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Enhancement of inflaton loops in an a-vacuum
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While inflaton loops in the Euclidean vacuum generally have a negligible contribution to the power
spectrum, loop effects can be substantially larger when the inflaton is in a nonthermal vacuum state. As
an example, we show that in a truncated a-vacuum these loop effects are enhanced by the ratio of the
Planck scale to the Hubble scale during inflation. The details of the inflationary models determine
whether the coupling constants suppress the loop corrections relative to the tree-level result.
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L. INTRODUCTION

The extremely rapid expansion that occurs during in-
flation naturally connects quantum fluctuations on the
smallest scales to large astrophysical distances today. If
inflation lasted for a sufficiently long time, the scales
associated with cosmological structure would have been
generated when they were at the Planck length or smaller.
Observations of the cosmic microwave background
(CMB) radiation, such as the recent results of the
Wilkinson Microwave Anisotropy Probe [1], are reaching
a level of precision which are able not only to confirm the
generic predictions of inflation, but also should be capable
of distinguishing various specific models for generating
inflation. Physics at energies above the Hubble scale dur-
ing inflation will also be generically imprinted on the
CMB and could, if the Hubble parameter is sufficiently
large, be observable to future experiments such as Planck
[2].

Within a general inflationary model, the variations in
the temperature of the CMB radiation we observe today
had their origin in the density fluctuations of a scalar
inflaton field about its vacuum state. The enormous
stretching of the fluctuations during inflation provides a
unique possibility to study scales which are not accessible
to accelerator experiments by precisely measuring the
power spectrum of the variations in the CMB. But to
understand what the detailed shape of the power spec-
trum reveals about short-distance physics, we must first
consider which effects might produce deviations from the
standard prediction as well as their expected magnitude.
One obvious source for these deviations lies in the shape
of the inflationary potential itself; variations in the slope
of the potential will produce features in the CMB at the
scales corresponding to when they occurred during in-
flation. Another source, and the one which we shall con-
sider in this article, is that some or all of the deviations in
the power spectrum arose from features in the vacuum
state of the inflaton.
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The standard calculation of the power spectrum of
density fluctuations assumes that the Universe is in a
particular state that matches with the flat space vacuum
at short distances. In the case of a de Sitter background,
this state is the Euclidean or Bunch-Davies vacuum [3].
Even when in this vacuum state, the existence of new
physics with a mass scale A,y above the Hubble scale H
generically leaves an imprint on the CMB, suppressed by
a factor H?/ Af)hys [4]. When the Universe is in another
state during inflation, the effects of this short-distance
physics on the shape of the CMB power spectrum can be
substantially larger, scaling as H/ Ay, [5-12]. If future
detectors are sufficiently sensitive to observe these larger
effects, we should be prepared with an understanding of
their possible origins whether they are dynamical [5] or
transplanckian [6—12].

Both of these predicted scalings only included the tree-
level contributions. In the Euclidean vacuum, loop effects
are strongly suppressed by the slow-roll conditions but for
nonthermal states, the loop corrections have not been
analyzed before and in some instances their effect can
be large even compared with the tree-level result.

The motivation for studying a state other than the
standard Euclidean vacuum is to determine the sensitivity
of the CMB to nontrivial dynamics above H, including
possible transplanckian physics. The details of the phys-
ics near the Planck scale becomes important for inflation
when we recall that a length scale of cosmological rele-
vance today was exponentially smaller during inflation,
being further blueshifted the further we look back. If
inflation lasted sufficiently long, more than the necessary
60 e-folds needed to solve the flatness and homogeneity
problems, scales that we observe today were Planck size
at some point during inflation. Although it has been
argued that physics near the Planck scale should naturally
select the Euclidean vacuum [13], other authors have
showed that it is possible to introduce nonthermal fea-
tures into the vacuum [14,15], for example, by applying a
stringy uncertainty relation [7,8] or by some nontrivial
dynamics of a heavy field below the Planck scale [5].
Given the unknown properties of the transplanckian re-
gime, we can use a nonthermal vacuum to estimate
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whether nonstandard features near the Planck scale could
appear in the CMB.

