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Invisible axion in a Randall-Sundrum universe

Hael Collins* and R. Holman†

Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
~Received 11 October 2002; published 15 May 2003!

We study the problem of integrating an invisible axion into the Randall-Sundrum scenario as an example of
how to generate new energy scales between the extremes of the Planck mass and the electroweak scale. In this
scenario, the axion corresponds to the phase of a complex bulk scalar field. We show how to generate an
intermediate energy scale by including a third brane in the scenario. We discuss the stabilization of this brane
in detail to demonstrate that no additional fine tunings arise.
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I. INTRODUCTION

One of the features which the Randall-Sundrum scen
@1# shares with other solutions to the hierarchy problem
that it assumes a desert between the scale of electrow
physics and the scale of gravity. Although new phenomen
strong gravity and bulk Kaluza Klein modes—appear abo
the electroweak scale, all the physics in this scenario ca
expressed in terms of these two scales. Such a pictur
usually adequate since we have no direct evidence of p
nomena between these energies. Yet in some cases we
wish to introduce some new physics whose dynamics oc
at an intermediate scale. The difficulty in the Randa
Sundrum brane world is to understand how a scale can n
rally arise, surviving in the low energy theory, that is n
either of these two natural extremes.

A specific instance of where such an intermediate sca
needed occurs in the invisible axion solution to the stro
CP problem @2#. The vacuum structure of QCD combine
with the CP violation in the weak interactions permits a
interaction of the form

ū
as

8p
Tr@emnlrFmnFlr# ~1.1!

whereFmn is the QCD field strength. This interaction vio
latesP andCP and is highly constrained by measurements
the neutron dipole moment which requireū<1029. As a free
parameter,ū must thus be finely tuned for an acceptab
theory. Peccei and Quinn@3# showed that ifū is promoted to
a dynamical fielda(xm), which is the Goldstone boson a
sociated with a spontaneously broken globalU(1)PQ symme-
try, thenū is dynamically driven to zero. Although this field
the axion, is a Goldstone mode, it does acquire a mass o
orderLQCD

2 / f , wheref is scale at which theU(1)PQ breaking
occurs. Anf of the order of the electroweak scale produc
too massive an axion for experimental constraints.

An acceptable axion mass does occur when theU(1)PQ
breaks at some high scalef @TeV. From astrophysical ob
servations, this scale should lie within the interval@4,5#
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1010 GeV& f &1013 GeV. ~1.2!

Since the invisible axion models do not address the hierar
problem, they do not attempt to explain whether such a sc
can arise naturally.

In the Randall-Sundrum scenario, the only natural sca
are the bulk Planck mass,M5, and the AdS curvature,k.
Other, exponentially smaller scales do arise when the phy
responsible for them is confined to a region at some dista
from the UV brane. Although the mass scales for the fie
confined to the IR brane are also of the orderM5, when the
fields there are rescaled to remove redshift factors introdu
by the induced metric on the brane, the apparent mass sc
on the IR brane can be naturally of the order of the el
troweak scale. Goldberger and Wise@6# showed that the po-
sition of the IR brane relative to the UV brane can
stabilized—and thus the electroweak-gravity hierarchy
without finely tuning the parameters of the stabilizati
mechanism. The observed Planck mass in low energy,
dimensional effective theory, determined byM4

2'M5
3/k, re-

mains large.
In this article we shall use the invisible axion as a ca

study of how to introduce new intermediate scales into
Randall-Sundrum scenario. For this purpose it provides
ideal subject—the scalef is experimentally constrained t
not be that associated with either of the branes. These
straints arise, moreover, from low energy physics with
spect to the electroweak scale so that bulk effects do
allow us to modify these bounds as in scenarios with la
extra dimensions@7#. We shall see that adding a further bra
in the bulk produces an experimentally reasonable value
f without any new excessive fine tunings.

