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The fate of the a-vacuum
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de Sitter space-time has a one complex parameter family of invariant vacua for the theory of a free, massive
scalar field. For most of these vacua, in an interacting scalar theory the one loop corrections diverge linearly for
large values of the loop momentum. These divergences are not of a form that can be removed by a de Sitter
invariant counterterm, except in the case of the Euclidean, or Bunch-Davies, vacuum.
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[. INTRODUCTION fectly valid vacua for a free scalar field. If they cannot be

The importance of understanding quantum field theory inshown to be unphysical, then their existence would undercut
de Sitter space, the space-time associated with a positiv@me of the robustness of the inflationary paradigm—we
cosmological constant, has been heightened by recent obsaveuld need to explain how the epoch prior to inflation man-
vations of both the early and late Universe. The dramati@ged to place the universe in the Euclidean vacuum rather
results of Wilkinson Microwave Anisotropy Probh&] have than one of the other infinite family of-vacua. For ex-
provided further strong evidence that the universe underweragmple, the regularization needed by the energy-momentum
a rapid inflationary expansion. Both the large-angle anticortensor even for the free theory in tlkevacuum is not gen-
relation in the temperature-polarization cross-power specerally compatible with that needed after inflatigfi.
trum and the nearly flat spectral index are consistent with the A complication in formulating quantum field theory in de
predictions of inflation. More surprisingly, the dimming of Sitter space is its lack of a well-definé&matrix. In an in-
the type la supernovae seen by the Supernova Search Tederacting theory we have two sources of time dependence for
[2] and the Supernova Cosmology Proj¢8i, combined matrix elements—one induced by any inherent time depen-
with other observations, is yielding a new standard picturelence of the background geometry and another introduced
for the contents of the universe, the largest component dby the interactions. In such a system, it is therefore appro-
which is a dark energy whose properties are consistent with priate only to ask time dependent questions—to study how a
positive cosmological constant. matrix element evolves from a given initial state.

A striking difference between de Sitter and flat space-time Schwinger{10] and Keldysh/11] developed a formalism
is the richer vacuum structure of the former. For a free scalato solve for this finite time evolution. In their approach, we
field in a Minkowski space, there exists an essentially uniquespecify the state of the system at an initial time and then
Poincareinvariant vacuum state. In contrast, for a de Sitterevolve to a finite time later. Here, both the “in” and “out”
background, Mottolg4] and Allen[5] discovered an infinite  states correspond to the same state and are evolved together
family of vacua for the quantum theory of a free massivewhen we evaluate the expectation value of an operator—in
scalar field that are invariant under the isometries of de Sitteeffect this formalism evaluates matrix elements between two
space. These vacua can be parametrized by a single compl&r” states. The Schwinger-Keldysh formalism is thus ide-
number,«, and are usually called the-vacua. Most of these ally suited for studying the behavior of the-vacua in the
a-vacua have a host of peculiar features, such as a mixtungresence of interactions. We place the system initially in an
of positive and negative frequency modes at short distances-vacuum and then study whether a sensible evolution re-
and a nonthermal behavior that violates the principle of desults. Since the quantum field theory only is evolved over a
tailed balance. Only one of these states, the Euclidean dmite interval, our results are relevant not only for the more
Bunch-Davieq 6] vacuum, behaves thermally when viewed formal question of thex-vacua in an eternal de Sitter back-
by an Unruh detectof7] and reduces to the Minkowski ground but also for the phenomenological problem of a finite
vacuum as we take the cosmological constant to zero. Thepoch of inflation.
preferred role of the Euclidean vacuum was also shown by The methods established here can also be applied to any
[8]. The assumption that the universe was at least approxinitial state, such as the “truncated-vacua” of [12]. In
mately in the Euclidean vacuum underlies the successful prehese vacua, the short-distance behavior of dheacua is
dictions of inflation for the calculation of the density fluctua- modified either in accord with some specific theory, such as
tions which produced the temperature anisotropies in théhe stringy uncertainty relation ¢13,14], or simply by trun-
cosmic microwave background radiation. cating the a-mode functions above some energy scale to

Despite their unappealing features, thevacua are per- reflect our ignorance of the new physjd®,15-18. We here

address the formal case of a purevacuum and shall study
the truncated case later jd9].
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malization p_rescription. These divergenqes appear in_ the one ds?=dt2— e?Ht dx2, 2.2
loop corrections and are present for arbitrarily weak interac-

tions. The specific example we study is the expectation valughrough »=—H e "' H is the Hubble constant and is
of the number of Euclidean particles in arvacuum. The related to the cosmological constant y=6H?2.
divergences appear in the high momentum region of the loop

integral. We. shgw that they only vani_sh for the Euclidean A. The Euclidean vacuum

vacuum, which is completely renormalizable. )

The subject of thex-vacua for an interacting theory has 10 @n observer capable only of probing length scales on
also been recently investigated in related wiR,21. Both which the curvature of de Sltter space is not apparent, the
of these works essentially studied the corrections to the twosPace-time appears approximately flat. For the high energy
point correlation function obtained between an “instate  Modes then, this observer can apply the same prescription for
and an “out” state given by the-state at a later time. Banks defining positive and negative frequency modes as in
and Mannelli[20] found that the interacting theory in the Mmkowséq space. The vacuum state annihilated by the op-
a-vacuum required nonlocal counterterms while Einhorn ancratorsa,; associated with these modes corresponds to the
Larsen[21] found pinched singularities in the loop correc- Euclidean vacuum.
tions. These features provided highly suggestive evidence The Euclidean vacuum possesses many desirable proper-
that thea-vacua are pathological in the presence of interacties in addition to matching with the Minkowski vacuum at
tions. Some attempts to modify the theory to avoid theseshort distances or asl—0. It corresponds to the unique
problems appear if22,23. state whose Wightman function is analytic when continued

We begin with a review of the de Sitter invariant vacuato the lower half of the Euclidean sphere. Moreover, an Un-
for a free scalar field in Sec. Il. This section also shows thguh detector placed in the Euclidean vacuum satisfies the
form of the Wightman functions in conformally flat coordi- principle of detailed balance as though it were immersed in a
nates. Section Il derives the expectation value of an operatdhermal system at the de Sitter temperatliig=H/27 [24].
in an interacting theory based on the Schwinger-Keldysh for- If we denote the Euclidean vacuum (), the Euclidean
malism. In Sec. IV we calculate the change in the number oWWightman function for a free massive scalar fiek{x) is
Euclidean particles in am-vacuum due to a cubic interac- defined by
tion and show that in the presence of this interaction, the
expectation value is renormalizable for the Euclidean Ge(x,x")=(E|D(x)®(x")[E). 2.3
vacuum while an unrenormalizable divergence appears fo§. h tic | tially flat. th . f th |
the @-vacuum. Section V explores the origin of these diver- .|nce e me ne '_S Spatally E_i ’ _e expansion ? Ee scalar
gences in thex-vacua in a more general setting. We derive f1€ld ®(x) in creation and annihilation operatcfi§ ay for
the necessary conditions for these divergences to arise afde vacuum statgE) is
show how they can appear in a general interacting scalar K
field theory. Section VI summarizes our results and suggests vl E iK-XoE | | Ex —ik-x5ET
future applications for this formalism. C(7.x)= f (2m)® [Ume™ a Ui (me 77 ]

(2.9

Il GREEN'S FUNCTIONS With the commutator normalized to be

In this section we review the rich vacuum structure of a - L.
free scalar field in de Sitter spaf@4]. We derive the form of [a;.a;, 1=(2m)%8°%(k—k), (2.9
the Wightman function and eventually the Feynman propa-
gator in conformally flat coordinates. These Green’s functhe Euclidean Wightman function in position space is
tions will be used later for studying the interacting theory.