In this article we shall use a truncated a-vacuum, as an
example of a nonthermal state, to evaluate the loop cor-
rections to the CMB power spectrum. This state is based
upon the one parameter family of SO(1,4) invariant states
that exist in a de Sitter background [16-18]. The
Euclidean vacuum corresponds to a special case among
these states. Since they are invariant under the de Sitter
symmetries, nonthermal features are not redshifted away
during inflation. From the perspective of the Euclidean
vacuum these other a-vacua are populated up to arbi-
trarily high wave numbers. This peculiar short-distance
behavior leads to pathologies' in an interacting theory
based on a naive extension of the Feynman propagator
which appear alternately as nonrenormalizable ultraviolet
divergences [22] or pinched singularities [23]. However,
Danielsson [6] has emphasized that to be physically rele-
vant for the transplanckian problem in inflation, the
modes in the a-vacuum should not be defined to arbi-
trarily high energies, but only up to a cutoff of the order of
the Planck scale, App s ~ Mp,. Imposing a cutoff on the
theory removes the divergences since the loop momenta,
which led to the nonrenormalizable terms, no longer can
be arbitrarily large. To maintain a steady truncated
a-state requires that above the cutoff, the theory onto
which we are matching steadily replenishes the modes
as they redshifted. Whether this behavior is natural re-
quires knowing the high energy completion of the theory.
Our goal here is to determine under what conditions such
potentially nonstandard features would be visible in the
CMB, using this truncated version of the a-vacuum as a
test case.

The short-distance behavior that produced divergences
in the true a-vacuum still produces a general enhance-
ment in the truncated a-states which is proportional to the
cutoff scale, Ay, where we match onto the high energy
completion to the theory. In particular, we shall show that
the loop corrections for a theory with a cubic interaction
with a coupling of A are only suppressed by the dimen-
sionless factor,

2
ata” A_ APhyS

7 (1.1
relative to the tree-level result. The A, /H factor de-
pends only on the structure of the loop corrections in the
a-vacuum while the initial (A/H)? factor depends on the
details of the inflationary model. For example, in chaotic
inflation, the small size of the coupling is sufficient to

'These pathologies might also be signaling that another
prescription for the propagator ought to be used. For example,
a time-ordering prescription based on a real time-ordering or
by regarding the a-vacua as squeezed states eliminates these
nonrenormalizable divergences [19-21].
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overcome the loop enhancement; however, in hybrid
models the couplings can be significantly larger so that
the total effect of the loop corrections can be comparable
to the tree-level result.

In the next section we review the invariant vacua of de
Sitter space and introduce the truncated a-vacuum we
shall use. Our calculation of the one-loop corrections to
the power spectrum in the truncated a-vacuum appears in
Sec. IIL. The perturbation theory is developed using the
Schwinger-Keldysh method for studying the finite time-
evolution of a quantum field theory from an initial state.
Section IV describes constraints on the size of the cou-
pling of the inflaton and we present our conclusions in
Sec. V.

II. ATRUNCATED a-VACUUM

The theory of a free scalar field in a de Sitter space-
time has a one parameter family of vacua labeled by the
complex parameter «. Each of these vacua is invariant
under the symmetries of de Sitter space and this property
is most easily demonstrated by showing that the
Wightman two-point function in an a-vacuum depends
only on the de Sitter invariant distance between the points
[16-18,24]. With respect to the space-time symmetries
then, any of these a-vacua provides an acceptable choice
for the vacuum state. In this section we shall first review
the properties of the true a-vacuum before introducing
the phenomenologically more realistic truncated
a-vacuum. Our notation follows [22] where perturbation
theory in an a-vacuum is developed more fully.