Section II discusses the origin of the scalef associated
with the breaking ofU(1)PQ when the axion is the phase o
a complex bulk scalar field. Section III discusses how
scale f arises when a third brane is added to the bulk a
analyzes the problem of stabilizing all the branes with
single real scalar field. In Sec. IV we show that it is mo
difficult to generate an acceptable value forf using a bulk
potential for the complex field containing the axion. Secti
V concludes.

II. THE INVISIBLE AXION AS A BULK FIELD

The action for the original Randall-Sundrum model co
tains an Einstein-Hilbert term and cosmological constant
©2003 The American Physical Society04-1
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the bulk as well as tension terms for the branes

SRS5M5
3E d4xdyA2g@22L1R#

1M5
3E

UV
d4xA2h0@22s014K0#

1M5
3E

IR
d4xA2h1@22s114K11M5

23Lsm#.

~2.1!

Hereh0,1 andK0,1 are the determinant of the induced met
and the trace of the extrinsic curvature on the UV and
branes. In terms of the AdS curvaturek, the cosmological
constant isL526k2 and the brane tensions should bes0
52s156k. Lsm represents the standard model Lagrangi
The UV and IR branes are located aty50 andy5Dy, re-
spectively.

To solve the strongCP problem in the low energy theory
we introduce a globalU(1)PQ symmetry under which the
brane quark and Higgs fields transform non-trivially@2#.
Since the scale of Peccei-Quinn symmetry breaking does
lie near the scales associated with either brane, it is natur
attempt to break this symmetry through bulk dynami
Thus, the axion will correspond to the phase of a bulk co
plex scalar field,

s5
r

A2
eia. ~2.2!

The dynamics of this field will be determined by
U(1)PQ-symmetric potential:

Ss5E d4xdyA2g@2¹as†¹as2V~s†s!#

1E
UV

d4xA2h0V0~s†s!

1E
IR

d4xA2h1V1~s†s!. ~2.3!

Here, as in Goldberger and Wise@6#, the potentials on the
branes will be used to fix the value of the fieldr on the UV
and IR branes to be, respectively,r0M5

3/2 andr1M5
3/2.

The form of theU(1)PQ symmetry breaking due to th
bulk potentialV(r) is quite different from the invisible axion
solution in 311 dimensions. A vacuum solution in whic
r5 f for the bulk theory would necessarily require some fi
tuning of the bulk potential to obtain a realisticf. Instead,r
can have some non-trivial dependence on the extra dim
sion which also breaks theU(1)PQ. In going to the low
energy effective theory, integrating out the bulk fieldr will
induce a scalef for the axion which plays the same role
the symmetry breaking scale in the 4d invisible axion mo
els.

The field equations for the components ofs are
10500
.

ot
to
.
-

n-

-

¹2a1
2

r
¹ar¹aa50

¹2r2
dV

dr
2r¹aa¹aa50. ~2.4!

The important dynamics of the axion occurs at energies w
below the TeV scale, beyond which bulk effects become
portant. In this low energy regime, we shall neglect t
higher-order Kaluza-Klein modes of the axion which, since
is a Goldstone mode, will have a massless mode which
mains in the effective theory. Thus we shall consider only
lowest mode in the Kaluza-Klein tower,a→a(xm). This
situation differs greatly from a bulk axion in models wit
large, flat extra dimensions where the Kaluza-Klein modes
the axion are of the order of the inverse compactificat
radius and are important in the low energy (!TeV) theory
@7#. The field r is not protected by any symmetry and i
vacuum state is determined by the bulk potentialV(r) so we
shall neglect anyxm-dependent fluctuations about th
vacuum configuration,r5r(y), as small in the effective
theory,

r924kr8'
dV

dr
, ]m]ma'0. ~2.5!

