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The fate of the a-vacuum

Hael Collins,* R. Holman,† and Matthew R. Martin‡
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de Sitter space-time has a one complex parameter family of invariant vacua for the theory of a free, massive
scalar field. For most of these vacua, in an interacting scalar theory the one loop corrections diverge linearly for
large values of the loop momentum. These divergences are not of a form that can be removed by a de Sitter
invariant counterterm, except in the case of the Euclidean, or Bunch-Davies, vacuum.
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I. INTRODUCTION

The importance of understanding quantum field theory
de Sitter space, the space-time associated with a pos
cosmological constant, has been heightened by recent o
vations of both the early and late Universe. The drama
results of Wilkinson Microwave Anisotropy Probe@1# have
provided further strong evidence that the universe underw
a rapid inflationary expansion. Both the large-angle antic
relation in the temperature-polarization cross-power sp
trum and the nearly flat spectral index are consistent with
predictions of inflation. More surprisingly, the dimming o
the type Ia supernovae seen by the Supernova Search T
@2# and the Supernova Cosmology Project@3#, combined
with other observations, is yielding a new standard pict
for the contents of the universe, the largest componen
which is a dark energy whose properties are consistent w
positive cosmological constant.

A striking difference between de Sitter and flat space-ti
is the richer vacuum structure of the former. For a free sc
field in a Minkowski space, there exists an essentially uniq
Poincare´ invariant vacuum state. In contrast, for a de Sit
background, Mottola@4# and Allen@5# discovered an infinite
family of vacua for the quantum theory of a free mass
scalar field that are invariant under the isometries of de S
space. These vacua can be parametrized by a single com
number,a, and are usually called thea-vacua. Most of these
a-vacua have a host of peculiar features, such as a mix
of positive and negative frequency modes at short distan
and a nonthermal behavior that violates the principle of
tailed balance. Only one of these states, the Euclidean
Bunch-Davies@6# vacuum, behaves thermally when viewe
by an Unruh detector@7# and reduces to the Minkowsk
vacuum as we take the cosmological constant to zero.
preferred role of the Euclidean vacuum was also shown
@8#. The assumption that the universe was at least appr
mately in the Euclidean vacuum underlies the successful
dictions of inflation for the calculation of the density fluctu
tions which produced the temperature anisotropies in
cosmic microwave background radiation.

Despite their unappealing features, thea-vacua are per-

*Electronic address: hael@cmuhep2.phys.cmu.edu
†Electronic address: rh4a@andrew.cmu.edu
‡Electronic address: mmartin@cmu.edu
0556-2821/2003/68~12!/124012~15!/$20.00 68 1240
n
ve
er-

ic

nt
r-
c-
e

am

e
of
a

e
ar
e
r

er
lex

re
es
-
or

he
y
i-
e-

e

fectly valid vacua for a free scalar field. If they cannot
shown to be unphysical, then their existence would unde
some of the robustness of the inflationary paradigm—
would need to explain how the epoch prior to inflation ma
aged to place the universe in the Euclidean vacuum ra
than one of the other infinite family ofa-vacua. For ex-
ample, the regularization needed by the energy-momen
tensor even for the free theory in thea-vacuum is not gen-
erally compatible with that needed after inflation@9#.

A complication in formulating quantum field theory in d
Sitter space is its lack of a well-definedS-matrix. In an in-
teracting theory we have two sources of time dependence
matrix elements—one induced by any inherent time dep
dence of the background geometry and another introdu
by the interactions. In such a system, it is therefore app
priate only to ask time dependent questions—to study ho
matrix element evolves from a given initial state.

Schwinger@10# and Keldysh@11# developed a formalism
to solve for this finite time evolution. In their approach, w
specify the state of the system at an initial time and th
evolve to a finite time later. Here, both the ‘‘in’’ and ‘‘out’
states correspond to the same state and are evolved tog
when we evaluate the expectation value of an operator—
effect this formalism evaluates matrix elements between
‘‘in’’ states. The Schwinger-Keldysh formalism is thus ide
ally suited for studying the behavior of thea-vacua in the
presence of interactions. We place the system initially in
a-vacuum and then study whether a sensible evolution
sults. Since the quantum field theory only is evolved ove
finite interval, our results are relevant not only for the mo
formal question of thea-vacua in an eternal de Sitter bac
ground but also for the phenomenological problem of a fin
epoch of inflation.

The methods established here can also be applied to
initial state, such as the ‘‘truncateda-vacua’’ of @12#. In
these vacua, the short-distance behavior of thea-vacua is
modified either in accord with some specific theory, such
the stringy uncertainty relation of@13,14#, or simply by trun-
cating thea-mode functions above some energy scale
reflect our ignorance of the new physics@12,15–18#. We here
address the formal case of a purea-vacuum and shall study
the truncated case later in@19#.

In this article, we show that an interacting scalar fie
theory in a generala-vacua contains linear divergence
which cannot be removed with a de Sitter invariant ren
©2003 The American Physical Society12-1
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malization prescription. These divergences appear in the
loop corrections and are present for arbitrarily weak inter
tions. The specific example we study is the expectation va
of the number of Euclidean particles in ana-vacuum. The
divergences appear in the high momentum region of the l
integral. We show that they only vanish for the Euclide
vacuum, which is completely renormalizable.

The subject of thea-vacua for an interacting theory ha
also been recently investigated in related work@20,21#. Both
of these works essentially studied the corrections to the t
point correlation function obtained between an ‘‘in’’a-state
and an ‘‘out’’ state given by thea-state at a later time. Bank
and Mannelli @20# found that the interacting theory in th
a-vacuum required nonlocal counterterms while Einhorn a
Larsen@21# found pinched singularities in the loop corre
tions. These features provided highly suggestive evide
that thea-vacua are pathological in the presence of inter
tions. Some attempts to modify the theory to avoid the
problems appear in@22,23#.

We begin with a review of the de Sitter invariant vac
for a free scalar field in Sec. II. This section also shows
form of the Wightman functions in conformally flat coord
nates. Section III derives the expectation value of an oper
in an interacting theory based on the Schwinger-Keldysh
malism. In Sec. IV we calculate the change in the numbe
Euclidean particles in ana-vacuum due to a cubic interac
tion and show that in the presence of this interaction,
expectation value is renormalizable for the Euclide
vacuum while an unrenormalizable divergence appears
the a-vacuum. Section V explores the origin of these div
gences in thea-vacua in a more general setting. We deri
the necessary conditions for these divergences to arise
show how they can appear in a general interacting sc
field theory. Section VI summarizes our results and sugg
future applications for this formalism.

II. GREEN’S FUNCTIONS

In this section we review the rich vacuum structure o
free scalar field in de Sitter space@24#. We derive the form of
the Wightman function and eventually the Feynman pro
gator in conformally flat coordinates. These Green’s fu
tions will be used later for studying the interacting theory

The most straightforward method for demonstrating
existence of a family of de Sitter invariant vacua is to eva
ate the two-point Wightman function for a free massive s
lar field in ana-vacuum. For this purpose it is useful to u
a coordinate system that covers the entire space-time. S
coordinates are not, however, those best suited for more
plicit calculations. Therefore, throughout this article we sh
study de Sitter space using conformally flat coordinates,

ds25
dh22dxW2

H2h2 , ~2.1!

with hP@2`,0# which cover half of de Sitter space@25#.
The other half of the space is covered by a set of coordin
with h→2h. These coordinates are simply related to t
standard coordinates used in inflation,
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ds25dt22e2Ht dxW2, ~2.2!

through h52H21e2Ht. H is the Hubble constant and i
related to the cosmological constant byL56H2.

A. The Euclidean vacuum

To an observer capable only of probing length scales
which the curvature of de Sitter space is not apparent,
space-time appears approximately flat. For the high ene
modes then, this observer can apply the same prescriptio
defining positive and negative frequency modes as
Minkowski space. The vacuum state annihilated by the
eratorsakW

E associated with these modes corresponds to
Euclidean vacuum.