The most straightforward method for demonstrating the 3k K (e

. . . . . K Iy — -(x=x")11E Ex ’
existence of a family of de Sitter invariant vacua is to evalu- Ge(x,x") f (21)3 e U(mUy™ (7")
ate the two-point Wightman function for a free massive sca-
lar field in ana-vacuum. For this purpose it is useful to use d3k

a coordinate system that covers the entire space-time. Such
coordinates are not, however, those best suited for more ex-
plicit calculations. Therefore, throughout this article we shall
study de Sitter space using conformally flat coordinates,

=] @m? e NGE(, "),
(2.6)

where the momentum representation the Wightman function
d7n?—dx2 S
ds'=—hz,7 @3 GE(7.7)=UE(mUE* (7). 27

with »e[—2,0] which cover half of de Sitter spades].  Note that the mode functions only depend on the magnitude
The other half of the space is covered by a set of coordinatesf the spatial momentunk= |K|.

with »— — 5. These coordinates are simply related to the A free massive scalar field satisfies the Klein-Gordon
standard coordinates used in inflation, equation,
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[VZ2+m?]d(x)=0, (2.9
so that the mode functions solve the differential equation,

_ Therefore, the Euclidean mode functions are given by
[ 7205 —2nd,+ n’k*+mPH 2JUi(n)=0. (2.9

T
Note thatm? here represents the effective mass of the theory UE(7n)= - 7¥?H P (k7). (2.19
which includes any contribution from coupling the field to
2 : . )
the curvatured“R. In de Sitter space-time the curvatuiés While the de Sitter invariance of the Wightman function

constant so this coupling is of the same form as a mass tery ot manifest from Eq.2.19, it is possible to write
The solutions to Eq(2.9) are linear combinations of Bessel Ge(x,x') as a function of the de Sitter invariant distance

functions, between its argumenfg4]. In conformally flat coordinates,
UE( ) = cn®23 (k) + den™2Y (k) (2.10  this invariant distance betweerr (7,x) andx’ =(7’,x') is

. 24 12 )Z_)_(’/ 2
with Z(x,x")= U | : (2.20

277’
v=vi-mH 2 (2.11)

Although we shall state most of our results in terms of the
We shall assume hereafter thais real. mode functions for a general mass, it will be convenient to
The general form for the mode functions is applicable toshow the results for a particular case in which the mode
both the Euclidean vacuum and thevacuum. What distin-  functions simplify substantially. Whemn=3, the Hankel
guishes the former is that as the Hubble constant is taken féinction in Eq.(2.19 is proportional to an exponential,
vanish, H—0, so that de Sitter space becomes flat, we
should recover only the positive frequency mode functions,

i E —— e iky
e X |n the smallH limit, U(m =12 \/ﬂﬂe : (2.21
ke " K This case corresponds to a massless, conformally coupled
kn—— H ﬁ+kt+O(H)’ (212 scalar field for which the effective massng=2. The Eu-

‘ clidean Wightman function is then
the leading time dependence of the modekas{r;)oce""t .
when ny' [ d3k

Ge(x,x') = —— e kO gk X (2.2
)= | (222

Ck:Nk dk:_iNk. (213

and is finite provided we choose the appropriatgrescrip-

Up to the normalization factorN,, the Euclidean mode tion

functions are given by
Uk(m) =Nin¥13, (k) =iY (k)] Ge(x,x')=—

=Nin¥?H P (k7). (2.14

1
87 Z—1-iesgrin—7n')

(2.23

Here the appearance of the invariant distaffe x’) estab-
H®(kz) represents a Hankel function. We shall now choosdishes the de Sitter invariance of the vacuum.
the units such thatl=1.
The normalization is fixed by the canonical equal-time B. The a-vacua

commutation relation The choice of the short distance behavior of the mode
functions which determined the relative contributions of the

[T1(7,%),®(7,x")]==18%(x=x") (219 two independent solutions to the Klein-Gordon equation is
) ) not the unique choice which leads to a de Sitter invariant
where the conjugate momentum is Wightman function. Mottold4] and Allen[5] observed that
1 the vacuum statéa) annihilated by a Bogolubov transfor-
I1(7,X)= ?(pncp(n,g)_ (2.16  mation of the Euclidean operators,
, _ , , a,= Na[aE— e a'f}], (2.249
The equal-time commutation relation requires that the modes
satisfy a Wronskian condition of the form also yields a de Sitter invariant Wightman function,
Ugd, Ug* —a,UgUg* =in?, (2.17) G (XX )=(a|P(X)D(X')|a). (2.25

which determines the normalization of the modes to be Here, Rea<0 and the normalization
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Na:(l_ea+a*)—l/2 (2.26 The additional complexity of the mode functions in the

a-vacuum means that it is particularly helpful to have a case

is chosen to preserve the normalization of the commutatiof Which these functions simplify. For a massless, confor-

relation in thea-vacua, analogous to E(R.5). Note that the ~mally coupled scalar field,

Euclidean vacuum is itself among the-vacua being ob-

tained whene— — oo, N i ik ik

In proving thatG,(x,x') only depends orZ(x,x') it is Uk(ﬂ)'V:l/ZZNaE nle "7—e%e™7], (2.33
useful to use a coordinatization that covers the entire de Sit-
ter space-time. In such global coordinates, both a poartd

its antipodex, occur in the same coordinate systgp4]. It and the Wightman function becomes

is then possible to choose Euclidean mode functi¢ﬁ@<) N2 1

such that¢S* (x) = ¢5(x,) so that the Bogolubov transfor- G (XX )= — =

mation of Eq.(2.24) gives 87| Z—1—iesgnn—7')
b () =N SR +e“Br(Xa)]. (2.2 e

+

Heren labels the elements of a general basis of mode func- Z-1+iesgrin—7')
tions. In this form, the de Sitter invariance of the Euclidean o oo
Wightman function and the fact thZ(x,x,) = —Z(x,x’) to- — —— .
gether imply that thex-Wightman function only depends on Z+1l-ie Z+1+ie
the de Sitter invariant distance betweeandx’ [4,5]. While
it is helpful to use a coordinate system which contains theéfs in the Euclidean case, the de Sitter invariance is manifest
antipode of every point to establish this invariance, for ex-n the above expression.
plicit calculations it is not necessary to use global coordi-
nates. Equation(2.24 relates the mode functions of the C. Propagation
a-vacuum to the mode functions of the Euclidean vacuum
and their complex conjugates—we do not need to transform
the conjugated mode function into a function of the antipodeq
once we have established thag(x,x’) is invariant. —iG(X, X ) =(a| T(®(X)D(x"))|a), (2.3