At distances shorter than the inherent curvature length
associated with de Sitter space, the space-time appears
approximately flat. In this limit, it should be possible to
apply the same prescription for defining positive and
negative frequency modes as in Minkowski space. The
unique vacuum which matches with the Minkowski vac-
uum in this limit is the Euclidean, or Bunch-Davies
vacuum [3]. In addition to reducing to the flat space
vacuum at high energies, this vacuum also is thermal—
an Unruh detector placed in this vacuum satisfies the
principle of detailed balance as though the background
is at the de Sitter temperature, Ty = H/2m [25]. For
these reasons, the Euclidean vacuum is frequently as-
sumed to be the correct choice when calculating the
power spectrum of the primordial fluctuations which
seed the temperature fluctuations that appear in the
CMB radiation.

A convenient choice of coordinates for studying de
Sitter space is provided by conformally flat coordinates,

5 :dn2 — d7?

ds H2772

, n € [—00,0] 2.1)

These coordinates are simply related to the standard
coordinates used in inflation,
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ds*> = dr* — e*M'dx?, (2.2)

through n = —H e ', The Hubble constant is related
to the cosmological constant which is equal to 6H>.

In a model in which the density perturbations are
seeded by the fluctuations of a scalar field, the inflaton
is divided into terms describing, respectively, the spa-
tially homogeneous zero mode, ¢(7), and a term for the
fluctuations, ®(n, %),

dD(n, ¥) = () + O(n, 3.

¢(m) is the mode which drives inflation. The expansion of
a free scalar field with respect to the Euclidean vacuum is
then given by

2.3)

. Bk N
d(n, %) = [W[Uf(n)e’k xakg + UE*(m)e i xagE]
2.4)

where the operator akg annihilates the Euclidean vacuum,

|E). The Euclidean mode functions U£(n) are solutions to
the Klein-Gordon equation which in conformally flat
coordinates is

28—2—2 i+ 2k2+m—2 UE(n)=0. (2.5
|:77 8772 ﬂan 77 H2i| kn . .

Since the Euclidean modes should become those of the
Minkowski vacuum at short distances, or as H — 0, they
are fixed to be

Uf(n) = anmH(yz)(kn) (2.6)
where H 5,2)(k77) is the Hankel function and where
9 m?
=.--= 2.7
"1 w2 2.7)

To obtain the correct tree-level prediction for the CMB
power spectrum, we shall need the effective mass of the
inflaton, m, to be small compared with the Hubble scale
so we shall frequently consider the limit of a massless,
minimally coupled field although it is important to re-
member that a small but finite mass is present to avoid
infrared divergences in the theory. In the limit m — 0, the
Euclidean mode function simplifies to

- |
UE(n) = ’—Zk(l + ikm)eikn, 2.8)

k/2k

The mode functions for the a-vacua can be obtained
from those for the Euclidean vacuum through

Ug(n) = N [Ug(n) + e*Ug*(n)] (2.9)
where

Ny = (1 —eata’)"1/2 (2.10)
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since the operator that annihilates the @-vacuum, |a), is a
Bogolubov transformation of the Euclidean vacuum cre-
ation and annihilation operators. Here Rea < 0 and note
that we recover the Euclidean vacuum in the limit,
o — —o0,

The mode functions that appear in Eq. (2.6) and (2.9)
are valid for a free scalar field in a classical de Sitter
background. At sufficiently high energies, Ay ~ My,
we expect that gravity becomes strongly interacting and
there is no reason to assume that the mode functions for
the full theory will continue to satisfy the Klein-Gordon
equation (2.5). In order to study the size of loop effects at
energies where gravity is weakly interacting, we shall
consider a simple scenario in which the strongly interact-
ing theory rapidly damps the mode functions at high
energies while at lower scales the mode functions are
simply those of the free theory,

Ug(n) fork=A

Ui(m) ={O for k> A" (2.11)

Note that k is the comoving and not the physical momen-
tum, so the cutoff A depends on the conformal time, A =
Aphys/(—Hm). Equation (2.11) defines a “truncated
a-vacuum.”