The Euclidean vacuum possesses many desirable pro
ties in addition to matching with the Minkowski vacuum
short distances or asH→0. It corresponds to the uniqu
state whose Wightman function is analytic when continu
to the lower half of the Euclidean sphere. Moreover, an U
ruh detector placed in the Euclidean vacuum satisfies
principle of detailed balance as though it were immersed
thermal system at the de Sitter temperature,TdS5H/2p @24#.

If we denote the Euclidean vacuum byuE&, the Euclidean
Wightman function for a free massive scalar fieldF(x) is
defined by

GE~x,x8![^EuF~x!F~x8!uE&. ~2.3!

Since the metric is spatially flat, the expansion of the sca
field F(x) in creation and annihilation operatorsakW

E† ,akW
E for

the vacuum stateuE& is

F~h,xW !5 E d3kW

~2p!3 @Uk
E~h!eikW•xWakW

E
1Uk

E* ~h!e2 ikW•xWakW
E†

#.

~2.4!

With the commutator normalized to be

@akW
E ,akW8

E†
#5~2p!3d3~kW2kW8!, ~2.5!

the Euclidean Wightman function in position space is

GE~x,x8!5 E d3kW

~2p!3 eikW•(xW2xW8)Uk
E~h!Uk

E* ~h8!

[ E d3kW

~2p!3 eikW•(xW2xW8)Gk
E~h,h8!,

~2.6!

where the momentum representation the Wightman func
is

Gk
E~h,h8!5Uk

E~h!Uk
E* ~h8!. ~2.7!

Note that the mode functions only depend on the magnit
of the spatial momentum,k5ukW u.

A free massive scalar field satisfies the Klein-Gord
equation,
2-2
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THE FATE OF THEa-VACUUM PHYSICAL REVIEW D 68, 124012 ~2003!
@¹21m2#F~x!50, ~2.8!

so that the mode functions solve the differential equation

@h2]h
222h]h1h2k21m2H22#Uk

E~h!50. ~2.9!

Note thatm2 here represents the effective mass of the the
which includes any contribution from coupling the field
the curvature,F2R. In de Sitter space-time the curvatureR is
constant so this coupling is of the same form as a mass t
The solutions to Eq.~2.9! are linear combinations of Bess
functions,

Uk
E~h!5ckh

3/2Jn~kh!1dkh
3/2Yn~kh!, ~2.10!

with

n5A 9
4 2m2H22. ~2.11!

We shall assume hereafter thatn is real.
The general form for the mode functions is applicable

both the Euclidean vacuum and thea-vacuum. What distin-
guishes the former is that as the Hubble constant is take
vanish, H→0, so that de Sitter space becomes flat,
should recover only the positive frequency mode functio
e2 ikt. In the smallH limit,

kh→2
ke2Ht

H
52

k

H
1kt1O~H !, ~2.12!

the leading time dependence of the modes isUk
E(h)}e2 ikt

when

ck5Nk dk52 iNk . ~2.13!

Up to the normalization factor,Nk , the Euclidean mode
functions are given by

Uk
E~h!5Nkh

3/2@Jn~kh!2 iYn~kh!#

5Nkh
3/2Hn

(2)~kh!. ~2.14!

Hn
(2)(kh) represents a Hankel function. We shall now choo

the units such thatH51.
The normalization is fixed by the canonical equal-tim

commutation relation

@P~h,xW !,F~h,xW8!#52 id3~xW2xW8! ~2.15!

where the conjugate momentum is

P~h,xW !5
1

h2 ]hF~h,xW !. ~2.16!

The equal-time commutation relation requires that the mo
satisfy a Wronskian condition of the form

Uk
E]hUk

E* 2]hUk
EUk

E* 5 ih2, ~2.17!

which determines the normalization of the modes to be
12401
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2
. ~2.18!

Therefore, the Euclidean mode functions are given by

Uk
E~h!5

Ap

2
h3/2Hn

(2)~kh!. ~2.19!

While the de Sitter invariance of the Wightman functio
is not manifest from Eq.~2.19!, it is possible to write
GE(x,x8) as a function of the de Sitter invariant distan
between its arguments@24#. In conformally flat coordinates
this invariant distance betweenx5(h,xW ) andx85(h8,xW8) is

Z~x,x8!5
h21h822uxW2xW8u2

2hh8
. ~2.20!

Although we shall state most of our results in terms of t
mode functions for a general mass, it will be convenient
show the results for a particular case in which the mo
functions simplify substantially. Whenn5 1

2 , the Hankel
function in Eq.~2.19! is proportional to an exponential,

Uk
E~h!un51/25

i

A2k
he2 ikh. ~2.21!

This case corresponds to a massless, conformally cou
scalar field for which the effective mass ism252. The Eu-
clidean Wightman function is then

GE~x,x8!5
hh8

16p3 E d3kW

k
e2 ik(h2h8)eikW•(xW2xW8) ~2.22!

and is finite provided we choose the appropriatei e prescrip-
tion,

GE~x,x8!52
1

8p2

1

Z212 i e sgn~h2h8!
. ~2.23!

Here the appearance of the invariant distanceZ(x,x8) estab-
lishes the de Sitter invariance of the vacuum.

B. The a-vacua

The choice of the short distance behavior of the mo
functions which determined the relative contributions of t
two independent solutions to the Klein-Gordon equation
not the unique choice which leads to a de Sitter invari
Wightman function. Mottola@4# and Allen @5# observed that
the vacuum stateua& annihilated by a Bogolubov transfor
mation of the Euclidean operators,

akW
a
5Na@akW

E
2ea* a

2kW
E†

#, ~2.24!

also yields a de Sitter invariant Wightman function,

Ga~x,x8![^auF~x!F~x8!ua&. ~2.25!

Here, Rea,0 and the normalization
2-3
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Na5~12ea1a* !21/2 ~2.26!

is chosen to preserve the normalization of the commuta
relation in thea-vacua, analogous to Eq.~2.5!. Note that the
Euclidean vacuum is itself among thea-vacua being ob-
tained whena→2`.

In proving thatGa(x,x8) only depends onZ(x,x8) it is
useful to use a coordinatization that covers the entire de
ter space-time. In such global coordinates, both a pointx and
its antipodexA occur in the same coordinate system@24#. It
is then possible to choose Euclidean mode functionsfn

E(x)
such thatfn

E* (x)5fn
E(xA) so that the Bogolubov transfor

mation of Eq.~2.24! gives

fn
a~x!5Na@fn

E~x!1eafn
E~xA!#. ~2.27!

Heren labels the elements of a general basis of mode fu
tions. In this form, the de Sitter invariance of the Euclide
Wightman function and the fact thatZ(x,xA8 )52Z(x,x8) to-
gether imply that thea-Wightman function only depends o
the de Sitter invariant distance betweenx andx8 @4,5#. While
it is helpful to use a coordinate system which contains
antipode of every point to establish this invariance, for e
plicit calculations it is not necessary to use global coor
nates. Equation~2.24! relates the mode functions of th
a-vacuum to the mode functions of the Euclidean vacu
and their complex conjugates—we do not need to transf
the conjugated mode function into a function of the antipo
once we have established thatGa(x,x8) is invariant.

From the Euclidean mode functions of Eq.~2.19! we can
now construct the mode functions for thea-vacua. Expand-
ing the scalar field in terms ofa creation and annihilation
operators,

F~h,xW !5 E d3kW

~2p!3 @Uk
a~h!eikW•xWakW

a
1Uk

a* ~h!e2 ikW•xWakW
a†

#,

~2.28!

and using Eq.~2.24! yields

Uk
a~h!5Na@Uk

E~h!1eaUk
E* ~h!# ~2.29!

since theUk
E(h) only depend on the magnitude ofkW . Thus

the a-vacuum modes are

Uk
a~h!5Na

Ap

2
h3/2@Hn

(2)~kh!1eaHn
(1)~kh!#.