From the Euclidean mode functions of E§.19 we can

now construct the mode functions for thevacua. Expand- sg that it satisfies the Klein-Gordon equation with a point
ing the scalar field in terms ok creation and annihilation  ggyrce,

] . (2.39

To study the propagation of signals in a de Sitter back-
round, define the Feynman propagator,

operators,
R sHx—x'
(0= | %@ [U(merag+ U™ (e Fag'], [Vt miIe0ex) = (_W(x)) (239
(228 The propagator can only depend on the difference between
and using Eq(2.24) yields the spatial positions of the points so that its Fourier trans-
UE(m) =N, [U(n) +e*Ui* (n)] (2.29 form ¢
since theUE(#) only depend on the magnitude kf Thus Gu(m,n')= J d*x e K G (5% 7' X') (237

the a-vacuum modes are
whereG, (7, ') is the solution to

UK( n):NC@ 7P AHP (ky) +eH P (k).
(2.30

Inserting thea-mode expansion into E@2.25 yields

[7205—2nd,+ n*K2+mP1G( 7,7 )= n°n'?8(n—7').
(2.38

The solution to this equation which satisfies the correct

&k boundary conditions af’ = » has the form
Guxx)= [ s XU U (), Hncaty condions &y =
(2.30) Gu(7,7")=C (7,7 )0(n—7')
Again, the spatial flatness makes it natural to use a momen- +Gy(7,7)0(n'— 7). (2.39

tum representation
HereG, (7,1') andG (7,7’) are essentially the two-point
Gi(n,n")=U(mU* (7). (232 wightman functions calculated earlier in E§.32),
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Gy (7,7")=iG{(n, ") =IUL(mUL* (n') In the interaction picture, the evolution of operators is
given by the free Hamiltoniant,, while the evolution of
G (7, 7')=iG2(n', ) =1U&* (m)UL(7"). states is given by the interactionts, . If we let{|¥)} denote

(2.40 a general basis of states for the theory, then the behavior of
the system is completely described by the density matrix,
Although propagation for a free field theory in the P(7)= Zw v py w/|W)(¥'[. Thus, as the density matrix is

a-vacua contains some peculiar features, it is not otherwisgonstructed from the states, it satisfies a Sdimger equa-
ill-defined. The pathological features of quantum field theorytion of the form
in an @-vacuum only appear in an interacting field theory.
The form of thea-Wightman function already suggests that i
the interacting theory could be ill-defined, since the various '%p(’?):[Hl ()]
terms in Eq.(2.34 contain differentie prescriptions. This
property implies that in a standard approach to calculating
the one loop corrections to the propagator, among the prode-V
ucts of the propagators participating in the loop appear prod-
ucts of poles with the opposite& prescription—pinched sin-
gularities[21]. For example, in the one-loop correction to the i iq)(ﬂ >Z)=[H (7 )z)] (3.2
propagator appears a product of the Green’s functions given an ' 0 e '
in Eq. (2.34). However, these pinched singularities do not by
themselves prove whether thevacuum is itself pathologi- The time evolution of the field is precisely that given in the
cal or whether the standard methods for studying the quarprevious section since here the mode functions still are solu-
tized theory are inappropriate for a time-evolving back-tions to the free Klein-Gordon equation.

(3.9

The advantage of the interaction picture is that fields
olve using the free Hamiltonian,

ground such as de Sitter space. To study the evolution introduced by the interactions, it is
convenient to include a “turning on” function in the inter-
lIl. THE SCHWINGER-KELDYSH FORMALISM acting part of the Hamiltonian,

A significant difference between de Sitter space, in most
coordinatizations, and flat space is the explicit time depen-
dence of the metric. Unlike a flat space-time where the gen- ]
erator of time translations is a Killing vector globally, de Here w(»— o) vanishes wheny<7, and becomes one
Sitter space-time has no such global timelike Killing vector.when 7 is sufficiently large compared withy,. Later we
Moreover, in a particular coordinate system—such as inflashall let this function be #® step function. We shall often
tionary coordinates—the time derivative may not even gennot write this function explicitly, absorbing it intdl, . Thus
erate an isometry locally. These properties suggest that rathée state does not evolve beforg: p(7)=p(70)=po for
than attempt to define aBmatrix between “in” and “out” 7<1o.
states defined at different times, we should apply a quantiza- Once we have specified the state at a particular time,
tion procedure that evolves an entire matrix element over &(70), then the Eq(3.1) allows us to determine the state at
finite interval. It is also useful to be able to evolve a givenall subsequent times. To study the vacuum structure of de
state forward from a specified initial timg,, rather than to  Sitter space, the initial state will correspond tocwacuum.
use a state in the asymptotic past. We can always tgke |f we introduce a unitary, time-evolution operatdi(#, n")

Y — o, that evolves the state,

An additional advantage of solving the evolution over fi-
nite intervals is that such an approach more immediately p(17)=VU,(7,70)p(70)U; (7,70, (3.9
determines whether the-vacuum is applicable for inflation,
which does not require a de Sitter space-time eternally, b%
only over a sufficient interval to generate the number of
e-foldings needed to explain the flatness and the homogene-
ity of the universe. If t.hr?z interactingz-vacuum shows its iiU|(77,7]o):H|U|(77,7]o) (3.5
pathology even over a finite interval, then we can exclude the an
possibility that the universe was in a putestate during any
epoch of inflation, regardless of the prior history of the uni-with U, (7, 7)=1. The formal solution to this equation is
verse. given by Dyson’s equation in terms of the time-ordered ex-

The closed time contour formalism developed byponential
Schwinger{10], Keldysh[11] and Mahanthappg26] allows
us to study the evolution of a quantum field theory over a U7 d H ()
finite interval after specifying the state at an initial surface. Ui(n,mo)=Te "7 TR7 (3.9
We review here their approach which leads to an expression
for perturbatively evaluating the matrix element of an opera- The evolution of the expectation value of an operator in
tor, which is given at the end of this section in £§.15). this time-dependent background is given by

H=Hy+ w(n— n9)H,. (3.3

en from Eq.(3.2) U(#,7y) obeys
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00 “+ contour’ o Since the two terms differ only in the direction of the integral
e i h S n— y over the conformal time, we can write the action as a single
- ‘“contour flo N 0 Lagrange density,

FIG. 1. The contour used to evaluate the evolution of operators 0
over a finite time interval. The initial state is an eigenstate of the S=- f
Hamiltonian until , at which time the interactions are turned on.
We double the field content so that separate copies of the fields are
used for the upper and lower parts of the contour.