The axion from this perspective becomes a massless
while the scalar fieldr has its dynamics set by the scale
the bulk physics. At energies below a TeV, we can integr
out r(y) to obtain an effective description of the axion d
namics,

Ss5E d4xF2
1

2S E
0

Dy

dy 2e22kyr2~y! D ]ma]maG
5E d4xF2

1

2
f 2]ma]ma1•••G , ~2.6!

where we have defined

f 2[E
0

Dy

dy 2e22kyr2~y! ~2.7!

which sets the scale associated with the axion by rescal

a~xm!→ a~xm!

f
. ~2.8!

After this rescaling, the axion has the proper dimensions
a scalar field in the 4d effective theory.

The remaining components needed to implement a s
tion to the strongCP problem closely resemble those foun
in standard invisible axion models. Typically such mode
introduce heavy quarks which carryU(1)PQ charge and
couple to s—Kim-Shifman-Vainshtein-Zakharov~KSVZ!
axions @8#—or an extra Higgs doublet is added whic
couples to s—Dine-Fischler-Srednicki-Zhitnitsky~DFSZ!
axions @9#. To obtain the latter model within a Randal
4-2
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Sundrum scenario, we add an interaction between a pa
brane Higgs doubletsF1 andF2 and the bulk complex field
s:

Sint5E
IR

d4xA2h1 @kM5
21e i j F1

i F2
j
„s†~Dy!…21H.c.#.

~2.9!

Here we have extracted a factor of the Planck mass so thk
is a dimensionless coupling. Using that on the IR bra
s(Dy)5(1/A2)r1M5

3/2eia, and rescaling the axion using E
~2.8! and the Higgs fields byF1,2→ekDyF1,2 so that they
have canonically normalized kinetic terms, the leading
havior from Eq.~2.9! in the low energy limit is

Sint5E d4x@keffe i j F1
i F2

j e22ia/ f1H.c.#, ~2.10!

where

keff[
1

2
kr1

2~e2kDyM5!2;O~TeV2!. ~2.11!

The standard model fields confined to the IR brane a
haveU(1)PQ charges which we shall choose to be1 1

2 for
the right-handed fermions and2 1

2 for the left-handedSU(2)
doublet fermions. With these assignments, the Higgs fie
haveU(1)PQ charges11 so that Eq.~2.10! is an invariant
interaction. The fact that the Higgs fields transform no
trivially under U(1)PQ allows some of their degrees of free
dom to mix with the massless mode in the effective the
that arises when we integrate out the extra dimension~2.6!.
At this point the theory is essentially indistinguishable fro
the 4d invisible axion model.

III. AN INTERMEDIATE BRANE

The energy scale associated with the standard m
fields remains naturally light since they are confined to
IR brane at which the redshift suppresses the strength gra
by an exponential factor. Similarly, the introduction of a
other brane, at some intermediate distance in the bulk
,ya,Dy, will produce a new energy scalee2kyaM4. A
simple mechanism for achieving a reasonable value for
axion scale occurs when the bulk complex scalar field is f
with a mass ofmr . If the brane potentials mainly act to forc
r to assume natural values on the intermediate and
branes,r(ya)5raM5

3/2 and r(Dy)5r1M5
3/2, respectively,

with ra ,r1;O(1), and tovanish on the UV brane,r(0)
50, then integrating over the bulk yields a scale

f

M4
'

A2~21mr
2k22!1/4

~31mr
2k22!1/2

rae2kya. ~3.1!

Since we have assumed that the brane potentials in Eq.~2.3!
areU(1)PQ symmetric, as long as they are analytic functio
of r, r50 will be an extremum on the branes so we do n
need to fine tuner(0)50 to be a minimum.
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To generate the scale for the axion, the relative positi
of all three branes must be stabilized. In this section we s
show how the introduction of asingle real Goldberger-Wise
@6# field stabilizesboth radion degrees of freedom that co
respond to the two independent distances between pair
branes. For simplicity we shall neglect the effect of the bu
complex scalarr when analyzing the brane stabilization.