~2.30!

Inserting thea-mode expansion into Eq.~2.25! yields

Ga~x,x8!5 E d3kW

~2p!3 eikW•(xW2xW8)Uk
a~h!Uk

a* ~h8!.

~2.31!

Again, the spatial flatness makes it natural to use a mom
tum representation

Gk
a~h,h8!5Uk

a~h!Uk
a* ~h8!. ~2.32!
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The additional complexity of the mode functions in th
a-vacuum means that it is particularly helpful to have a ca
in which these functions simplify. For a massless, conf
mally coupled scalar field,

Uk
a~h!un51/25Na

i

A2k
h@e2 ikh2eaeikh#, ~2.33!

and the Wightman function becomes

Ga~x,x8!52
Na

2

8p2 H 1

Z212 i e sgn~h2h8!

1
ea1a*

Z211 i e sgn~h2h8!

2
ea

Z112 i e
2

ea*

Z111 i eJ . ~2.34!

As in the Euclidean case, the de Sitter invariance is mani
in the above expression.

C. Propagation

To study the propagation of signals in a de Sitter ba
ground, define the Feynman propagator,

2 iG~x,x8![^auT„F~x!F~x8!…ua&, ~2.35!

so that it satisfies the Klein-Gordon equation with a po
source,

@¹x
21m2#G~x,x8!5

d4~x2x8!

A2g~x!
. ~2.36!

The propagator can only depend on the difference betw
the spatial positions of the points so that its Fourier tra
form is

Gk~h,h8!5 E d3xW e2 ikW•(xW2xW8)G~h,xW ;h8,xW8! ~2.37!

whereGk(h,h8) is the solution to

@h2]h
222h]h1h2k21m2#Gk~h,h8!5h2h82d~h2h8!.

~2.38!

The solution to this equation which satisfies the corr
boundary conditions ath85h has the form

Gk~h,h8!5Gk
.~h,h8!Q~h2h8!

1Gk
,~h,h8!Q~h82h!. ~2.39!

HereGk
.(h,h8) andGk

,(h,h8) are essentially the two-poin
Wightman functions calculated earlier in Eq.~2.32!,
2-4
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Gk
.~h,h8!5 iGk

a~h,h8!5 iU k
a~h!Uk

a* ~h8!

Gk
,~h,h8!5 iGk

a~h8,h!5 iU k
a* ~h!Uk

a~h8!.
~2.40!

Although propagation for a free field theory in th
a-vacua contains some peculiar features, it is not otherw
ill-defined. The pathological features of quantum field theo
in an a-vacuum only appear in an interacting field theo
The form of thea-Wightman function already suggests th
the interacting theory could be ill-defined, since the vario
terms in Eq.~2.34! contain differenti e prescriptions. This
property implies that in a standard approach to calcula
the one loop corrections to the propagator, among the p
ucts of the propagators participating in the loop appear pr
ucts of poles with the oppositei e prescription—pinched sin
gularities@21#. For example, in the one-loop correction to t
propagator appears a product of the Green’s functions g
in Eq. ~2.34!. However, these pinched singularities do not
themselves prove whether thea-vacuum is itself pathologi-
cal or whether the standard methods for studying the qu
tized theory are inappropriate for a time-evolving bac
ground such as de Sitter space.

III. THE SCHWINGER-KELDYSH FORMALISM

A significant difference between de Sitter space, in m
coordinatizations, and flat space is the explicit time dep
dence of the metric. Unlike a flat space-time where the g
erator of time translations is a Killing vector globally, d
Sitter space-time has no such global timelike Killing vect
Moreover, in a particular coordinate system—such as in
tionary coordinates—the time derivative may not even g
erate an isometry locally. These properties suggest that ra
than attempt to define anS-matrix between ‘‘in’’ and ‘‘out’’
states defined at different times, we should apply a quant
tion procedure that evolves an entire matrix element ove
finite interval. It is also useful to be able to evolve a giv
state forward from a specified initial timeh0, rather than to
use a state in the asymptotic past. We can always takeh0
→2`.

An additional advantage of solving the evolution over
nite intervals is that such an approach more immedia
determines whether thea-vacuum is applicable for inflation
which does not require a de Sitter space-time eternally,
only over a sufficient interval to generate the number
e-foldings needed to explain the flatness and the homog
ity of the universe. If the interactinga-vacuum shows its
pathology even over a finite interval, then we can exclude
possibility that the universe was in a purea-state during any
epoch of inflation, regardless of the prior history of the u
verse.

The closed time contour formalism developed
Schwinger@10#, Keldysh@11# and Mahanthappa@26# allows
us to study the evolution of a quantum field theory ove
finite interval after specifying the state at an initial surfac
We review here their approach which leads to an expres
for perturbatively evaluating the matrix element of an ope
tor, which is given at the end of this section in Eq.~3.15!.
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In the interaction picture, the evolution of operators
given by the free Hamiltonian,H0, while the evolution of
states is given by the interactions,HI . If we let $uC&% denote
a general basis of states for the theory, then the behavio
the system is completely described by the density mat
r(h)5 (C,C8 rC,C8uC&^C8u. Thus, as the density matrix i
constructed from the states, it satisfies a Schro¨dinger equa-
tion of the form

i
]

]h
r~h!5@HI ,r~h!#. ~3.1!

The advantage of the interaction picture is that fie
evolve using the free Hamiltonian,

2 i
]

]h
F~h,xW !5@H0 ,F~h,xW !#. ~3.2!

The time evolution of the field is precisely that given in th
previous section since here the mode functions still are s
tions to the free Klein-Gordon equation.

To study the evolution introduced by the interactions, it
convenient to include a ‘‘turning on’’ function in the inter
acting part of the Hamiltonian,

H5H01v~h2h0!HI . ~3.3!

Here v(h2h0) vanishes whenh,h0 and becomes one
when h is sufficiently large compared withh0. Later we
shall let this function be aQ step function. We shall often
not write this function explicitly, absorbing it intoHI . Thus
the state does not evolve beforeh0 : r(h)5r(h0)[r0 for
h,h0.

Once we have specified the state at a particular tim
r(h0), then the Eq.~3.1! allows us to determine the state
all subsequent times. To study the vacuum structure of
Sitter space, the initial state will correspond to ana-vacuum.
If we introduce a unitary, time-evolution operatorUI(h,h8)
that evolves the state,

r~h!5UI~h,h0!r~h0!UI
21~h,h0!, ~3.4!

then from Eq.~3.1! U(h,h0) obeys

i
]

]h
UI~h,h0!5HIUI~h,h0! ~3.5!

with UI(h0 ,h0)51. The formal solution to this equation i
given by Dyson’s equation in terms of the time-ordered e
ponential

UI~h,h0!5Te2 i *h0

h dh9 HI (h9). ~3.6!

The evolution of the expectation value of an operator
this time-dependent background is given by
2-5
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^O&~h!5
Tr@r~h!O#

Tr@r~h!#

5
Tr@r0UI

21~h,h0!OUI~h,h0!#

Tr@r0#
. ~3.7!

Since the stater(h0) does not evolve before the interactio
are turned on, we can insert the identity in the fo
UI(h0 ,hp)UI(hp ,h0) with hp,h0 and commute one o
these evolution operators withr0 to obtain

^O&~h!5
Tr@r0UI~hp ,h!OUI~h,hp!#

Tr@r0#
. ~3.8!

Inserting another factor of the identity
UI(hp ,h f)UI(h f ,hp), with h f.h yields

^O&~h!5
Tr@r0UI~hp ,h f !UI~h f ,h!OUI~h,hp!#

Tr@r0#
~3.9!

and finally we lethp→2` andh f→0, which represent the
infinite past and infinite future in conformal coordinates,
that

^O&~h!5
Tr@UI~2`,0!UI~0,h!OUI~h,2`!r0#

Tr@UI~2`,0!UI~0,2`!r0#
.