Although we shall use this truncated a-vacuum to
estimate the size of loop corrections to the power spec-
trum, the most general case could include some depen-
dence on the momentum as well when we match onto the
short-distance physics,

B )
E_(1 — ikm)eitn

A
Ugen _ k
k (7]) k\/ﬁ

k\2k

(1 + ikn)e *n +

(2.12)

for k < A. A, and B, are not independent since they are
related by the normalization of the state. The final degree
of freedom for the mode is then fixed by some assumption
about the matching of the mode to the high energy theory,
at k = A [6-12]. Depending upon the matching condi-
tion, the coefficients A; and B; may introduce some addi-
tional k-dependence which will appear in the power
spectrum. Here we shall study the case when the high
energy theory matches onto an a@-vacuum at k = A.
Although this case will not introduce any new
k-dependence into the power spectrum, it will allow us
to estimate the size of perturbative corrections when the
Universe is not in the Euclidean vacuum during inflation.
Our results then will indicate how large similar loop
effects from other k-dependent vacua could be.

III. THE POWER SPECTRUM

In the standard inflationary picture, the seeds of the
large scale structure are provided by the quantum fluctu-
ations of a scalar field during inflation. This scalar field is
given by a linear combination of the fluctuations of the
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inflaton, ®(7, X), and the scalar component of the metric
fluctuations [26,27]. In the limit approaching purely ex-
ponential inflation, the inflaton fluctuations become the
dominant component of this linear combination so in this
section we shall neglect the contribution of the metric
fluctuations. The power spectrum of density fluctuations,
which produce the CMB temperature fluctuations and
which eventually become the large scale structure, in
this limit is proportional to the power spectrum of the
scalar field, P%(m, k), defined by

Bk

(a|®(n, )D(n, )la) = Qn)

.o 2
eik'(x—y)[zkl3 Ta(”f], k)}
3.1

up to corrections suppressed by the slow-roll parameters
which are small as we approach a purely de Sitter limit.

At tree level, substituting in the mode expansion of
Eq. (2.4) and using massless Euclidean mode functions in
Eq. (2.8), the power spectrum for the Euclidean vacuum
is

E H? 2.2
PE(n, k) = ?(1 + k2 n?). (3.2)
When a mode has been redshifted well outside the hori-
zon during inflation, knp < 1, the power spectrum be-
comes flat. In a general a-vacuum, the power spectrum to
leading order in kn is also flat,
P(m, k) = N2|1 —ev[1 + O(k*7n?)].  (3.3)
As the a-dependent prefactor is not large, it is observa-
tionally difficult to distinguish from other cosmological
parameters unless « were to have some k-dependence [6—
12].

To study the perturbative corrections to the power
spectrum in a truncated a-vacuum, we shall consider a
theory with a cubic interaction. This example provides a
simple setting since the first nontrivial corrections to the
two-point function (3.1) appear already at one-loop order.

One of the difficulties in formulating perturbation
theory in a de Sitter background is the lack of a well-
defined S-matrix. Therefore, we should apply a quantiza-
tion procedure that evolves a matrix element over a finite
conformal time interval rather than one that evaluates the
matrix element between asymptotic “in” and “‘out” states.
This approach also allows us to avoid the transplanckian
problem since we can choose the initial state as that given
at the matching scale A. If we had attempted to follow an
in state back earlier, then we would eventually need to
evaluate the state when the physical scales relevant today
would have been blueshifted above the Planck scale.

The closed time contour formalism developed by
Schwinger, Keldysh and others [28—30] describes a per-
turbative approach for solving the evolution of a matrix
element over a finite time interval. Unlike the usual
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S-matrix calculation which essentially requires only a
single insertion of the time-evolution operator, in the
Schwinger-Keldysh approach both the {@| and the |a)
states are evolved from a given initial state at 7, to a
finite time later, 1, when we wish to evaluate the expec-
tation value of the operator. Both of these time-evolution
operators can be grouped into a single time-ordered op-
erator by formally doubling the field content of the theory
to include “+” fields associated with the time-evolution
of the |a) state and “—" fields associated with the evo-
lution of the («/| state. In the interaction picture, since the
interacting part of the Hamiltonian H; is used to evolve
the states in the theory, we effectively double the inter-
actions present—for every interaction of the “+ fields,
there exists a “—"’ field interaction with a coupling of the
opposite sign. Thus the evolution of the expectation value
of an operator O is given by