_dp[H(®T)—H(®7)]. (3.12

The field doubling induced by the closed contour effec-
tively doubles the number of vertices we must include when
studying any process—one set with fields on thebranch

(O)(7)= Trip(7) O] and one with fields on the- branch. From Eq(3.12, the
Trlp(7)] latter will have couplings with the opposite sign. In evaluat-
1 ing matrix elements, Wick contractions produce four propa-
- TpoUy (7, 70) OU: (77, 70)] _ (3.7)  9ators for the possible contractions of pairs of the two types
Tl po] of fields,
Since the statp(7,) does not evolve before the interactions (a| T(@* (7 ) D ( 7 ;/))|a>
are turned on, we can insert the identity in the form ’ ’
Ui (70, 7p)Ui(175,m0) With 5,<7, and commute one of d3k

these evolution operators wii, to obtain =i e  0NG = (n,7').  (3.13

(2m)®

OV ) TLPY1(7p, MOV (2, 7)] 38  The time-ordering of the contractions is determined by the
(O)(m) . (398 g

Trpo] direction along the contour,
Inserting another factor of the identity, G, * (7,7 )=G,(7,7)0(n—7")+Gy(7,7)0(n' —7)
Ui(7p, 70)Ui( 5, 77p), With 7> 5 yields

Gy (7,7')=Gg(n,17)0(n — Ge(n,7)0(n—7'
T poUs (7. 700U (75 1) OU, (7, 7] k (117)=G(n7,7)0(n" —n)+G (7,7)0(n—7n")

(O)(m)=
T pol (3.9 Gy "(7,7)=G((n.7')
and finally we let,— — and ;—0, which represent the Gy (7.7')=CGg(n,7n"), (3.19
infinite past and infinite future in conformal coordinates, so
that with the Wightman functions given in E@2.40.
Assembling the ingredients of the Schwinger-Keldysh
T U, (—,0)U,(0,7)OU,(77,— %) po] formalism—the general expression for an operator expecta-
(O)(n)= U (—=.00U,(0—)pg] : tion value in Eq.(3.10, Dyson’s equation(3.6) and Eq.

(3.10 (3.12—provides an explicit expression for the evolution of
(O)(n). If we let the initial density matrix be that for a pure
Reading the operators from right to left in the numerator of¢®-Vacuum, then Eq(3.10 becomes
this equationpg sets the initial state of the system which is o
then evolved along a time contour frome to 0 with an (a|T{Oe 7 [==dn M@ =HI(@ )]y )
operator inserted ag; the final operator evolves back from 0 (alOla)(n)=
to —o0. The closed time contour which results is depicted in
Fig. 1.
To evaluate Eq(3.10 it is useful to group the evolution

operators into a single time-ordered exponential. This is aCHere we have absorbed any *
complished by formally doubling the field content of the . qonce the time integrals beginygt The time ordering has
theory, with a set of + " fields on the incre'asin'g-time CON- gllowed us to group the time evolution operators in Eq.
tour and a set of =" fields on the decreasing-time contour. 3 1 aj0ng the two contours into a single operator. This
The arrows on the contour indicate time ordering of events,y ation for the finite evolution of the expectation value of
so that events on the contour always occur after those on s the analogue of the standaBdnatrix expression used in
the + contour. We can group the effects of both parts of theyinowski space. The virtue of the field doubling is that it
contour together by writing the interacting part of the actionremayes any acausal behavior from the matrix element since
appearing in Dyson’'s equation, as the © functions in the propagators combine to limit the up-
per end of the conformal time integrals #[10,11. This

- dyH,(®7). (3.1 property will become clear in the calculation of a specific
example.

(@|T{e T 12adn M@ H@ T 4y
(3.15

turning on” functionkh—in

s=— [ anr@n- |
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E_ETt Et_E

IV. EVOLUTION OF THE NUMBER OPERATOR 11 a3k
JW{[agag +a;'azlgg(n)

We now evaluate the expectation value of the number of Ho=3 7?
Euclidean patrticles in the.-vacuum using the Schwinger- EE . Et Et.p
Keldysh formalism[27]. This number operator provides a +aga”fi(n)+a; a_[f*(n)} (4.3
good measure of whether a particular choice for the vacuum
state becomes pathological in the presence of interaction¥here
From the perspective of the Euclidean vacuum, the
a-vacuum is an excited state. We can determine the stability E_ E Ex
of this state when the interactions are turned on b i 9= Ui,V +

y following
the time evolution of the change in the Euclidean number
operator evaluated in the-vacuum.

In the noninteracting theory, we should not encounter any
infinite Euclidean particle production in the-vacuum.
When the interactions are turned on, some further particléNote that this property holds also for the-vacuum, E
production will occur in the Euclidean vacuum, but the rate— «.
per unit volume should be finite and any divergences which The origin of the off-diagonal terms in the free Hamil-
appear perturbatively must be renormalizable. What we shatbnian lies in the fact that the surfaces of constant conformal
discover is that in the interacting theory, thevacuum pro-  time are not orthogonal to the generator of an isometry. This
duces a new class of divergences that cannot be removesifect introduces an additional nontrivial source of time evo-
with the usual set of counterterms. lution which combines with that produced by the evolution

These divergences in the-vacuum occur at each time in of the statda) when the fields interact. For a time derivative
the integrand as we propagate from some initial statg,dd  of a generic operator, we formally have
a finite time later so that the theory diverges even for an
arbitrarily short time after the interactions are turned on. This 9,{O(n))=Tr(d,p) O+ pd, O]
behavior indicates that the-vacuum is inappropriate even .
for a finite inflationary epoch. =i T=[H,,p]O+p[Ho.01]

.Although we examine in detgll the .evolutlon of the Eu- =i Tr[p[H,0]1=i([H,O]). (4.5

clidean number operator in this section, all of the diver-

gences we find are generic to the one loop corrections to an The off-diagonal terms in the free Hamiltonian induce an
arbitrary operator. Furthermore, while we consider a scalaevolution in the number operator even in the free theory.
theory with a cubic interaction since it has a simple, non-Since we wish to explore the effect of interactions on the
trivial self-energy correction, similar loop integrals occur in a-vacuum, we construct the number operator from creation
any interacting scalar field theory. These more general casgsq annihilation operatora, anda;, which satisfy

are treated in the next section. K

We first show how the free Hamiltonian can produce a
nontrivial, but finite, time dependence. We then set up the
calculation for the expectation value of the derivative of the
number operator, expressing it in terms of the scalar field an
its conjugate momentum. The corrections to this expectation
value to leading, nontrivial order in the coupling are then g _
calculated and we obtain general expressions for the one- —i d—a,;z[Ho,a,;]. 4.7
loop corrections and the counterterms. K

In the interaction picture, the Hamiltonian is divided into
free and interacting parts,

2

m
|<2+;z URUg*

2
m
k*+ —
7

flo=a,Ugd, U+ UEFUE. (4.4)

ai(mo)=ag (4.6)

t the moment the interactions are turned on. The subsequent
volution in the interaction picture is given by the solution to

The solution to this equation can be formally expressed as
~ E
H:Ho+®(77— 770)H|- (4_1) ak(ﬂ)—uo (ﬂ,ﬂo)akuo(ﬂ,ﬂo) (4-8)

Here we have included @ function so that beforey, the whereUq( 7, 7o) is the time evolution operator for the free
system evolves freely; we are always free to takg Part of the theory,
— —oo, For conformally flat de Sitter coordinates, the free

. . . - . i _ —i n d " U
Hamiltonian for a scalar field(7,x) of massmis given by Uo(7,m0)=Te " 1587 Hol7), 4.9