Consider a bulk space-time in which the UV and
branes reside as usual at the fixed points of the orbifoldy
50 and y5Dy, respectively, while an intermediate bran
partitions the bulk into two regions with cosmological co
stants L0526k0

2 (0<y<ya) and L1526k1
2 (ya<y

<Dy). Matching the induced metric on both sides of t
axion brane, the bulk metric can be written in the form

ds25e22k0yhmndxmdxn1dy2 ~3.2!

for 0<y<ya and

ds25e22k1ye22(k02k1)yahmndxmdxn1dy2 ~3.3!

for ya<y<Dy. The Israel jump conditions across the bran
require the UV, IR and axion branes to have tensions, res
tively, of

s056k0 , s1526k1 , sa53~k02k1!. ~3.4!

Note that when the cosmological constants are equal,k0
5k15k, the axion brane becomes a tensionless ‘‘prob
brane. For simplicity, we shall consider this case in the f
lowing analysis.

Equation~3.4! summarizes the three fine tunings nece
sary for this model. One of these fine tunings is equivalen
the vanishing of the cosmological constant in the low ene
effective theory. As in the Randall-Sundrum scenario,
shall not attempt to resolve this fine tuning. In a scena
with a further extra dimension, this vanishing can be redu
to the tuning of the initial conditions rather than a tuning
the parameters in the gravitational action@10#.

The remaining two fine tunings in Eq.~3.4! correspond to
tuning the two potentials for the positions of the IR a
axion brane, relative to the UV brane, to be flat. The int
duction of a bulk scalar produces an effective potent
Veff(ya ,Dy), which breaks both of the symmetries asso
ated with arbitrarily changingya andDy.

Let us examine a single massive bulk scalar field,

Sf5M5
3E d5x A2g F2

1

2
¹af¹af2

1

2
m2f2G ~3.5!

with a massm5kAn224; we also definen521e. Note
that we have extracted a factor ofM5

3 so thatf(y) is dimen-
sionless. As in the standard Goldberger-Wise mechanism
assume that the actions on the three branes,
4-3
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Sf
brane5M5

3E
y50

d4xA2h@2l0~f22v0
2!2#

1M5
3E

y5ya

d4xA2h@2la~f22va
2!2#

1M5
3E

y5Dy
d4xA2h@2l1~f22v1

2!2# ~3.6!

essentially act to fix the value of the scalar field to bev0 , va
andv1 on the UV, axion and IR branes, respectively.h rep-
resents the determinant of the induced metric on the ap
priate brane.

The scalar field satisfies a Klein-Gordon equation in
bulk and its solution in each of the two bulk regions is

f~y!5H f0~y! for 0<y<ya,

f1~y! for ya<y<Dy,
~3.7!

where

f0~y!52
v0e2(n22)kya2va

12e22nkya
e(n12)k(y2ya)

1
v02vae2(n12)kya

12e22nkya
e2(n22)ky

f1~y!52
vae2(n22)k(Dy2ya)2v1

12e22nk(Dy2ya)
e(n12)k(y2Dy)

1
va2v1e2(n12)k(Dy2ya)

12e22nk(Dy2ya)
e2(n22)k(y2ya).

~3.8!

Integrating the scalar field action over the extra dimens
produces an effective potential forya andDy,

Veff~ya ,Dy!5M5
3E dye24ky @¹af¹af1m2f2#,

~3.9!

which becomes, in terms ofza[e2kya andz1[e2kDy,

Veff~za ,z1!

kM5
3

5
~v0za

n222va!2

12za
2n

za
4~n12!

1
~v02vaza

n12!2

12za
2n

~n22!

1
@va~z1 /za!n222v1#2

12~z1 /za!2n
z1

4~n12!

1
@va2v1~z1 /za!n12#2

12~z1 /za!2n
za

4~n22!.

~3.10!
10500
o-

e

n

If this potential is to stabilize both of the radion paramete
thenza andza are set by

]Veff

]Dy
52kz1

]Veff

]z1
50

]Veff

]ya
52kza

]Veff

]za
50. ~3.11!