(alT{@,¢ " Lo IO My
1

) ’ y_ _
=i [} dn'H/(®")=H,(@ Ma)

(a|Ola)(n) =
(a|T{e
3.4

Here T is the time-ordering operator which orders events
along the time contour so that the arguments of the ®~
fields always occur after, and in the opposite order than,
those of the @™ fields. The subscript in O; indicates that
the operator is evaluated in the interaction picture. The
field doubling automatically removes the acausal portion
of the matrix element so that although the time-evolution
operators integrate to the infinite future, ' = 0 in con-
formal coordinates, terms involving propagators depend-
ing upon n’ > n are cancelled in Eq. (3.4). A more
complete description of the Schwinger-Keldysh method
for a de Sitter background is provided in [22].

To evaluate the perturbative corrections to the power
spectrum in an interacting theory, we take the expecta-
tion value of the two-point operator O; = ®(n, X)P(7, y)
in a truncated a-vacuum. In the interaction picture, the
time-evolution of operators is produced by the free
Hamiltonian so that the fields evolve correctly when the
mode functions satisfy the free Klein-Gordon equation
(2.5). In a theory with a cubic interaction,

3—>
H, = fd [J<1>+ SmAd? + — /\dﬁ} 3.5)

H4 ,'74

the first nontrivial corrections to the two-point operator
appear at one-loop order. The linear and quadratic terms
correspond to allowed counterterms; the former is used to
cancel tadpole subdiagrams and the latter cancels a loga-
rithmic ultraviolet (UV) divergence in the matrix ele-
ments of a true a-vacuum [22].

When J is chosen to cancel the tadpole subgraphs, the
power spectrum is given to second order in the coupling
constant A by
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k3
fpa(ﬂ, k) = ﬁ |U;(§[(77)|2

dm? k3 nd
- f I md[Ug () U™ ()1

no M
+2)\2 k3 fﬂ dﬂ]Im{Ua( )Ua*( )}
3 I8 — n n
77-2 HS Mo 77? ¢ ¢ 1

md .
X [ " U () U () LE (1, 1)}
Mo 772

T (3.6)

where the loop integral is defined by

A

L?(’fh, 1) = ] d3pU§(m)Uﬁ*(nz)Uﬂ;,ﬂ(m)Uf}*,;a(nz)-
y22

3.7

Diagrammatically, the order A? correction to the power
spectrum, P@(n, k), is generated by the self-energy
graph shown in Fig. 1.

The spatial momenta in the loop in Eq. (3.7) are
bounded in the UV by the structure of the truncated
a-vacuum since we have assumed that the short-distance
behavior is highly suppressed as in Eq. (2.11). As we shall
show, once we have extracted an overall factor of the
physical cutoff Ay, the leading contribution to
P2 (7, k) does not depend sensitively on how we truncate
the modes since it arises among terms from the loop
whose p = |p| dependent phases cancel. The integral of
these terms add coherently and receive their largest con-
tributions well away from the UV cutoff.

A massless, minimally coupled scalar theory in a de
Sitter background contains infrared (IR) divergences
[3,31] so we have imposed an IR cutoff, w, on our loop
integrals. However true inflation is not in a pure de Sitter
background and the scalar which provides the source for
the perturbations is light but not massless. We could
incorporate a small mass, m < H, in Eq. (2.6), and ex-
pand in m/H so that no IR cutoff would be necessary. Yet
since we find that the dominant contribution to the loop
integral is not strongly sensitive to u we focus on the UV
physics.

With these bounds on the large and short-distance
behavior, any of the comoving momenta appearing in
the integrand of Eq. (3.7) should always be between the
bounds,

m Up!