., . R . From the form for the free Hamiltonian, a general solution to
Ho= f d3X[ 3 7112+ 357 2(VD)2+ 5 77 *m2d2]. Eq. (4.7) is given by a Bogolubov transformation of the time
(4.2 independent creation and annihilation operators,

An important difference between de Sitter space and flat ap=a( Mait Bd ma g, (4.10
space is that the free Hamiltonian is not diagonal in terms of
creation and annihilation operators, where the coefficients satisfy
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P2 * E x E 2
1970 yag =gy + i By i
7 P1(7) = —3,|Ug(n0)|?,
7o
—i7%0,Bx= 0k Bt fic* ak . (4.1 7 m2
Pa(m)= " |9, Uk (n0) >~ | K2+ 7 |UR(70)[?
The standard normalization of the commutator of the trans- 0
formed creation and annihilation operators also requires that 7 m2
Ps(m) == "> k2+7 3,/ Ug(n0)|. (4.18
0
la( )= | Bu(m)|?=1. (4.12

Evaluating Eq(4.16) in the @-vacuum gives the tree level

The general solution to the coefficient equatighdl) is evolution of the number operator in this state,

of the form 1

H =1z a a

I<a|[H0,a|;a|;]|a>= - ?VDab( 7)Ug( 77a)Uk*(77b)-
(4.19

V is the spatial volume. We can divide the volume from both
sides to yield the particle production rate per unit volume for
a, which this tree contribution is completely finite, if nonzero.
— UE*( )__(9 UE*( ) . .. . L . )
Bi(n) aYv (7 20k n Now consider a cubic interaction with its associated coun
(413 terterms,

* E a E
ag (n)=a;U,(n)+ ;zﬁnUk(n)

where the constants, anda, should satisfy Hi= f A (I + FomPd2+ jAd3]. (4.20

a,al —ara,= —i (4.14 'I_'he cubic vertex v_viII gene_rally introduce or_le-loop correc-
tions to the two-point functions, so we have included a mass
counterterm,dm?. Since the®? interaction breaks the
from Eg. (4.12. If we would like the number operator to — —® symmetry of the free theory, we also expect the in-
count the number of Euclidean particles at the moment weeraction to generate graphs containing tadpole insertions

turn on the interactionsy= 7,, then which are cancelled with the correct choice fbrTo the
order we shall study, no wave function renormalization is
Ex needed.
a— i d,Ui”™ (m0) a,=1UE* (7o) .15 The change in the number operator induced by these in-
L 7> 2 k= $770)- ' teractions is given by applying E¢8.15,

; T qa—i f0 dp[H (@) —H (@~
The number operator constructed from the transformed € ) — i{al T{[H agagle™ T MO 7R o)
creation and annihilation operator?x%ﬁl;, has the correct wk <a|T{e—if?,odn[HM‘l’*)—H|(‘I”)]}|a)
evolution for an interactipn p_icture operator. Using_ Efq5), ' 4.21)
even the free Hamiltonian induces some evolution in this
number operator,

The evolution of the free field is simple in the interaction
picture, so it is useful to write the creation and annihilation
e i e . . operators in terms of the field and its conjugate momentum,
[Ho.azag]= _ADabf d3xd3ye® NP (5, ,x)P(7,,y), by expanding in the time independent operators, BdL0),
7 (4.16 and inverting the operator expansion in E2.4),

E_. R > — -
whereD,,(7) is the differential operator, a =l f d*xe” * U TI(5,x) — 720, U* @ (1,X)]
Dan(7)=Pa(1) 77,95, = P2(7)(9y,F ) +Ps( 7’)('4 12 af'=—i j e X[UETI(7,%)— 20,00 (,%)].
' (4.22

Here 7, ,, are only labels to indicate the functions on which The commutator with the free part of the Hamiltonian is then
the derivatives act; in the endy, ,, are set equal to;. The  as was given in Eq4.16) while that with the interacting part
functionsp;(7) are is
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~ [ . . . .
[H, ,aEag]:7J<2w>353<k> f d3X[ 2|U g (10)|2TL( 72,X) — 17 %3, | U (70) |>®(7,%)]

i IR N N - .

+75m2 f dExdy e N[ UR(50) LD (7, )IL(1,y) +(7,X)D(7,y)]

— 76 20,lUE(10) 2 (7, X)®(7,Y)]
[N s - . . N N

T2 J d*xdye™ O UL o) L2 (7, X) T (77,y) + TL(7,X) D2(7,Y)]

— 70 Ug(70)2,U* (7o) @ (7,X) DX 7.Y) = 19 “U* (10) 2, Uk (90) X (. X)P(7.y)].  (4.23

The expectation values of each of these commutators will bevhich can produce Schwinger terms if the time ordering of
evaluated in thexr-vacuum to ordei?. the operators is not treated carefully. A method for avoiding
Before evaluating the expectation values of these commusuch terms, followindg27], is to write the canonical momen-
tators perturbatively, a large class of graphs, those containinym as

a tadpole subgraph, are eliminated through the proper choice
of the coefficient] of the linear counterterm. To leading or-

- 1 -
der in\, this choice forJ is H(7,x)= lim —3,,®(7",x) (4.27)
1]!!*)77
Jo_ \ j &5 U2 (4.24) and then to place the fields on the appropriate contours so
167° PIMp U1 ' that the time ordering naturally given along the contour pre-

serves the correct ordering of the operators in Bg6),

This cancellation is shown diagrammatically in Fig. 2. Note
that while the loop integral in Ed4.24) contains an apparent

1 - -
i - - + "
time dependence, it is in fact time independent, lim —3 (@l T@7 (7)™ (7",y)

7'—7
. +O7 (7" )P (7,%)] ). (4.28

f d®p |Us(7")?

With this prescription, the mass counterterm in Fig. 3 con-

* tributes
=N’ f £déHP(&) +eH (g%,
0 5m2
(4.25 C|:—7V+|UE(770)|2377|U?(77)|2
The form of the leading corrections to the expectation
~t~ 3 . . 2
value of[H,,azag] in the a-vacuum are simpler since the n E 211 1 2
. . ——d,|U U 4.2
commutator is already itself of ordar The ordem? correc- ;(Z) 77| k(70| ?[Ui ()] (4.29

tions to this commutator are shown diagrammatically in Fig.