These first partial derivatives are

za

kM5
3

]Veff

]za
5 2

z1

kM5
3

]Veff

]z1
1

2za
4

12za
2n

3H ~n224!za
n22[v0

2za
n2222v0va1va

2za
n12]

12~n12!@v0za
n222va#2

1n~n12!za
2n

@v0za
n222va#2

12za
2n

1n~n22!za
2~n22!

@v02vaza
n12#2

12za
2n J

1
4za

4

12~z1/za!2n

3H ~n12!S z1

za
D 4S vaFz1

za
Gn22

2v1D 2

1~n22!S va2v1Fz1

za
Gn12D 2J ~3.12!

and

z1

]Veff

]z1
5

2z1
4

12~z1 /za!2n

3H ~n224!Fz1

za
Gn22S va

2Fz1

za
Gn22

22vav1D
1~n224!v1

2Fz1

za
G2n

12~n12!S vaFz1

za
Gn22

2v1D 2

1n~n22!Fz1

za
G2~n22!@va2v1~z1 /za!n12#2

12~z1 /za!2n

1n~n12!Fz1

za
G2n@va~z1 /za!n222v1#2

12~z1 /za!2n J .

~3.13!

Both za andz1 are exponentially small so higher powers
these factors in Eqs.~3.12! and ~3.13! contribute negligibly.
The structure of the matrix of second derivatives is such t
as long as the intermediate brane is not too close to the
brane, one eigenvalue will be of the orderza

4 while the other
4-4



n
e
e
he

b

t

a

o

h
rg
he

-

te
fine
s-
be

for
. A
ss
his

ter-
ass

te

es

at

he

i-

e

r-

id
l to
ow

for
this

, if

INVISIBLE AXION IN A RANDALL-SUNDRUM UNIVERSE PHYSICAL REVIEW D 67, 105004 ~2003!
will be of the orderz1
4 . This structure breaks down whe

za
3;z1 in which case the smaller eigenvalue receives corr

tions of the orderza
12;z1

4 . For the scale required for th
axion, the intermediate brane will be sufficiently far from t
UV brane that we are well within thez1@za

3 regime. Retain-
ing terms up to orderz1

4 , we have

za

kM5
3

]Veff

]za
54~21e!za

4@~21e!v0
2za

2e2~41e!v0vaza
e12va

2#

24e~21e!z1
4vaFz1

za
G eS vaFz1

za
G e

2v1D
1O~za

8 ,z1
8!,

z1

kM5
3

]Veff

]z1
54z1

4S ~21e!2va
2Fz1

za
G2e

2~21e!~41e!vav1Fz1

za
G e

1~41e!v1
2D

1O~z1
8!. ~3.14!

The second equation determines the equilibrium distance
tween the intermediate and IR branes,

Fz1

za
G e

5
1

2~21e!

v1

va
@~41e!1Ae~41e!#, ~3.15!

while the first equation, after using Eq.~3.15!, determines the
distance between the intermediate and UV branes,

za
e5

va

v0
S 11

Ae~41e!

~21e!2 Fz1

za
G4 v1

2

va
2D . ~3.16!

In Eqs.~3.15! and~3.16! we have implicitly chosen the roo
which corresponds to a minimum in both theza and z1 di-
rections. At these extrema, the second partial derivatives
to leading order ine and in the small exponentials,

]2Veff

]ya
2

58e2va
2M4

2e24kya

]2Veff

]Dy2
516e3/2v1

2M4
2e24kDy ~3.17!

]2Veff

]ya]Dy
5216e3/2v1

2M4
2e24kDy.

The eigenvalues of this matrix of second derivatives are b
positive,

8e2va
2M4

2e24kya and 16e3/2v1
2M4

2e24kDy, ~3.18!

so the relative positions of the branes are stable.
The bulk complex scalar which contains the axion mig

disrupt the stabilization of the branes if it produces too la
a contribution to the total effective potential. However, t
10500
c-

e-

re,

th

t
e

contribution from the complex field will be negligible com
pared to that arising from integrating out the fieldf as long
asv0 ,va ,v1@ra ,r1.