~3.10!

Reading the operators from right to left in the numerator
this equation,r0 sets the initial state of the system which
then evolved along a time contour from2` to 0 with an
operator inserted ath; the final operator evolves back from
to 2`. The closed time contour which results is depicted
Fig. 1.

To evaluate Eq.~3.10! it is useful to group the evolution
operators into a single time-ordered exponential. This is
complished by formally doubling the field content of th
theory, with a set of ‘‘1 ’’ fields on the increasing-time con
tour and a set of ‘‘2 ’’ fields on the decreasing-time contou
The arrows on the contour indicate time ordering of eve
so that events on the2 contour always occur after those o
the 1 contour. We can group the effects of both parts of
contour together by writing the interacting part of the acti
appearing in Dyson’s equation, as

SI52 E
2`

0

dh HI~F1!2 E
0

2`

dh HI~F2!. ~3.11!

ρ

η η 0

‘+ contour’

‘– contour’

FIG. 1. The contour used to evaluate the evolution of opera
over a finite time interval. The initial state is an eigenstate of
Hamiltonian untilh0 at which time the interactions are turned o
We double the field content so that separate copies of the fields
used for the upper and lower parts of the contour.
12401
f

c-

s

e

Since the two terms differ only in the direction of the integr
over the conformal time, we can write the action as a sin
Lagrange density,

SI52 E
2`

0

dh @HI~F1!2HI~F2!#. ~3.12!

The field doubling induced by the closed contour effe
tively doubles the number of vertices we must include wh
studying any process—one set with fields on the1 branch
and one with fields on the2 branch. From Eq.~3.12!, the
latter will have couplings with the opposite sign. In evalua
ing matrix elements, Wick contractions produce four prop
gators for the possible contractions of pairs of the two typ
of fields,

^auT„F6~h,xW !F6~h8,xW8!…ua&

52 i E d3kW

~2p!3 eikW•(xW2xW8)Gk
66~h,h8!. ~3.13!

The time-ordering of the contractions is determined by
direction along the contour,

Gk
11~h,h8!5Gk

.~h,h8!Q~h2h8!1Gk
,~h,h8!Q~h82h!

Gk
22~h,h8!5Gk

.~h,h8!Q~h82h!1Gk
,~h,h8!Q~h2h8!

Gk
21~h,h8!5Gk

.~h,h8!

Gk
12~h,h8!5Gk

,~h,h8!, ~3.14!

with the Wightman functions given in Eq.~2.40!.
Assembling the ingredients of the Schwinger-Keldy

formalism—the general expression for an operator expe
tion value in Eq.~3.10!, Dyson’s equation~3.6! and Eq.
~3.12!—provides an explicit expression for the evolution
^O&(h). If we let the initial density matrix be that for a pur
a-vacuum, then Eq.~3.10! becomes

^auOua&~h!5
^auT$O Ie

2 i *2`
0 dh [HI (F

1)2HI (F
2)]%ua&

^auT$e2 i *2`
0 dh [HI (F

1)2HI (F
2)]%ua&

.

~3.15!

Here we have absorbed any ‘‘turning on’’ function inHI—in
essence the time integrals begin ath0. The time ordering has
allowed us to group the time evolution operators in E
~3.10! along the two contours into a single operator. Th
equation for the finite evolution of the expectation value
O is the analogue of the standardS-matrix expression used in
Minkowski space. The virtue of the field doubling is that
removes any acausal behavior from the matrix element s
the Q functions in the propagators combine to limit the u
per end of the conformal time integrals toh @10,11#. This
property will become clear in the calculation of a speci
example.
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e
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IV. EVOLUTION OF THE NUMBER OPERATOR

We now evaluate the expectation value of the numbe
Euclidean particles in thea-vacuum using the Schwinger
Keldysh formalism@27#. This number operator provides
good measure of whether a particular choice for the vacu
state becomes pathological in the presence of interacti
From the perspective of the Euclidean vacuum,
a-vacuum is an excited state. We can determine the stab
of this state when the interactions are turned on by follow
the time evolution of the change in the Euclidean num
operator evaluated in thea-vacuum.

In the noninteracting theory, we should not encounter a
infinite Euclidean particle production in thea-vacuum.
When the interactions are turned on, some further part
production will occur in the Euclidean vacuum, but the ra
per unit volume should be finite and any divergences wh
appear perturbatively must be renormalizable. What we s
discover is that in the interacting theory, thea-vacuum pro-
duces a new class of divergences that cannot be rem
with the usual set of counterterms.

These divergences in thea-vacuum occur at each time i
the integrand as we propagate from some initial state ath0 to
a finite time later so that the theory diverges even for
arbitrarily short time after the interactions are turned on. T
behavior indicates that thea-vacuum is inappropriate eve
for a finite inflationary epoch.

Although we examine in detail the evolution of the E
clidean number operator in this section, all of the div
gences we find are generic to the one loop corrections to
arbitrary operator. Furthermore, while we consider a sc
theory with a cubic interaction since it has a simple, no
trivial self-energy correction, similar loop integrals occur
any interacting scalar field theory. These more general c
are treated in the next section.

We first show how the free Hamiltonian can produce
nontrivial, but finite, time dependence. We then set up
calculation for the expectation value of the derivative of t
number operator, expressing it in terms of the scalar field
its conjugate momentum. The corrections to this expecta
value to leading, nontrivial order in the coupling are th
calculated and we obtain general expressions for the o
loop corrections and the counterterms.

In the interaction picture, the Hamiltonian is divided in
free and interacting parts,

H5H01Q~h2h0!HI . ~4.1!

Here we have included aQ function so that beforeh0 the
system evolves freely; we are always free to takeh0
→2`. For conformally flat de Sitter coordinates, the fr
Hamiltonian for a scalar fieldF(h,xW ) of massm is given by

H05 E d3xW @ 1
2 h2P21 1

2 h22~¹W F!21 1
2 h24m2F2#.

~4.2!

An important difference between de Sitter space and
space is that the free Hamiltonian is not diagonal in terms
creation and annihilation operators,
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H05
1

2

1

h2 E d3kW

~2p!3$@akW
E
akW

E†
1akW

E†
akW

E
#gk

E~h!

1akW
E
a

2kW
E

f k
E~h!1akW

E†
a

2kW
E†

f k
E* ~h!% ~4.3!

where

gk
E5]hUk

E]hUk
E* 1Fk21

m2

h2GUk
EUk

E*

f k
E5]hUk

E]hUk
E1Fk21

m2

h2GUk
EUk

E . ~4.4!

Note that this property holds also for thea-vacuum, E
→a.

The origin of the off-diagonal terms in the free Ham
tonian lies in the fact that the surfaces of constant confor
time are not orthogonal to the generator of an isometry. T
effect introduces an additional nontrivial source of time ev
lution which combines with that produced by the evoluti
of the stateua& when the fields interact. For a time derivativ
of a generic operator, we formally have

]h^O~h!&5Tr@~]hr!O1r]hO#

5 i Tr†2@HI ,r#O1r@H0 ,O#‡

5 i Tr†r@H,O#‡5 i ^@H,O#&. ~4.5!

The off-diagonal terms in the free Hamiltonian induce
evolution in the number operator even in the free theo
Since we wish to explore the effect of interactions on t
a-vacuum, we construct the number operator from creat
and annihilation operators,ãkW

† and ãkW , which satisfy

ãkW~h0!5akW
E

~4.6!

at the moment the interactions are turned on. The subseq
evolution in the interaction picture is given by the solution

2 i
]

dh
ãkW5@H0 ,ãkW#. ~4.7!