(1, %) (M, y)

FIG. 1. The one-loop correction to the two-point function in
a theory with a cubic interaction used to generate the power
spectrum.
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u=p=A pu=I|p—kl=A (3.8)
Since w and A are the bounds on the comoving momenta,
to relate them to the fixed IR and UV cutoffs we must
specify how they depend on the conformal times at which
they are evaluated. The limits of the n; and 7, integra-
tions in Eq. (3.6) impose that 7, =< 71,(<0). Therefore,
we should choose the UV bound in the loop integration to
scale as

Ahys A
A= = (3.9)
—Hmn, up

since by the time we have arrived at the 7, vertex of the
loop, all comoving momenta will have been redshifted
and will therefore still be below A. Conversely, we would
not like any momenta to be redshifted below the IR cutoff
by the later time, 717, so we choose the IR bound to scale
as

_ Meys _ 2

(3.10)
—Hmn, B

For example, when the IR cutoff is larger than the horizon
size during inflation, we have that g < 1.

In addition to establishing the appropriate bounds on
the spatial momenta appearing in the one-loop correction
to the power spectrum, we must determine the limits on
the conformal time integrals. The natural choice for the
initial time, 7,, from which we are evolving the matrix
element is at the UV scale since in our model we assume
that when the comoving momentum equals this scale that
the corresponding mode is that for the alpha vacuum.
Thus we take

kng = —A. (3.11)
The lower scale depends upon when the state is assumed
to become essentially classical, so that we can neglect the
quantum corrections. Here we shall take the low energy
cutoff to be given by the conformal time at which the
momentum of the mode k has been red-shifted to the size
of the IR cutoff,

kn, = —fi. (3.12)

After integrating over the spatial loop momenta, the
only remaining spatial momentum is k = |k| and it be-
comes convenient to define dimensionless variables by
rescaling the conformal times,

X = k’T], X, = kT]], Xy = k”}z (313)
The leading contribution to the @(A?) correction to the
power spectrum comes from the region of the loop inte-

gral,
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2 . ~
L (xy, xp) = — FH“Nie“”‘ 3, A X [

and is given by
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2 ~ X
PA(n, k)= —/\—N;‘ze"‘*“*/\{f~ d—);l (14 xxp)sin(x — x;) — (x — x;) cos(x — x1)]
T A-—g X

1

X /Xl X d—);z[(l + xx) sin(x — x,) — (x — xp) cos(x — x,) ] X [

A=p X3

LOGR) + O[A - ()] }

sin(x) — x) | sin(x, + Xz)} boen (3.14)
X1 — X X1 + X2
sin(x; — x,) 4 sin(x; +x,)
X1 — Xy Xt x }
(3.15)

The momentum dependence of this correction is not of a form that can be canceled by the counterterms in Eq. (3.5) [22].
The dimensionless integral receives its dominant contribution from the region 0.1 < x;, x, =< 4 and is therefore not
strongly sensitive to the location of the cutoffs. Integrating numerically, we find that

7= ]AM dx—?[(l ) sin(x — xp) — (x — x;) cos(x — x,)]

% fx' d—);z (1 + xx,) sin(x — x5) — (x — x,) cos(x — x,)] X [

A-p X3

= —0.2618 + O(A2) + O(&3),

so that the leading behavior of the corrections is linear in
the UV cutoff,

/\2 * Aphys
PO(n, k) = 0.2618 X = N4eata ZPs 4
™ H
(3.17)

If we define a dimensionless coupling A = A/H, then
the power spectrum for kn << 1 to leading order is

HZ
P(n, k) = WN?JI — e?|?

2 a+ar
Nge®™ XzAphys+ }

X1+ 1.0477 5
[T — e H

(3.18)

Note that the loop correction scales inversely with the
Hubble scale H so that in low-scale inflation this portion
of the correction becomes larger. In the next section we
estimate the size of the small dimensionless coupling A
for some specific models.