Multiple branes

In the preceding example with a single intermedia
brane, we observed that for each brane we have one
tuning. Aside from the one fine tuning for the effective co
mological constant at low energies, these fine tunings can
interpreted as requiring the potentials for the radions—
the relative separations among the branes—to vanish
single bulk scalar field was sufficient to break the flatne
with respect to both independent interbrane distances. T
technique can be extended to scenarios with multiple in
mediate branes which could then have several large m
scales appearing in the low energy theory.

As an example, consider a theory with two intermedia
branes at positionsy5ya andy5yb . Including a free mas-
sive scalar field in the bulk with potentials on these bran
such thatf(ya)5va andf(yb)5vb but otherwise identical
to the case above, we find that the branes are stabilized

kya5
1

e
lnFv0

va
G , kyb5

1

e
lnFv0

vb
G ~3.19!

and

kDy52
1

e
lnS 1

2

1

21e

v1

v0
@41e1Ae~41e!# D ~3.20!

to leading order in powers of the small exponentials. T
matrix of second derivatives forya , yb and Dy, given by
Eqs. ~3.19! and ~3.20!, has eigenvalues which are all pos
tive,

la'8e2va
2M4

2e24kya

lb'8e2vb
2M4

2e24kyb ~3.21!

l1'16e3/2v1
2M4

2e24kDy,

to leading order ine. In deriving Eq. ~3.21! we have as-
sumed that the branes are sufficiently separated,e2kyb

@e23kya ande2kDy@e23kyb, for the eigenvalues to assum
this form.

IV. BULK POTENTIALS

While we can arrange for an invisible axion with the co
rect symmetry breaking scalef without any unnatural con-
straints on the theory, it becomes more difficult to avo
some fine tuning when we attempt to use a bulk potentia
produce this behavior. In this section we shall determine h
carefully we need to tune the form of simple potentials
the bulk complex field to produce a reasonable value for
scale.

As we saw for the inclusion of an intermediate brane
r!1 until some intermediate positionya , then the warping
factor from the bulk metric yieldsf ;e2kyaM4. We can ob-
4-5
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tain some intuition as to the necessary form for the b
potential by noting that the field equation forr,

r924kr85
dV

dr
, ~4.1!

is that of a particle rolling in the inverted potential,
2V(r), under the influence of anegativefriction term. If the
particle starts atr50 with a small initial velocity, it tends to
accelerate. Thus, in regions where the potential is appr
mately constant, its value will be exponentially larger afte
finite interval or, conversely, throughout most of the interv
r(y) will be exponentially small. This evolution should no
occur throughout the entire bulk since then the integral~2.7!
would then only produce anf ;e2kDyM4;TeV. If V(r) de-
creases substantially afterr has become sufficiently large
this change will act to dissipate the ‘‘kinetic energy’’ pro
duced by the friction term andr will grow more slowly so
thatr is not exponentially weighted toward that latter end
this stage of its evolution in the bulk. After this dissipativ
stage, we could follow it with another region in whichV(r)
is approximately flat—as long asr does not grow exponen
tially larger than its values during the prior stage before
reaches the IR brane, the exponential factor in Eq.~2.7! en-
sures that the integral will be dominated by intermediate v
ues ofy.

A. A free massive bulk field

The simplest potential is a mass term for the bulk sca
From the preceding arguments, a positive mass squared
will have the effect of accelerating the growth of the fie
already produced by the friction term as we move from
UV to the IR brane. Although it might seem that a negat
mass term could slow the effects of the friction term, w
shall see that this case also does not produce an accep
value for f without some fine tuning. Since the field equ
tions for this potential can be solved exactly, we present b
cases.