The solution to this equation can be formally expressed

ãkW~h!5U0
21~h,h0!akW

E
U0~h,h0! ~4.8!

whereU0(h,h0) is the time evolution operator for the fre
part of the theory,

U0~h,h0!5Te2 i *h0

h dh9 H0(h9). ~4.9!

From the form for the free Hamiltonian, a general solution
Eq. ~4.7! is given by a Bogolubov transformation of the tim
independent creation and annihilation operators,

akW
E
5ak~h!ãkW1bk~h!ã

2kW
† , ~4.10!

where the coefficients satisfy
2-7
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ih2]hak* 5gk
Eak* 1 f k

Ebk

2 ih2]hbk5gk
Ebk1 f k

E* ak* . ~4.11!

The standard normalization of the commutator of the tra
formed creation and annihilation operators also requires

uak~h!u22ubk~h!u251. ~4.12!

The general solution to the coefficient equations~4.11! is
of the form

ak* ~h!5a1Uk
E~h!1

a2

h2 ]hUk
E~h!

bk~h!52a1Uk
E* ~h!2

a2

h2 ]hUk
E* ~h!

~4.13!

where the constantsa1 anda2 should satisfy

a1a2* 2a1* a252 i ~4.14!

from Eq. ~4.12!. If we would like the number operator t
count the number of Euclidean particles at the moment
turn on the interactions,h5h0, then

a152 i
]hUk

E* ~h0!

h0
2

a25 iU k
E* ~h0!. ~4.15!

The number operator constructed from the transform
creation and annihilation operators,ãkW

†
ãkW , has the correct

evolution for an interaction picture operator. Using Eq.~4.5!,
even the free Hamiltonian induces some evolution in t
number operator,

@H0 ,ãkW
†
ãkW#5

i

h4 Dab E d3xWd3yWeikW•(xW2yW )F~ha ,xW !F~hb ,yW !,

~4.16!

whereDab(h) is the differential operator,

Dab~h![p1~h!]ha
]hb

2p2~h!~]ha
1]hb

!1p3~h!.
~4.17!

Hereha,b are only labels to indicate the functions on whi
the derivatives act; in the end,ha,b are set equal toh. The
functionspi(h) are
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p1~h!5
h2

h0
2]huUk

E~h0!u2,

p2~h!5
h4

h0
4 u]hUk

E~h0!u22Fk21
m2

h2G uUk
E~h0!u2

p3~h!52
h2

h0
2 Fk21

m2

h2G]huUk
E~h0!u2. ~4.18!

Evaluating Eq.~4.16! in thea-vacuum gives the tree leve
evolution of the number operator in this state,

i ^au@H0 ,ãkW
†
ãkW#ua&52

1

h4 VDab~h!Uk
a~ha!Uk

a* ~hb!.

~4.19!

V is the spatial volume. We can divide the volume from bo
sides to yield the particle production rate per unit volume
which this tree contribution is completely finite, if nonzero

Now consider a cubic interaction with its associated co
terterms,

HI5 E d3xWh24@JF1 1
2 dm2F21 1

3 lF3#. ~4.20!

The cubic vertex will generally introduce one-loop corre
tions to the two-point functions, so we have included a m
counterterm,dm2. Since theF3 interaction breaks theF
→2F symmetry of the free theory, we also expect the
teraction to generate graphs containing tadpole insert
which are cancelled with the correct choice forJ. To the
order we shall study, no wave function renormalization
needed.

The change in the number operator induced by these
teractions is given by applying Eq.~3.15!,

Ṅa,kW
E

~h![
i ^auT$@H,ãkW

†
ãkW#e

2 i *h0

0 dh[HI (F
1)2HI (F

2)]%ua&

^auT$e2 i *h0

0 dh[HI (F
1)2HI (F

2)]%ua&
.

~4.21!

The evolution of the free field is simple in the interactio
picture, so it is useful to write the creation and annihilati
operators in terms of the field and its conjugate momentu
by expanding in the time independent operators, Eq.~4.10!,
and inverting the operator expansion in Eq.~2.4!,

akW
E
5 i E d3xWe2 ikW•xW@Uk

E* P~h,xW !2h22]hUk
E* F~h,xW !#

akW
E†

52 i E d3xWeikW•xW@Uk
EP~h,xW !2h22]hUk

EF~h,xW !#.

~4.22!

The commutator with the free part of the Hamiltonian is th
as was given in Eq.~4.16! while that with the interacting par
is
2-8
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@HI ,ãkW
†
ãkW#5

i

h4 J~2p!3d3~kW ! E d3xW @2uUk
E~h0!u2P~h,xW !2h0

22]huUk
E~h0!u2F~h,xW !#

1
i

h4 dm2 E d3xWd3yWeikW•(xW2yW )@ uUk
E~h0!u2@F~h,xW !P~h,yW !1P~h,xW !F~h,yW !#

2h0
22]huUk

E~h0!u2F~h,xW !F~h,yW !#

1
i

h4

l

2 E d3xWd3yWeikW•(xW2yW )@ uUk
E~h0!u2@F2~h,xW !P~h,yW !1P~h,xW !F2~h,yW !#

2h0
22Uk

E~h0!]hUk
E* ~h0!F~h,xW !F2~h,yW !2h0

22Uk
E* ~h0!]hUk

E~h0!F2~h,xW !F~h,yW !#. ~4.23!
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The expectation values of each of these commutators wil
evaluated in thea-vacuum to orderl2.

Before evaluating the expectation values of these com
tators perturbatively, a large class of graphs, those contai
a tadpole subgraph, are eliminated through the proper ch
of the coefficientJ of the linear counterterm. To leading o
der in l, this choice forJ is

J52
l

16p3 E d3pW uUp
a~h9!u2. ~4.24!

This cancellation is shown diagrammatically in Fig. 2. No
that while the loop integral in Eq.~4.24! contains an apparen
time dependence, it is in fact time independent,

E d3pW uUp
a~h9!u2

5Na
2p2 E

0

`

j2djuHn
(2)~j!1eaHn

(1)~j!u2.

~4.25!
The form of the leading corrections to the expectat

value of @HI ,ãkW
†
ãkW# in the a-vacuum are simpler since th

commutator is already itself of orderl. The orderl2 correc-
tions to this commutator are shown diagrammatically in F
3. The other corrections from the cubic interaction at t
order contain tadpole subgraphs and are cancelled when
~4.24! is satisfied.

One of the subtleties in evaluating the evolution of t
number operator is that it contains time derivatives. For
ample, thedm2 term of Fig. 3 contains a term of the form

^auT„F~h,xW !P~h,yW !1P~h,xW !F~h,xW !…ua& ~4.26!

λ J
= 0

FIG. 2. The coefficientJ of the linear counterterm is chosen
cancel insertions of tadpoles. The dashed line represents a line
general diagram.
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which can produce Schwinger terms if the time ordering
the operators is not treated carefully. A method for avoid
such terms, following@27#, is to write the canonical momen
tum as

P~h,xW !5 lim
h9→h

1

h92
]h9F~h9,xW ! ~4.27!

and then to place the fields on the appropriate contours
that the time ordering naturally given along the contour p
serves the correct ordering of the operators in Eq.~4.26!,

lim
h9→h

1

h92
]h9^auT„F2~h,xW !F1~h9,yW !

1F2~h9,xW !F1~h,xW !…ua&. ~4.28!