3. The other corrections from the cubic interaction at thisat lowest order.

order contain tadpole subgraphs and are cancelled when Eq. The only nontrivial effect of the interactions on expecta-

(4.24) is satisfied. tion value of the commutator with the interaction Hamil-
One of the subtleties in evaluating the evolution of thetonian arises from the self-energy graph,

number operator is that it contains time derivatives. For ex-

ample, thesm? term of Fig. 3 contains a term of the form

AIE/\ A

(2| T(@(7,)T(7,y)+T1(7,)P(7,X)|e) (4.2

C[ =
----- (OREERY -

FIG. 3. After choosing the linear term to cancel graphs contain-
FIG. 2. The coefficient of the linear counterterm is chosen to ing a tadpole, only these terms contribute at orndeto the expec-
cancel insertions of tadpoles. The dashed line represents a line intation value offH, ,EEE\,;] in the a-vacuum. The first represents a
general diagram. self-energy graph while the second is from the mass counterterm.
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A //" 3 Euclidean limit; they are needed to cancel a logarithmic di-
IR —— vergence in the corresponding self-energy diagrams.
N
c A. Renormalizing the logarithmic divergence
0 = ——
o’ The one loop corrections in the genedevacuum and in

the Euclidean limit differ in their divergence structure. Both
FIGE.T 4E- The orden? corrections to the expectation value of cases contain a logarithmic divergence which can be regular-
[Ho,a; a] in the a-vacuum. Again, the first represents a self- jzed and cancelled by the appropriate choice for the mass

energy graph while the second is from the mass counterterm.  countertermm?. What distinguishes the generalvacuum

from the Euclidean vacuum is the appearance of an addi-

A2V £ ) tional class of terms that diverge linearly in the loop momen-
A=- 7 mwk( 70| tum. This divergence cannot be renormalized. In this subsec-

tion, we summarize the renormalization of the logarithmic

7ndn’' N e w , divergence for the case of the massless conformally coupled
X | — 7 ImLa, U (U™ (7))L (7,7')] scalar field in the Euclidean vacuum. The detailed calcula-
o7 tion for the a-vacuum is left for the Appendix.
A2V (97]|UE( 70)|? Formally, the evolution of the Euclidean number operator

23 to order\? in the Euclidean vacuum is given b
774 8773 7]3 g y

. 1
dz’ NE -(79)=— —VDap( 7)UE(7,) UE*
an 7;74 MU U (') LECm )] (430 ei(m) 7 o( MU (72) U™ (7p)

70

+ lim [A+C + Ag+Cp]. (4.39

where the loop integral is given by -

R The case of a massless, conformally coupled scalar field is
Lﬁ‘(n,n’)zf d3pug(n)Ug*(n’)Ug,k(n)Ugik(n’). most readily analyzed since the mode functions have a
(4.3 simple form given in Eq(2.21). The tree contribution in this
case is given by

In addition to the corrections in E¢.29 and Eq.(4.30),

o 4 2 2
the fact that the free Hamiltonian is not the conserved quan- v 7o 22?22 o 4.39
tity associated with a timelike generator of an isometry of de 23 T R e T '

Sitter space means that the expectation vaIuB—Q,f,EEE,;]

also contributes at orda?. The linear counterterm also can- Which is finite for e[ 70,0). The loop integral fon=3,
cels the graphs containing a tadpole subgraph and an{/hich occurs inA,, is

vacuum to vacuum disconnected graphs are removed by the

. .. . | ( 1)2
denominator of Eq(4.21). The only remaining corrections LE ( N=— Im (97 o ik(n1") (4.36
then are those shown in Fig. 4. These graphs contribute k=127 7 2 p—y ’ :
Y so that
Ao=—727r3Dab(7l)
NV [py 1] (nody
7dny (mdn, N N A=— —=— j cosk(np—17n'
X f —4f —IM[U(9) Ug* (11)] 'K 327 mon) Juen— ' (n=7")
n0 M1 Jug 72
2 2 ’
<IMUE () UE* (mo)Li(mym)] (432 RS @f” W sink(z-v). 43
k 327 7° non—17'
and
The corresponding counterterm is
25m2 7 d’?]l o ax
Co=——z VDab(ﬂ)f — MU (7)) U™ (771) sm2 V[ n2 1
n o M1 - _ Vi (4.38
@ ak ! k2 2 775 7707]2 .
XU () U™ (71)] (4.33

. o The second integral in Eq4.37) is completely finite at all
to the expectation value of the derivative of the number opsjes 7<0. The first integral, however, contains a logarith-

erator,NE e mic divergence at the upper end of g’ integration. This

An imbortant feature to note is that the mass counterternterm can be regularized as described in the Appendix. The

insertions, in Eq(4.29 and Eq.(4.33, do not vanish in the pole as the regularization is removed;» 0, is given by
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A—)\Z Vome o LT i 4.3
=232 5 o) e T nite, (439
and is cancelled by choosing
S 2—1—2-)\2 4.4
m T e 16w (4.40

in Eqg. (4.38. The analogous logarithmic divergenceAy is
cancelled by the counterter@y.

The self-energy diagrams in thevacuum also contain a
logarithmic divergence which can be removed by a suitable

choice for the mass counterterm,

1 A2 .
5m2=; W(l-i-eaJra )Ni,

(4.4

which reduces to that for the Euclidean case in &g40.

PHYSICAL REVIEW D 68, 124012 (2003

« . N VA
A=—ev" Nik—774§z|UE(no)|2

7dn’
xj —=1m {3,Ug(mU* (7))}
0 7
sink(7—7") . sink(7+7")
n—n'
4)\_2ﬂ(9,7|UE(770)|2
“ky? 4ar? 7]3

nt+n'

+ ea+a* N

ndn'
xf —Im{Ug(mUg* (7')}
70 77

sink(n—17") . sink(np+7')
n—1' n+ 7'

+o. (444

which cannot be cancelled by a momentum-independent
choice forém? in Eq. (4.29.

The origin and regularization of this divergence is discussed To observe this incompatibility of the momentum depen-

more fully in the Appendix.

B. The linear divergence of thea-vacuum

Including the ordem? corrections, the derivative of the

number of Euclidean particles in the-vacuum is again

dence of the divergences in thevacua loop corrections and

the available counterterms, at least in the case of a massless,
conformally coupled scalar field, it is sufficient to compare
the limiting behavior in the external momentum of the loop
corrections and the corresponding counterterms. Inkhe

=|k|—0 limit the divergent parts of boti, and 4, scale as

given by the sum of the contributions shown in Fig. 3 andk A. In contrast, the leading dependence of the counter-

Fig. 4 as well as the tree level contribution of £4.19),

. 1
NE () =— 7V Par(MUL(72) U ()
+ A +C+ Ayt Cy. (4.42

Each self-energy graph contains a loop integral, B31).

terms scale ak~?, at least when is real, which is required
in any case for &P T invariant theorny[24]. Thus, no choice
of 8m?, which does not depend dais possible such that,
and(Cy cancel the divergence id, and Ay as A — .

Note that the linear divergence is not present in the oppo-
site quantity—the expectation value of the number of
a-particles in the Euclidean vacuum. This quantity is given
by expressions similar to those above except with the labels

Unlike the Euclidean case which is completely finite once wenterchanged for the mode functiong; < Ug , and some of
have established aie prescription, the loop integral over the a-dependent coefficients are slightly altered in Egs.
a-mode functions diverges linearly in the spatial momentum(4.29—(4.33. The crucial difference is that the presence of
Introducing a bound\ to remove the large momenta in the the Euclidean states in E¢3.15 leads to Euclidean propa-

loop, [gp?dpfdQ,— f5yp?dpfdQ, assuming A
>|Kk|, the divergent part of Eq4.31) is
* 2mwA Sink( m— 772)
L , :ea+a N4 2
k(71,72) a_k_(m’?z T 1
sink( #n,+
o Skt )| e (4.43
71+ 72

The appearance of the factef**" shows why such a di-
vergent term does not arise in the Euclidean limit.

gators so that in particular the loop integral is over Euclidean
modes for which no linear divergence occurs.