Consider a generalized mass term, to allow for eithe
stable or unstable extremum atr50,

V~r!5
1

2
~m24!k2r2, ~4.2!

wherem is a dimensionless parameter. Whenm.0, the so-
lution is

r~y!5r1M5
3/2 e2ky

e2kDy

sinh~Amky!

sinh~AmkDy!
~4.3!

while for m,0,

r~y!5r1M5
3/2 e2ky

e2kDy

sin~A2mky!

sin~A2mkDy!
. ~4.4!

Here we have imposed the boundary conditionsr(0)50 and
r(Dy)5r1. For m.0, the scalef is always of the order
10500
k
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rm

e

ble

th

a

f /M4;r1e2kDy ~4.5!

which is too small forr1 of a natural size,O(1). In fact r1
should be somewhat small if the presence of the scalar fi
is not to distort the background AdS5 geometry. Form,0
the zeros of the denominator can generate much larger sc
than ~4.5!; whenA2mkDy5np2d (n51,2,3, . . . ),

f /M4;r1

A2m

A12m

e2kDy

d
, ~4.6!

but only if we finely tuned&1026.
Note that in either case, if we relax the requireme

r(0)5r050 thenr0 must itself be tuned to be of the orde
<1026. In this casem should also satisfym.1 since other-
wise the large negative mass squared favors an exponen
large value ofr(y) within the bulk so that we would findf
@M4.

B. A potential well

The reason that a mass term alone does not succeed is
the potential contains no feature which might allow a br
growth of r(y) which appears in the vicinity of 0,ya
,Dy but which is damped soon after so that the field
sumes anO(1) value at the IR brane.

To model this behavior with a potential which we ca
solve exactly, we shall study the following toy potential:

V~r~y!!55
V0 for r<ra

V0F12
r~y!2r~ya!

Dr G for ra<r<rb

0 for r>rb

~4.7!

where

Dr5rb2ra . ~4.8!

The parameters specifying this potential arera , rb andV0.
We next shall estimate how carefully the form of the pote
tial must be tuned to achieve an acceptable value forf.

Naively, Eq. ~4.7! resembles a portion of a double we
potential seen in the vicinity of the origin, as shown in Fig.
and we assume thatV(2r)5V(r). Note thatV(r) could

FIG. 1. We shall study the profile of a bulk fieldr whose po-
tential is given by the toy model shown by the solid line. It can
regarded as a crude model for 0<r<r1 of a quartic, double-well
potential shown by the dashed line.
4-6
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grow again for larger values ofr, but as long as this growth
occurs for valuesr(y).r1, it will not affect our derivation.
Note also that we are implicitly assuming thatr(y) is a
monotonically increasing function ofy, which occurs pro-
vided the well is not so deep that all the ‘‘kinetic energy’’
dissipated and the particle rolls back towardr50. It is also
important thatr(0)50 at the UV brane, which as in th
intermediate brane case can be arranged without any a
tional fine tuning, since it is difficult for any natural potenti
to suppress it quickly enough to prevent the smally region
from dominating Eq.~2.7!. We shall assume hereafter th
r050 andr1'O(1).

Let us define positionsya,yb such thatr(ya)5ra and
r(yb)5rb . The solution to Eq.~4.1! for this toy potential
with the boundary conditionsr(0)50 and r(Dy)5r1 is
then

r~y!5c~e4ky21! ~4.9!

for 0,y,ya ,

r~y!5c~e4ky21!2
1

16k2

V0

Dr
~e4k(y2ya)21!

1
1

4k

V0

Dr
~y2ya! ~4.10!

for ya,y,yb and

r~y!5c~e4ky21!2
1

16k2

V0

Dr
~e24kya2e24kyb!e4ky

1
1

4k

V0

Dr
~yb2ya! ~4.11!

for yb,y. For convenience we have defined the constantc to
be

c[
r1M5

3/2

e4kDy21
1

1

16k2

V0

Dr
~e24kya2e24kyb!

e4kDy

e4kDy21

2
1

4k

V0

Dr

yb2ya

e4kDy21
. ~4.12!

