz; z0Þ

¼
Z z

z0

dz0

z0n

�
½1� z2 þ 4zz0 � z02 þ z2z02� sin½2ðz� z0Þ�

� 2ðz� z0Þ½1þ zz0� cos½2ðz� z0Þ�
�
: (B1)

The specific cases that occur for the dimension-five opera-
tors are n ¼ 1, 2, 3, and 4. Remember also that the argu-
ments correspond to the final and initial conformal times
scaled in terms of the wave number of a mode, z ¼ k� and
z0 ¼ k�0.
Inflation works by stretching a mode, which will even-

tually produce some observable feature of our universe,
well outside of the Hubble horizon during inflation,

k

jað�Þj � Hð�Þ; (B2)

which for a de Sitter background becomes,

kj�j � 1 or z ¼ k� ! 0: (B3)

We shall therefore expand each of the relevant cases in this
limit,

4This expression corresponds to Eq. (110) of [10], with a slight
change of notation.
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I 4ðz; z0Þ ¼ 2

3
Cið2z0Þ � ð1þ z20Þ sinð2z0Þ � 2z0 cosð2z0Þ

3z30

� 2

3
½lnj2zj � 2þ �� þOðz2Þ

I3ðz; z0Þ ¼ Sið2z0Þ þ cosð2z0Þ
z0

� 1

2

sinð2z0Þ
z20

þOðz2Þ

I2ðz; z0Þ ¼ 3

2
þ 1

2
cosð2z0Þ � sinð2z0Þ

z0
þOðz2Þ

I1ðz; z0Þ ¼ 1

2
z0 cosð2z0Þ � 5

4
sinð2z0Þ þ Sið2z0Þ þOðz2Þ:

(B4)

The only absolute limit on the initial time is that—at the
very least—relevant modes should have been within the
Hubble horizon at the beginning of inflation,

k

jað�0Þj >Hð�0Þ: (B5)

Again, in a de Sitter background this requires,

z0 ¼ k�0 <�1: (B6)

This bound is only saturated if inflation lasted just long
enough that a mode of the size of the Hubble horizon is just
reentering the horizon today. Most inflationary models
produce much more expansion than this minimal amount

and even in this extremal case most modes will be smaller
than the Hubble horizon. Therefore, we shall usually ex-
amine the limit z0 ! �1. In any event, each of these
integrals is of Oð1Þ for z0 ¼ �1 and z small.
As we allow �0 to extend arbitrarily far back in the past,

we very soon encounter trans-Planckian modes—modes
whose wavelength was smaller than a Planck length
1=Mpl at the beginning of inflation,

jz0j>
Mpl

H
: (B7)

Let us therefore expand the integrals in the limit z0 ! �1
to learn how sensitively they can depend on these trans-
Planckian modes,

I4ðz; z0Þ ¼ � 2

3
½lnj2zj � 2þ �� þOðz2; z�2

0 Þ

I3ðz; z0Þ ¼ �

2
þ cosð2z0Þ

2z0
þOðz2; z�2

0 Þ

I2ðz; z0Þ ¼ 3

2
þ 1

2
cosð2z0Þ þOðz2; z�1

0 Þ

I1ðx; x0Þ ¼ z0
2
cosð2z0Þ þ �

2
� 5

4
sinð2z0Þ þOðz2; z�1

0 Þ:

(B8)

Of these four cases, it is the last that depends most sensi-
tively on trans-Planckian physics, since it scales linearly
with z0 ¼ k�0.
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