A fully complete scenario would require a mechanism
for « to decay since the current measurements from
cosmic rays severely constrain the possible size of e“
today [32]. For example, Danielsson [6] has proposed
“locally Lorentzian” matching conditions which yield
e ~ H(n)/Apnys so that e is nearly constant during
inflation and falls off significantly as the Universe ex-
pands. In this case the overall loop correction would be

suppressed by H(n)/ Appys. but since the scaling of higher

sin(x; — x,)

sin(x; + x
n (x) 2)i|
X1 — Xy X1+X2

(3.16)

|
order terms is not clear at this point we shall continue to

allow e® to be generic. Goldstein and Lowe have also
presented a model [10] with an initially nonthermal vac-
uum which relaxes to the Euclidean vacuum after infla-
tion. The a-vacua are only invariant states in a de Sitter
background and nothing precludes a from changing since
over the current age of the Universe this de Sitter sym-
metry is broken.

Note that while the leading loop correction to the
power spectrum does not contain any k-dependence,
this feature arose from our vacuum choice which, from
the perspective of the Euclidean vacuum, is an excited
state with all modes populated equally up to the matching
scale, Ay A more general scenario would introduce
some k-dependence either through the background, as in a
generic Robertson-Walker universe, or through a match-
ing condition which varies with time. In such models we
could incorporate this dependence on the wave number by
writing e® — ¢“®; then Eq. (3.18) should provide a rea-
sonable estimate of the amplitude of these nonthermal
state effects relative to the tree-level terms.

IV. THE INFLATON POTENTIAL

While the loop contribution to the power spectrum is
enhanced by a factor of A,./H, the dimensionless cou-
pling constant A suppresses the total loop term relative to
the tree contribution. The a-vacuum enhancement is ge-
neric for any cubic self-interaction, but the coupling
constant suppression is model dependent. We briefly con-
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sider two common inflationary models to illustrate the
size of the coupling and hence the overall size of the loop
term.

To determine the size of the coupling we need the
normalization constraint from the Cosmic Background
Explorer (COBE) [33],

V3/2

ngﬁ(ﬁ)) ~ 35X 1074

pl

Here a prime denotes differentiation with respect to the
field ¢, V! = 9V/d¢p. We also require that the modes
observed in the CMB left the horizon about 50 e-folds
before the end of inflation, which determines the value of
the inflaton zero mode, ¢, when these fluctuations left the
horizon

4.1)

1 f¢ d¢' e _ 50. (4.2)

My Joo™ " V(&)
For chaotic inflation, where the potential is dominated by
the inflaton terms such as, V(¢) = L HA¢?, inflation
occurs when the inflaton field is much larger than the
Planck scale and ends when ¢, = M. From Eq. (4.2)
we have ¢ = 20M,, and the COBE normalization gives
A= 10"""M,/H. Use of the Friedmann equation gives

the Hubble scale, H = 10~*M,; and if we set Ay ~ My,
we finally arrive at the result we seek,
x2 o _jgt0 4.3)

H

Clearly this suppression is quite significant.

For a hybrid inflation model, the potential is dominated
by a constant term, V|, as long as ¢ is above a critical
value, ¢.. V, must be roughly constant while the modes
of interest are leaving the horizon, but contains operators
which end inflation at ¢ = ¢.. We use the potential
V(¢) = Vo + £ HA¢>. If ¢ is not fine tuned to be close
to ¢, then Eq. (4.2) gives

H

RTINS
Dropping numerical factors close to 1, the COBE normal-
ization now gives, 1074 = H2/(A¢?). It is consistent to
choose ¢ = O(¢,), in which case A = 107°. The size of
the enhancement is difficult to predict without more de-
tails of the theory, specifically, the Hubble scale.
However, by requiring that the constant term dominate
the potential, V> 4 HA¢?, as it must for this to be a
model of hybrid inflation, we arrive at

4.4)

<o Aonvs
A2 5 1078, (4.5)
H
For small enough inflationary energy density,
Vo = (10'2 GeV)4, (4.6)
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the Hubble parameter is small enough that the loop
effects are as large as the tree-level effect, or larger. Of
course, if we are to remain in the perturbative regime, we
require a suppression from the a-dependent factors; the
state at the matching scale may only deviate from the
Euclidean state by a small amount.