To learn whether the potential requires any fine tunings,
can reparametrize the slope of the potential in terms of
natural scales available,k, M5,

V0

Dr
[16k2M5

3/2a ~4.13!

wherea should be some constant of order one. To lead
order in powers of the exponential factors, the integral~2.7!
is then
10500
di-

e
e

g

f 2/M4
25

40

3
a2e22kya2

32

3
a2@113k~yb2ya!#e22kyb

2
8

3
a2e22k(yb2ya)e22kyb1

1

3
@r1

2116r1k

3~yb2ya!a2128k2~yb2ya!2a2#e22kDy

2
8

3
a@r124k~yb2ya!a#

3~12e22k(yb2ya)!e22k(Dy2yb)e22kDy1•••.

~4.14!

For e2kya@e2kyb@e2kDy we have

f

M4
'2A10

3
ae2kya. ~4.15!

The chief contribution to Eq.~2.7! comes from the region
y;ya .

We can now show that to achieve a realistic value forya
requires finely tuning the potential. In terms of the para
etersya ,yb of the solution we have

raM5
23/25a@12e24k(yb2ya)#1•••

rbM5
23/254ka~yb2ya!1e24k(Dy2yb)

3@r124ka~yb2ya!#1•••. ~4.16!

Note thatra , rb and a are the parameters specifying th
shape of the potential. The first line in Eq.~4.16! indicates
that we must tunea21raM5

23/2'1 to within a fractional
correction of the ordere24k(yb2ya). We can evade this fine
tuning if yb;ya ; however, then we must finely tune th
value ofrb to within an ordere24k(Dy2yb) correction. From
Eq. ~4.15! and Eq.~1.2!, 16&kya&23 and an electroweak
Planck hierarchy of 10216 requireskDy;37. Assumingyb
;ya yields then an exponentially small correction.

V. CONCLUSIONS

The original Randall-Sundrum scenario contains o
two, widely separated, energy scales associated, respect
with the bulk and the IR brane physics. Since these sc
could naturally be exponentially different, this model pr
vides an attractive alternative explanation of the hierarc
between the gravitational and electroweak physics. In
article we have shown that other, intermediate scales ca
incorporated into the Randall-Sundrum scenario, such as
needed for the invisible axion solution to the strongCP prob-
lem.

The basic requirement for generating a scale much lo
than the Planck mass from a bulk field is to find a mec
nism which excludes this field from the region near the U
brane. The introduction of an intermediate brane produ
this behavior. When the potential on the UV brane causes
field to vanish there, most of the contribution to the effecti
symmetry breaking scale comes from the region between
4-7
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intermediate and the IR brane. The position of the interm
diate brane then determines the scale needed by the invi
axion. In this scenario, theU(1)PQ symmetry breaking pro-
ceeds differently than in standard 311 picture since it re-
sults from the non-trivial profile of the bulk complex scal
field whose phase is the axion.

A single additional scalar field is needed to stabilize
two independent distances between the pairs of branes. F
a low energy perspective, this field produces an effec
potential which breaks the necessity to tune the potentials
the two radion parameters to be flat. This stabilization o
requires a very mild tuning to ensure that the complex sc
does not disrupt the mechanism. The resulting radions h
masses of the order of theU(1)PQ breaking scale and nea
the electroweak scale, respectively.

While the invisible axion is not the only solution to th
10500
-
ble

e
om
e
or
y
ar
ve

strongCP problem in extra dimensional scenarios—for e
ample, the QCD gauge fields could be promoted to b
fields@12,13#—it provides an intriguing example of a warpe
geometry with multiple scales exponentially below t
Planck mass. More generally, the existence of intermed
scales allows the possibility of a hidden sector which is na
rally suppressed by a large, but not-Planckian, mass. It wo
also be interesting to understand the origin of multiple m
scales from the perspective of the AdS/CFT corresponde
@11#.
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