With this prescription, the mass counterterm in Fig. 3 co
tributes

CI52
dm2

h6 VH uUk
E~h0!u2]huUk

a~h!u2

2
h2

h0
2 ]huUk

E~h0!u2uUk
a~h!u2J ~4.29!

at lowest order.
The only nontrivial effect of the interactions on expect

tion value of the commutator with the interaction Ham
tonian arises from the self-energy graph,

n a

λ λ

δm

FIG. 3. After choosing the linear term to cancel graphs conta
ing a tadpole, only these terms contribute at orderl2 to the expec-

tation value of@HI ,ãkW
†
ãkW# in the a-vacuum. The first represents

self-energy graph while the second is from the mass counterte
2-9
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AI52
l2

h6

V

4p3 uUk
E~h0!u2

3 E
h0

h dh8

h84
Im@]hUk

a~h!Uk
a* ~h8!Lk

a~h,h8!#

1
l2

h4

V

8p3

]huUk
E~h0!u2

h0
2

3 E
h0

h dh8

h84
Im@Uk

a~h!Uk
a* ~h8!Lk

a~h,h8!# ~4.30!

where the loop integral is given by

Lk
a~h,h8![ E d3pW Up

a~h!Up
a* ~h8!Up2k

a ~h!Up2k
a* ~h8!.

~4.31!

In addition to the corrections in Eq.~4.29! and Eq.~4.30!,
the fact that the free Hamiltonian is not the conserved qu
tity associated with a timelike generator of an isometry of
Sitter space means that the expectation value of@H0 ,ãkW

†
ãkW#

also contributes at orderl2. The linear counterterm also can
cels the graphs containing a tadpole subgraph and
vacuum to vacuum disconnected graphs are removed by
denominator of Eq.~4.21!. The only remaining correction
then are those shown in Fig. 4. These graphs contribute

A052
l2

h4

V

2p3 Dab~h!

3 E
h0

h dh1

h1
4 E

h0

h1 dh2

h2
4 Im@Uk

a~ha!Uk
a* ~h1!#

3Im@Uk
a~hb!Uk

a* ~h2!Lk
a~h1 ,h2!# ~4.32!

and

C052
2dm2

h4 VDab~h! E
h0

h dh1

h1
4 Im@Uk

a~ha!Uk
a* ~h1!

3Uk
a~hb!Uk

a* ~h1!# ~4.33!

to the expectation value of the derivative of the number
erator,Ṅa,kW

E .
An important feature to note is that the mass counterte

insertions, in Eq.~4.29! and Eq.~4.33!, do not vanish in the

λ λ

δm

FIG. 4. The orderl2 corrections to the expectation value
@H0 ,akW

E†
akW

E
# in the a-vacuum. Again, the first represents a se

energy graph while the second is from the mass counterterm.
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Euclidean limit; they are needed to cancel a logarithmic
vergence in the corresponding self-energy diagrams.

A. Renormalizing the logarithmic divergence

The one loop corrections in the generica-vacuum and in
the Euclidean limit differ in their divergence structure. Bo
cases contain a logarithmic divergence which can be regu
ized and cancelled by the appropriate choice for the m
counterterm,dm2. What distinguishes the generala-vacuum
from the Euclidean vacuum is the appearance of an a
tional class of terms that diverge linearly in the loop mome
tum. This divergence cannot be renormalized. In this subs
tion, we summarize the renormalization of the logarithm
divergence for the case of the massless conformally cou
scalar field in the Euclidean vacuum. The detailed calcu
tion for thea-vacuum is left for the Appendix.

Formally, the evolution of the Euclidean number opera
to orderl2 in the Euclidean vacuum is given by

ṄE,kW
E

~h!52
1

h4 VDab~h!Uk
E~ha!Uk

E* ~hb!

1 lim
a→2`

@AI1CI1A01C0#. ~4.34!

The case of a massless, conformally coupled scalar fiel
most readily analyzed since the mode functions have
simple form given in Eq.~2.21!. The tree contribution in this
case is given by

V

2k2h3 Fh4

h0
4 1k2h2

h2

h0
21

h

h0
2k2h0

22
h0

2

h2G ~4.35!

which is finite for hP@h0,0). The loop integral forn5 1
2 ,

which occurs inAI , is

Lk,n51/2
E ~h,h8![2

ip

2

~hh8!2

h2h8
e2 ik(h2h8), ~4.36!

so that

AI5
l2

k2

V

32p2Fh0
2

h4 2
1

h0hG E
h0

h dh8

h2h8
cos 2k~h2h8!

2
l2

k

V

32p2

h0
2

h3 E
h0

h dh8

h2h8
sin 2k~h2h8!. ~4.37!

The corresponding counterterm is

CI52
dm2

k2

V

2Fh0
2

h5 2
1

h0h2G . ~4.38!

The second integral in Eq.~4.37! is completely finite at all
timesh,0. The first integral, however, contains a logarit
mic divergence at the upper end of thedh8 integration. This
term can be regularized as described in the Appendix.
pole as the regularization is removed,e→0, is given by
2-10
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AI5
l2

k2

V

32p2Fh0
2

h5 2
1

h0h2G 1

e
1finite, ~4.39!

and is cancelled by choosing

dm25
1

e

l2

16p2 ~4.40!

in Eq. ~4.38!. The analogous logarithmic divergence inA0 is
cancelled by the countertermC0.

The self-energy diagrams in thea-vacuum also contain a
logarithmic divergence which can be removed by a suita
choice for the mass counterterm,

dm25
1

e

l2

16p2 ~11ea1a* !Na
2 , ~4.41!

which reduces to that for the Euclidean case in Eq.~4.40!.
The origin and regularization of this divergence is discus
more fully in the Appendix.

B. The linear divergence of thea-vacuum

Including the orderl2 corrections, the derivative of th
number of Euclidean particles in thea-vacuum is again
given by the sum of the contributions shown in Fig. 3 a
Fig. 4 as well as the tree level contribution of Eq.~4.19!,

Ṅa,kW
E

~h!52
1

h4 VDab~h!Uk
a~ha!Uk

a* ~hb!

1AI1CI1A01C0 . ~4.42!

Each self-energy graph contains a loop integral, Eq.~4.31!.
Unlike the Euclidean case which is completely finite once
have established ani e prescription, the loop integral ove
a-mode functions diverges linearly in the spatial momentu
Introducing a boundL to remove the large momenta in th
loop, *0

` p2 dp * dV2→ *0
L p2 dp * dV2, assuming L

.ukW u, the divergent part of Eq.~4.31! is

Lk
a~h1 ,h2!5ea1a* Na

4 2pL

k
~h1h2!2F sink~h12h2!

h12h2

1
sink~h11h2!

h11h2
G1finite. ~4.43!

The appearance of the factorea1a* shows why such a di-
vergent term does not arise in the Euclidean limit.

Unlike the logarithmic divergence, this divergence can
be removed by a momentum independent value fordm2. For
example, the divergent piece of the self-energy graph in
3 is
12401
le

d

e

.

t

g.

AI52ea1a* Na
4 l2

kh4

VL

2p2 uUk
E~h0!u2

3E
h0

h dh8

h82
Im $]hUk

E~h!Uk
E* ~h8!%

3F sink~h2h8!

h2h8
1

sink~h1h8!

h1h8
G

1ea1a* Na
4 l2

kh2

VL

4p2

]huUk
E~h0!u2

h0
2

3E
h0

h dh8

h82
Im$Uk

E~h!Uk
E* ~h8!%

3F sink~h2h8!

h2h8
1

sink~h1h8!

h1h8
G1••• ~4.44!

which cannot be cancelled by a momentum-independ
choice fordm2 in Eq. ~4.29!.

To observe this incompatibility of the momentum depe
dence of the divergences in thea-vacua loop corrections an
the available counterterms, at least in the case of a mass
conformally coupled scalar field, it is sufficient to compa
the limiting behavior in the external momentum of the lo
corrections and the corresponding counterterms. In thk

5ukW u→0 limit the divergent parts of bothAI andAI scale as
k21L. In contrast, the leadingk dependence of the counte
terms scale ask22, at least whena is real, which is required
in any case for aCPT invariant theory@24#. Thus, no choice
of dm2, which does not depend onk, is possible such thatCI
andC0 cancel the divergence inAI andA0 asL→`.