V. DISCUSSION

The linear divergence that arises from the one loop cor-
rections in thew-vacuum is a UV effect. At arbitrarily short
distances there exists an interference of the positive and
negative frequency modes which cancels the rapidly oscillat-
ing phases among some of the terms within the loop integral.

Without such a cancellation, these phases could damp these

high-momentum contributions through an appropriatere-
scription. This interference of phases is a specific feature of

Unlike the logarithmic divergence, this divergence cannothe propagator in the--vacuum and does not occur in the

be removed by a momentum independent valuesfof. For

Euclidean case. In this section we shall discuss the origin of

example, the divergent piece of the self-energy graph in Figthis divergence and determine the necessary conditions for it

3is

to arise.
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AX AKX

FIG. 5. Examples of divergent diagrams in theories with quartic
(left) or quintic (right) interactions. Any loop that contains only two
lines will exhibit a UV divergence similar to that in EG.43. This
result follows from the structure of the propagator in th@acuum

and not the form of the interactions. G;(ﬂl,ﬂz)G;k( 71.7,), and G;(ﬂlaﬂz)G;k( 71, 75)
. o . ) can appear In the loop integral in which tipedependent
Consider a loop containing vertices connected by in-  phases do not cancel in the UV. The important difference in
ternal propagators—those through which the common 00phe o-vacuum is that each Wightman function contains terms
momentum flows. Since in de Sitter space it is convenient tquhose p-dependent phases have the opposite signs. Thus
perform a Fourier transform over only the spatial coordi-even after the Schwinger-Keldysh formalism has been ap-
nates, each vertex has a timg,for i=1, ... n, associated plied, a product of the two loop Green’s functions,
with it. Eventually, we integrate over all these times as they - -
arise from the exponent of the time evolution operator in Eq. Gy (71,72)Gp—i( 71, 772)
(3.15. To determine whether a particular loop can produce a
UV divergence, we must first count the powers of momen- ——e ==
tum in the high loop momentum region. 4p|p—kK|
Let G;_ki(ni ,Mi+1) represent the Wightman function

within a loop propagator connecting theand ( +1) verti-

FIG. 6. Diagrams containing a loop with three propagators can
be logarithmically divergent in the loop momentum. For example, a
vertex correction in ab® theory could generate such a divergence.

2 - -
ata® 4 M[e—ip(m— 72) il P=KI(71- 72)

+ lP(n1=m) g=ilp—Kl(n1~ )

ces. The loop momentum sandk; denotes other momenta +elPnt mg Pkt n)
following through theith leg. In the UV limit [p—kj| —ip(m1+ 72 il P—KI (7 +

§ - ! - + mt)ailp—kl(m+t72)74 ... .
>|7i|71|7i4+1] L the leading behavior of this Wightman © € ] -3
function is will have some phase cancellation ps»o. What renders

these terms unrenormalizable, however, is that although the
p-dependent phases cancel in the divergent terms, they still
contain a nontrivial dependence on the momentum entering
[p—kil the loop from the rest of the diagram.
This analysis of the phase structure of the two-propagator
loop does not necessarily show that such divergences cannot
—ie®e"imveallP—Kl(nit 7 1) be removed from the theory through a suitable renormaliza-
tion prescription. This fact can only be established by sum-
+iea*eiwe—i\ﬁ—ﬁi\(w7,”1)]. (5.1) ming all the contributions to this graph and demonstrating
that the dependence of the resulting divergent term on the
Note that the propagator contains factors of bothmomenta extgrnal to the loop i_s incompa_tible with. a coun-
G (i) and G (7.7 0)=Go s (i1, 70). terterm insertion, as was done in Fh'e previous section. How-
A Pk M 1) Pk i+ L ever, since all loop integrals containing only two propagators
For the purpose of the power counting, it is important to note, 5/e essentially the same structure, given by B®1), we
thgt, aside frorT_11 the phases, in the UV Iimit goq that they-vacuum cannot be renormalized in any inter-
Gp— (7, 7i+1)~p " Thus in integrating over a loop, acting theory, regardless of the form of the interaction.
The power counting argument indicates that a logarithmic
A g . N A dp divergence can arise for a loop with three legs, such as the
f d°p |H1 Gp—ki(”i Mi+1)~ f n—2" (5.2 vertex correction graph shown in Fig. 6. The loop integral
- P contains a product of three terms of the form of Eg|1), or
We only encounter a possible UV divergencen#3. Note its complex conjugate, which generally contains terms where

that then=1 case can be removed by a counterterm sinc he high loop momentum depende_znce of the phase c_ancels.
the loop only depends on the loop momentum and not on an or example, in F|g.§ if the ci)ordmates as§ocu'3ted with the
other momenta in the graph. three vertices arerf; ki), (772,k;) and (3, —k;—kp), then
Then=2 case can produce a linear divergence. Since th# the product of three propagators occur terms such as
divergence only depends on the form of the propagator and
not the form of the interaction, such divergences generically

(3;7|(i(77i 'nHl)_,iNiM[e—i\ﬁ—izil(m—m+1)

=

+ et a* gilp—kil(mi—7i11)

Gpi, (71, 72) G4 1, (12,73) Gy (71, 773)

occur in any interacting theory, for example in the processes (7172775)>
shown in Fig. 4 and Fig. 5. Superficially, a divergence might —>—ie“+“*Ng = : 92 2 =
seem possible even in the Euclidean case if a product of 8plp—kil[p+kal

Wightman functions,Gg(nl,nz)Grf_k(_nl,nz), occurs in
the loop integral. However, the Schwinger-Keldysh formal-
ism is constructed to remove such terms and only factors of (5.4

@~ 1P—Kal(m1=mp) g =ilp+Kol (2= na) g~ iP(m3=m1) 4 . . .
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In the high momentum region of the loop momentum, thein the massless conformally coupled case. This expression
phase factor will be independent of the integrated momenresembles a “gain minus loss” process in the
tum and the integral will be logarithmically divergent. As background—for example, one part describes the creation of

with the self-energy case before, these arguments can oniyo particles from one while the other describes the creation
demonstrate under what conditions a divergence can occUts gne from the annihilation of two. Since® is constant

o
Whether these logarithmic terms cancel among each other or_,, . . p
nothing suppresses the largalivergence.

whether the resulting divergence can be removed by a coun-"_, .= ~. : i
This divergence is only present in a traevacuum and

terterm requires performing the full integration and summingnot in a “truncatede-vacuum’—a state that is set equal to a
all the relevant products of Wightman functions. However, o d

since we have already seen that the self-energy graphs eficlidean vacuum abOVi some scake™>M [12]. For a
hibit a pathological behavior in the-vacuum, we shall not  truncateda-vacuum, then's vanish aboveM so integrals

study these vertex corrections further here. such as Eq(6.2) become finite. The largest contribution to
the change in the number operator scales\&§l. These
VI. CONCLUSIONS truncated a-vacua have no divergences, although exactly

The preceding discussion shows that a class of linear di_rJOW the state evolves may depend on how the truncation is

vergences from loops with two propagators—and Iogarith-'mplememed' Using our formalism, it becomes possible to

mic divergences from loops with three propagators—swdy how one of these vacua evolves during inflation and

generically appears in any interacting theory in anthe amount by which it would_ alte.r the appearance of angu!ar
a-vacuum. These divergences arise from the form ofcthe power spectrum of the cosmic microwave background radia-

vacuum propagator, which is determined by the free fielot'orjl_[lg]' lude th . . d bilize
Hamiltonian, and not on the detailed form of the interaction, 'O conclude then, interactions destabilize evacua.