Models for inflation with a cubic self-coupling may not
be common, but the enhancement demonstrated in this
work is not limited to cubic theories. The naive power
counting argument discussed in [22] indicates that the
loop corrections to the two-point function in a quartic
theory should scale as

4.7

Although there is again a suppression due to the model
dependent coupling constant, the loop enhancement ef-
fect is general.

In models in which the vacuum state of the inflaton is
nonthermal, loop effects can generally be larger than
what would be suggested by the counting of coupling
constants alone. In some cases, the model may not even
be perturbative for || ~ O(1) and thereby will constrain
the degree to which the vacuum can deviate from the
Euclidean, or thermal, vacuum.

Thus far we have only considered a single scalar field,
corresponding to the inflaton. However, any other fields
present will be sensitive to the rapid expansion of the
Universe and will require a matching condition at the
cutoff scale as well. These fields could also be in a non-
thermal vacuum below this scale and their coupling to the
inflaton would then provide an additional source for large
loop corrections—even if the inflaton itself was in the
Euclidean vacuum. For example, when the inflaton inter-
acts with an additional scalar field W through a trilinear
coupling, g®W?, then the power spectrum receives po-
tentially large loop corrections from the diagram shown
in Fig. 2. When WV is in a truncated «-vacuum, the product
of a-vacuum propagators in the loop integral will again
produce a A, enhancement.

Furthermore, any simple model of inflation, such as
those mentioned in this section, must ultimately be em-
bedded in a more fundamental theory with many massive
degrees of freedom, such as W.To arrive at an inflationary
model, those massive fields must be integrated out leaving
an effective Lagrangian for the inflaton. Given the loop

FIG. 2. Even if the inflaton ® is in the Euclidean vacuum,
couplings to other scalar fields in a nonthermal vacuum, P,
will produce large corrections to the power spectrum.
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enhancements expected for a generic a-vacuum, or in any
nonthermal vacuum, this process of integrating out the
high energy physics may contain previously unexpected
subtleties.

V. CONCLUSIONS

In this article we have investigated the perturbative
corrections to the power spectrum due to inflaton inter-
actions when the field is in a truncated a-vacuum. In a
theory with a cubic interaction with a coupling A, the size
of the perturbative corrections are of the order (A?/H?) X
(Apnys/H). The large second factor depends only on the
form of the free-field propagators in the loop, and is
therefore quite general. The initial suppressing factor
from the coupling constant is constrained more or less
restrictively depending upon the specific inflationary
model studied.

For a single self-interacting inflaton in chaotic infla-
tion, slow-roll or observational constraints require a suf-
ficiently small coupling A, compared with the Hubble
scale H, that the overall loop effects in these models
will be negligible. However, in a hybrid model the self-
coupling is not nearly as constrained so that loop effects
could be potentially observed in the cosmic microwave
background radiation, or could even be larger than tree-
level effects so that such a theory could not be treated
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perturbatively. Moreover, as a result of inverse scaling of
the Hubble constant in the A, /H factor, such loop
corrections are actually more significant in low-scale
inflationary theories where tree-level corrections in a
nonthermal background would be negligible.

Precisely measuring the shape of the CMB power
spectrum provides a unique opportunity to study physics
at scales well above those accessible to accelerator experi-
ments. Details in the inflationary potential or in the state
of the inflaton during inflation translate directly into
features in the power spectrum. Studying the loop cor-
rections to the power spectrum in a nonthermal vacuum
provides a further resource for constraining inflationary
models or the vacuum state during inflation. If deviations
from the Euclidean vacuum expectation are observed, it
will be important to distinguish their possible origins—
whether from nonthermal tree or loop effects or from the
dynamics of other fields near the Planck scale or from the
inflationary potential—to understand what they are tell-
ing us about the very early Universe.
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