Note that the linear divergence is not present in the op
site quantity—the expectation value of the number
a-particles in the Euclidean vacuum. This quantity is giv
by expressions similar to those above except with the lab
interchanged for the mode functions,Uq

a↔Uq
E , and some of

the a-dependent coefficients are slightly altered in Eq
~4.29!–~4.33!. The crucial difference is that the presence
the Euclidean states in Eq.~3.15! leads to Euclidean propa
gators so that in particular the loop integral is over Euclide
modes for which no linear divergence occurs.

V. DISCUSSION

The linear divergence that arises from the one loop c
rections in thea-vacuum is a UV effect. At arbitrarily shor
distances there exists an interference of the positive
negative frequency modes which cancels the rapidly osci
ing phases among some of the terms within the loop integ
Without such a cancellation, these phases could damp t
high-momentum contributions through an appropriatei e pre-
scription. This interference of phases is a specific feature
the propagator in thea-vacuum and does not occur in th
Euclidean case. In this section we shall discuss the origin
this divergence and determine the necessary conditions f
to arise.
2-11
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Consider a loop containingn vertices connected byn in-
ternal propagators—those through which the common l
momentum flows. Since in de Sitter space it is convenien
perform a Fourier transform over only the spatial coor
nates, each vertex has a time,h i for i 51, . . . ,n, associated
with it. Eventually, we integrate over all these times as th
arise from the exponent of the time evolution operator in E
~3.15!. To determine whether a particular loop can produc
UV divergence, we must first count the powers of mome
tum in the high loop momentum region.

Let Gp2ki

. (h i ,h i 11) represent the Wightman functio

within a loop propagator connecting thei and (i 11) verti-
ces. The loop momentum ispW andkW i denotes other moment
following through the ith leg. In the UV limit upW 2kW i u
@uh i u21,uh i 11u21, the leading behavior of this Wightma
function is

Gp2ki

. ~h i ,h i 11!→ iNa
2 h ih i 11

2upW 2kW i u
@e2 i upW 2kW i u(h i2h i 11)

1ea1a* ei upW 2kW i u(h i2h i 11)

2 ieae2 ipnei upW 2kW i u(h i1h i 11)

1 iea* eipne2 i upW 2kW i u(h i1h i 11)#. ~5.1!

Note that the propagator contains factors of bo
Gp2ki

. (h i ,h i 11) and Gp2ki

, (h i ,h i 11)5Gp2ki

. (h i 11 ,h i).

For the purpose of the power counting, it is important to n
that, aside from the phases, in the UV lim
Gp2ki

a (h i ,h i 11);p21. Thus in integrating over a loop,

EL

d3pW )
i 51

n

Gp2ki

a ~h i ,h i 11!; EL dp

pn22
. ~5.2!

We only encounter a possible UV divergence ifn<3. Note
that then51 case can be removed by a counterterm si
the loop only depends on the loop momentum and not on
other momenta in the graph.

Then52 case can produce a linear divergence. Since
divergence only depends on the form of the propagator
not the form of the interaction, such divergences generic
occur in any interacting theory, for example in the proces
shown in Fig. 4 and Fig. 5. Superficially, a divergence mig
seem possible even in the Euclidean case if a produc
Wightman functions,Gp

.(h1 ,h2)Gp2k
, (h1 ,h2), occurs in

the loop integral. However, the Schwinger-Keldysh form
ism is constructed to remove such terms and only factor

FIG. 5. Examples of divergent diagrams in theories with qua
~left! or quintic ~right! interactions. Any loop that contains only tw
lines will exhibit a UV divergence similar to that in Eq.~4.43!. This
result follows from the structure of the propagator in thea-vacuum
and not the form of the interactions.
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Gp
.(h1 ,h2)Gp2k

. (h1 ,h2), and Gp
,(h1 ,h2)Gp2k

, (h1 ,h2)
can appear in the loop integral in which thep-dependent
phases do not cancel in the UV. The important difference
thea-vacuum is that each Wightman function contains ter
whose p-dependent phases have the opposite signs. T
even after the Schwinger-Keldysh formalism has been
plied, a product of the two loop Green’s functions,

Gp
.~h1 ,h2!Gp2k

. ~h1 ,h2!

→2ea1a* Na
4 ~h1h2!2

4pupW 2kW u
@e2 ip(h12h2)ei upW 2kW u(h12h2)

1eip(h12h2)e2 i upW 2kW u(h12h2)

1eip(h11h2)e2 i upW 2kW u(h11h2)

1e2 ip(h11h2)ei upW 2kW u(h11h2)#1••• ~5.3!

will have some phase cancellation asp→`. What renders
these terms unrenormalizable, however, is that although
p-dependent phases cancel in the divergent terms, they
contain a nontrivial dependence on the momentum ente
the loop from the rest of the diagram.

This analysis of the phase structure of the two-propaga
loop does not necessarily show that such divergences ca
be removed from the theory through a suitable renormal
tion prescription. This fact can only be established by su
ming all the contributions to this graph and demonstrat
that the dependence of the resulting divergent term on
momenta external to the loop is incompatible with a cou
terterm insertion, as was done in the previous section. H
ever, since all loop integrals containing only two propagat
have essentially the same structure, given by Eq.~4.31!, we
see that thea-vacuum cannot be renormalized in any inte
acting theory, regardless of the form of the interaction.

The power counting argument indicates that a logarithm
divergence can arise for a loop with three legs, such as
vertex correction graph shown in Fig. 6. The loop integ
contains a product of three terms of the form of Eq.~5.1!, or
its complex conjugate, which generally contains terms wh
the high loop momentum dependence of the phase can
For example, in Fig. 6 if the coordinates associated with
three vertices are (h1 ,kW1), (h2 ,kW2) and (h3 ,2kW12kW2), then
in the product of three propagators occur terms such as

Gp2k1

. ~h1 ,h2!Gp1k2

. ~h2 ,h3!Gp
.~h1 ,h3!

→2 iea1a* Na
6 ~h1h2h3!2

8pupW 2kW1uupW 1kW2u

3e2 i upW 2kW1u(h12h2)e2 i upW 1kW2u(h22h3)e2 ip(h32h1)1•••.

~5.4!

c
FIG. 6. Diagrams containing a loop with three propagators

be logarithmically divergent in the loop momentum. For example
vertex correction in aF3 theory could generate such a divergenc
2-12
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In the high momentum region of the loop momentum, t
phase factor will be independent of the integrated mom
tum and the integral will be logarithmically divergent. A
with the self-energy case before, these arguments can
demonstrate under what conditions a divergence can oc
Whether these logarithmic terms cancel among each othe
whether the resulting divergence can be removed by a co
terterm requires performing the full integration and summ
all the relevant products of Wightman functions. Howev
since we have already seen that the self-energy graphs
hibit a pathological behavior in thea-vacuum, we shall not
study these vertex corrections further here.

VI. CONCLUSIONS

The preceding discussion shows that a class of linear
vergences from loops with two propagators—and logar
mic divergences from loops with three propagators
generically appears in any interacting theory in
a-vacuum. These divergences arise from the form of thea-
vacuum propagator, which is determined by the free fi
Hamiltonian, and not on the detailed form of the interactio
What the Schwinger-Keldysh formalism allows is a prec
statement of the problem of an interacting theory in
a-vacuum. With a high-momentum cutoff, we can find
the terms that diverge linearly with this cutoff and analy
their dependence on the momenta external to the loop.
resulting expressions are not cancelled by a set of de S
invariant counterterms of the same form as those in the o
nal Lagrangian. The appearance ofa-dependent prefactor
also shows why such terms do not plague the Euclid
vacuum.