What the Schwinger-Keldysh formalism allows is a precise//e Nave calculated a physical quantity, the conformal time

statement of the problem of an interacting theory in anrate of change of the number of Euclidean mode particles in
a-vacuum. With a high-momentum cutoff, we can find all the a-vacuum, and found that it o_liverges_. This divgrgence
the terms that diverge linearly with this cutoff and analyzereflects a physical pathology of an interacting theory in a true

their dependence on the momenta external to the loop. Thg-vacuum.

resulting expressions are not cancelled by a set of de Sitter

invariant counterterms of the same form as those in the origi- ACKNOWLEDGMENTS
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divergencé. The number density of Euclidean particles per

unit volume at the time that the interactions are turned on is APPENDIX: REGULARIZATION OF LOGARITHMIC

DIVERGENCES

1
a_y\/—1 Et_E _pata*N2
ne=V" el aga)=e""Ng R 6. The self-energy diagrams in Fig. 3 and Fig. 4 contain two

classes of divergences in thevacuum. One class diverges
sinceag( 770)=aE- From the perspective of the Euclidean linearly in the magnitude of the spatial loop momentum. The
vacuum, thex-vacuum looks like a distribution whose occu- dependence of this divergence on the external momentum
pation number is given by . Note thatn; is actually inde- flowing through the graph is not of the same form as that
- _appearing from the insertion of one of the available counter-
pendent ofk. If we then replace ther-dependent terms in terms. In this sense, these divergences cannot be renormal-
the propagators with the facton§ , maintaining the momen- ized and indicate a pathological feature of an interacting
tum labels, then among the many divergent terms contributtheory in thea-vacuum. However, these linearly divergent

ing to A, occurs the expression, terms vanish in the Euclidean limit.

R The second class of divergences exist in both the Euclid-

A= N2V a9, lUR(no)|? j” dn’ f d*p ean and the generat-vacua. These divergences depend

= @ 643 ,73 - plﬁ— IZ| logarithmically on the conformal time and can, at least in the
massless conformally coupled case where the calculation
X[(n;+ 1)(ng+ 1)nS_g—nEn§(nS_g+ 1)] simplifies, be removed by a constant mass counterterm. It is

important to establish the renormalization of this type of di-

X sin[[p+k—|p—K/1(7—5")]+--, (6.2)  vergence not only to show that the evolution of the number

operator is finite for an interacting scalar field in the Euclid-
ean vacuum, but also in the-case. If we wish to consider a
We would like to thank Dan Boyanovsky for suggesting this “truncated a-vacuum,” one which is cut off at some high
kinetic interpretation. energy scale such as the Planck mgk®, we thereby re-
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move the linear divergence of E(#.43), but the logarithmic divergence is still presentdh and.Ag. In this appendix, we
demonstrate how to renormalize this divergence.
In the massless conformally coupled case, the loop integral @wercuum propagators of E¢4.32) yields

e ik(m—m2) ea"'a’* glk(71—72)

a K 2 2
Lk,v=1/2( N1,M2) =~ 7Na( 7172) P

eeelk(m+m) 1 ga® g=ik(71+72)

i 4 2r pa a*
+7Na(7717]2) [e“—e" ]

71+ 72
LT nd - ik 2a* o—ik
“x € N, 7172 sinkn,[e"72—e™* e 172]
T e : ik 2a.2ik
+?e N, 711, Sinkp,[e™ 71— e %@ ]
2 sink( 71— 7,)  SINK( 71+ 72)
(A=K N ()Y — Ty ST (A1)
k 71~ 72 71+ 72

The final term is the linearly divergent term. Among the remaining terms, only the first produces any logarithmic divergence
when integrated over the conformal time. In the case of either self-energy contributioi@. &dj.or Eq.(4.32), we integrate

7, from 74 to 74 (71— 7 for the A, graph and encounter a singularity from the{(— 7,) denominator of imaginary part of

the first term in Eq(Al),

N i " cosk( 71— 17,)
Li e 71, 72) = = 5 (L4 ING () ——————+ . (A2)
M= 72
Inserting this result in the self-energy contributions yields
A2V . 7 dy’
Aj=i—7 7=—(1+e" " )NG UL () |? f —————cosk(7—7')
koy" 16m ' (1=7')
X{(1+ea+a*) COSk( n— 77!)_ (eaeik(7]+ 1;’)+ea*e7ik(77+ 7]'))_ ikn(eaeik(n+ n')_ea*efik(nJr 7]'))}
A2 w0 UE(m)? (7 dy’
~ o (e NG, / — | J - 7 —cosk(7—7")
n 32m 7o nn' (n—1n")
X{(1+ea+a*) COSk(7]_ 77/)_(eozeik(n-*— 7;/)+ea*e—ik(77+ 77'))}+ L (A3)
and
A2V * 7dny (mdn, cosk( 71— 72)
Ap=— 1+e*t ¥ )N*D )f f
0 WW( INGDap(7 N B (K e—
X sink( 7.~ 71)[(1+€%" ") cosk( 7, — 17,) — ekt 72) —ga* @~ k(mpt 7)1 .. . (A4)
|
In both of these equations, the ellipses indicate terms which 75
do not diverge logarithmically in the conformal time. r=1-—, (AB)
Both Eq.(A3) and Eq.(A4) contain divergent integrals of n
the form Eq. (A5) becomes
fﬁl e2472d 5, m 29724y, @97 [1-nglyy @ 219MmIdr
—, (A5) —m) r—1)r
70 772( N1~ 7]2) 70 7]2( 7 772) Ui 0 ( ) (A7)

whereq is k, 0, or —k. Changing to a dimensionless vari- We can regularize this integral by inserting a factor din
able, the integrand and then extract the poleeasO,

124012-14



THE FATE OF THE«-VACUUM PHYSICAL REVIEW D 68, 124012 (2003

1=nglny @ 2Amrpe= gy 1 and
f — = — — +finite. (A8)
0 r—1 € 2)\2 \V/ 5
— _ a+a*
Thus Ag 7 1672 E(1+ e INZDan(7)

2iqy 2iqy 7 dny @ a o @
n ey, el L X | = Im{UE(n) UE* (n) U () UE* ()}
+finite. (A9) 7
o M2( 11— 172) 7 € 7o 1

Applying this regularization to the self-energy graphs e (ALD)

gives In deriving Eq.(A11) we have used the fact that the operator
N2 Dap(7) is symmetric iny, and 7, . Both poles are removed
A=— 62 —(1+e“+“*)Ni[|UE( 770)|2,;7]|Ug( 7|? _by the appropriate mass counterterm graghandC, given
7 Lom € in Eqg. (4.29 and Eq.(4.33, respectively, when
Mo € 1672 @
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