The fact that the divergence originates from high mom
tum modes and the form of thea-dependent prefactors pro
vides the basis of a simple heuristic explanation for
divergence.1 The number density of Euclidean particles p
unit volume at the time that the interactions are turned o

nkW
a
[V21^auakW

E†
akW

Eua&5ea1a* Na
25

1

e2a2a* 21
~6.1!

since ãkW(h0)5akW
E . From the perspective of the Euclidea

vacuum, thea-vacuum looks like a distribution whose occ
pation number is given bynkW

a . Note thatnkW
a is actually inde-

pendent ofkW . If we then replace thea-dependent terms in
the propagators with the factorsnkW

a , maintaining the momen
tum labels, then among the many divergent terms contrib
ing to AI occurs the expression,

AI52
l2

kh

V

64p3

]huUk
E~h0!u2

h0
2 E

h0

h dh8

h8
E d3pW

pupW 2kW u

3@~nkW
a
11!~npW

a
11!npW 2kW

a
2nkW

a
npW

a
~npW 2kW

a
11!#

3 sin†@p1k2upW 2kW u#~h2h8!‡1•••, ~6.2!

1We would like to thank Dan Boyanovsky for suggesting th
kinetic interpretation.
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in the massless conformally coupled case. This expres
resembles a ‘‘gain minus loss’’ process in thea
background—for example, one part describes the creatio
two particles from one while the other describes the crea
of one from the annihilation of two. SincenpW

a is constant,
nothing suppresses the largep divergence.

This divergence is only present in a truea-vacuum and
not in a ‘‘truncateda-vacuum’’—a state that is set equal to
Euclidean vacuum above some scaleukW u.M @12#. For a
truncateda-vacuum, thenpW

a’s vanish aboveM so integrals
such as Eq.~6.2! become finite. The largest contribution t
the change in the number operator scales asl2M . These
truncateda-vacua have no divergences, although exac
how the state evolves may depend on how the truncatio
implemented. Using our formalism, it becomes possible
study how one of these vacua evolves during inflation a
the amount by which it would alter the appearance of angu
power spectrum of the cosmic microwave background rad
tion @19#.

To conclude then, interactions destabilize thea-vacua.
We have calculated a physical quantity, the conformal ti
rate of change of the number of Euclidean mode particle
the a-vacuum, and found that it diverges. This divergen
reflects a physical pathology of an interacting theory in a t
a-vacuum.
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APPENDIX: REGULARIZATION OF LOGARITHMIC
DIVERGENCES

The self-energy diagrams in Fig. 3 and Fig. 4 contain t
classes of divergences in thea-vacuum. One class diverge
linearly in the magnitude of the spatial loop momentum. T
dependence of this divergence on the external momen
flowing through the graph is not of the same form as t
appearing from the insertion of one of the available coun
terms. In this sense, these divergences cannot be renor
ized and indicate a pathological feature of an interact
theory in thea-vacuum. However, these linearly diverge
terms vanish in the Euclidean limit.

The second class of divergences exist in both the Euc
ean and the generala-vacua. These divergences depe
logarithmically on the conformal time and can, at least in t
massless conformally coupled case where the calcula
simplifies, be removed by a constant mass counterterm.
important to establish the renormalization of this type of
vergence not only to show that the evolution of the num
operator is finite for an interacting scalar field in the Eucl
ean vacuum, but also in thea-case. If we wish to consider a
‘‘truncated a-vacuum,’’ one which is cut off at some hig
energy scale such as the Planck mass@12#, we thereby re-
2-13
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move the linear divergence of Eq.~4.43!, but the logarithmic divergence is still present inAI andA0. In this appendix, we
demonstrate how to renormalize this divergence.

In the massless conformally coupled case, the loop integral overa-vacuum propagators of Eq.~4.31! yields

Lk,n51/2
a ~h1 ,h2!52

ip

2
Na

2~h1h2!2
e2 ik(h12h2)1ea1a* eik(h12h2)

h12h2

1
ip

2
Na

4~h1h2!2@ea2ea* #
eaeik(h11h2)1ea* e2 ik(h11h2)

h11h2

2
ip

k
eaNa

4h1h2 sinkh1@eikh22e2a* e2 ikh2#

1
ip

k
ea* Na

4h1h2 sinkh2@e2 ikh12e2ae2ikh1#

1
2p

k
~L2k!ea1a* Na

4~h1h2!2F sink~h12h2!

h12h2
1

sink~h11h2!

h11h2
G . ~A1!

The final term is the linearly divergent term. Among the remaining terms, only the first produces any logarithmic dive
when integrated over the conformal time. In the case of either self-energy contribution, Eq.~4.30! or Eq. ~4.32!, we integrate
h2 from h0 to h1 (h1→h for theAI graph! and encounter a singularity from the (h12h2) denominator of imaginary part o
the first term in Eq.~A1!,

Lk,n51/2
a ~h1 ,h2!52

ip

2
~11ea1a* !Na

2~h1h2!2
cosk~h12h2!

h12h2
1•••. ~A2!

Inserting this result in the self-energy contributions yields

AI5
l2

kh4

V

16p2~11ea1a* !Na
4 uUk

E~h0!u2 E
h0

h dh8

h8~h2h8!
cosk~h2h8!

3$~11ea1a* ! cosk~h2h8!2~eaeik(h1h8)1ea* e2 ik(h1h8)!2 ikh~eaeik(h1h8)2ea* e2 ik(h1h8)!%

2
l2

kh

V

32p2 ~11ea1a* !Na
4

]huUk
E~h0!u2

h0
2 E

h0

h dh8

h8~h2h8!
cosk~h2h8!

3$~11ea1a* ! cosk~h2h8!2~eaeik(h1h8)1ea* e2 ik(h1h8)!%1••• ~A3!

and

A052
l2

k2h4

V

16p2 ~11ea1a* !Na
4Dab~h! E

h0

h dh1

h1
E

h0

h1 dh2

h2
hahb

cosk~h12h2!

h12h2

3 sink~ha2h1!@~11ea1a* ! cosk~hb2h2!2eaeik(hb1h2)2ea* e2 ik(hb1h2)#1•••. ~A4!
ic

f

i-
In both of these equations, the ellipses indicate terms wh
do not diverge logarithmically in the conformal time.

Both Eq.~A3! and Eq.~A4! contain divergent integrals o
the form

E
h0

h1 e2iqh2dh2

h2~h12h2!
, ~A5!

whereq is k, 0, or 2k. Changing to a dimensionless var
able,
12401
h
r[12

h2

h1
, ~A6!

Eq. ~A5! becomes

E
h0

h1 e2iqh2 dh2

h2~h12h2!
52

e2iqh1

h1
E

0

12h0 /h1 e22iqh1rdr

~r 21!r
.

~A7!

We can regularize this integral by inserting a factor ofr e in
the integrand and then extract the pole ase→0,
2-14
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E
0

12h0 /h1 e22iqh1r r e21dr

r 21
52

1

e
1finite. ~A8!

Thus,

E
h0

h1 e2iqh2dh2

h2~h12h2!
5

e2iqh1

h1

1

e
1finite. ~A9!

Applying this regularization to the self-energy grap
gives

AI5
l2

h6

V

16p2

1

e
~11ea1a* !Na

2F uUk
E~h0!u2]huUk

a~h!u2

2
h2

h0
2 ]huUk

E~h0!u2uUk
a~h!u2G1••• ~A10!
tte

d

ss

12401
and

A05
2l2

h4

V

16p2

1

e
~11ea1a* !Na

2Dab~h!

3 E
h0

h dh1

h1
4 Im$Uk

a~ha!Uk
a* ~h1!Uk

a~hb!Uk
a* ~h1!%

1•••. ~A11!

In deriving Eq.~A11! we have used the fact that the opera
Dab(h) is symmetric inha andhb . Both poles are removed
by the appropriate mass counterterm graphsCI andC0 given
in Eq. ~4.29! and Eq.~4.33!, respectively, when

dm25
1

e

l2

16p2 ~11ea1a* !Na
2 . ~A12!
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ys.
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