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Invisible axion in a Randall-Sundrum universe
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We study the problem of integrating an invisible axion into the Randall-Sundrum scenario as an example of
how to generate new energy scales between the extremes of the Planck mass and the electroweak scale. In this
scenario, the axion corresponds to the phase of a complex bulk scalar field. We show how to generate an
intermediate energy scale by including a third brane in the scenario. We discuss the stabilization of this brane
in detail to demonstrate that no additional fine tunings arise.
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I. INTRODUCTION 10 Gev=f=10'3 GeV. (1.2

One of the features which the Randall-Sundrum scenarigince the invisible axion models do not address the hierarchy
[1] shares with other solutions to the hierarchy problem igProblem, they do not attempt to explain whether such a scale

that it assumes a desert between the scale of electroweﬁfi‘? arrllseRnatL(eral:I)g g o the onl | scal
physics and the scale of gravity. Although new phenomena— " the Randall-Sundrum scenario, the only natural scales

strong gravity and bulk Kaluza Klein modes—appear aboved® the bulk Planck mas#/s, and the AdS curvatures.
the electroweak scale, all the physics in this scenario can b@ther. exponentially smaller scales do arise when the physics
expressed in terms of these two scales. Such a picture esponsible for them is confined to a region at some distance
usually adequate since we have no direct evidence of phi[om the UV brane. Although the mass scales for the fields
fined to the IR brane are also of the orties, when the

nomena between these energies. Yet in some cases we m lds th led dshift f introduced
wish to introduce some new physics whose dynamics occurd€!ds there are rescaled to remove redshift factors introduce

at an intermediate scale. The difficulty in the Randall-PY the induced metric on the brane, the apparent mass scales

Sundrum brane world is to understand how a scale can nat@" the IR brane can be naturally of the order of the elec-
rally arise, surviving in the low energy theory, that is not 'oweak scale. Goldberger and Wigg showed that the po-
either of these two natural extremes. sition of the IR brane relative to the UV brane can be

A specific instance of where such an intermediate scale iSt@Pilized—and thus the electroweak-gravity hierarchy—
needed occurs in the invisible axion solution to the strongVithout finely tuning the parameters of the stabilization
CP problem[2]. The vacuum structure of QCD combined Mechanism. The observed Planck mass in low energy, four
with the CP violation in the weak interactions permits an dimensional effective theory, determined b ~M3/k, re-

interaction of the form mains large. o _
In this article we shall use the invisible axion as a case

study of how to introduce new intermediate scales into the

FrYEM] (1.)  Randall-Sundrum scenario. For this purpose it provides an
ideal subject—the scaléis experimentally constrained to
whereF#” is the QCD field strength. This interaction vio- not be that associated with either of the branes. These con-
latesP andCP and is highly constrained by measurements ofStraints arise, moreover, from low energy physics with re-

. . — 9 spect to the electroweak scale so that bulk effects do not
the neutron dipole moment which requiie=10™". Asafree 50, ys to modify these bounds as in scenarios with large
parameter,§ must thus be finely tuned for an acceptableextra dimensiong7]. We shall see that adding a further brane
theory. Peccei and Quir{8] showed that if¢ is promoted to  in the bulk produces an experimentally reasonable value for
a dynamical fielda(x*), which is the Goldstone boson as- f without any new excessive fine tunings.
sociated with a spontaneously broken globgll )po symme- Section Il discusses the origin of the scélassociated
try, then 4 is dynamically driven to zero. Although this field, With the breaking olU(1)pq when the axion is the phase of
the axion, is a Goldstone mode, it does acquire a mass of tHé complex bulk scalar field. Section Il discusses how the
orderAéCD/f, wheref is scale at which th&) (1)pq breaking scalef arises when a third brane is added to the bulk and

occurs. Anf of the order of the electroweak scale produces2n@lyzes the problem of stabilizing all the branes with a
too massive an axion for experimental constraints. single real scalar field. In Sec. IV we show that it is more

An acceptable axion mass does occur whenuifé)pq difficult to generate an acceptable value fousing a bulk

breaks at some high scafe>TeV. From astrophysical ob- potential for the complex field containing the axion. Section
servations, this scale should lie within the interf)s] V concludes.

—arg
05 TI’[ €uunp

II. THE INVISIBLE AXION AS A BULK FIELD

*Electronic address: hael@cmuhep2.phys.cmu.edu The action for the original Randall-Sundrum model con-
Electronic address: holman@cmuhep2.phys.cmu.edu tains an Einstein-Hilbert term and cosmological constant for
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the bulk as well as tension terms for the branes 2
VZa+ ;vapvaa: 0

Srs= MéJ d*xdy—g[—2A +R] s
V2p— 5——pVaaVaa=O. (2.9
+M§f d9x gl — 2079+ 4K, ] P
o The important dynamics of the axion occurs at energies well
below the TeV scale, beyond which bulk effects become im-
+M§J d*xv—hy[ — 20+ 4K+ Mg 3L portant. In this low energy regime, we shall neglect the
R higher-order Kaluza-Klein modes of the axion which, since it
(2.2 is a Goldstone mode, will have a massless mode which re-
mains in the effective theory. Thus we shall consider only the
Hereh, ; andK ; are the determinant of the induced metric lowest mode in the Kaluza-Klein toweg—a(x*). This
and the trace of the extrinsic curvature on the UV and IRsituation differs greatly from a bulk axion in models with
branes. In terms of the AdS curvatuke the cosmological |arge, flat extra dimensions where the Kaluza-Klein modes of
constant isA = —6k? and the brane tensions should &g  the axion are of the order of the inverse compactification
=—o0,=6k. Ly, represents the standard model Lagrangianradius and are important in the low energgTeV) theory
The UV and IR branes are locatedyat0 andy=Ay, re-  [7]. The fieldp is not protected by any symmetry and its
spectively. vacuum state is determined by the bulk potentigh) so we
To solve the stron@P problem in the low energy theory, shall neglect anyx*“-dependent fluctuations about the

we introduce a global(1)pg symmetry under which the vacuum configurationp=p(y), as small in the effective
brane quark and Higgs fields transform non-trivial®]. theory,

Since the scale of Peccei-Quinn symmetry breaking does not

lie near the scales associated with either brane, it is natural to , , oV

attempt to break this symmetry through bulk dynamics. p"—4kp ~ S d,0*a~=0. (2.9
Thus, the axion will correspond to the phase of a bulk com-

plex scalar field, The axion from this perspective becomes a massless field

while the scalar fielgp has its dynamics set by the scale of

P the bulk physics. At energies below a TeV, we can integrate
o= Ee : 22 out p(y) to obtain an effective description of the axion dy-
namics,
The dynamics of this field will be determined by a 1/ ray
U(1)pgsymmetric potential: Sfr:f d?x| — 5( fo dy 2e~2Kp2(y) d,ad"a
SU=J d*xdyy—g[—V,o'V3—V(oT0)] 1
=f d*x —Efza#aa"aJr'-- , (2.6)
+ | d**y—hgVy(o”
fuv X oVl 0) where we have defined
Ay
+ IRd4X\/—h1V1(O'TO'). (2.3 f2= JO dy 2e~2Yp?(y) 2.7

Here, as in Goldberger and Wi$6], the potentials on the which sets the scale associated with the axion by rescaling
branes will be used to fix the value of the figicon the UV
and IR branes to be, respectivehyM 3 and p; M2, L alxk)
The form of theU(1)pg symmetry breaking due to the a(x*)—
bulk potentialV(p) is quite different from the invisible axion
solution in 3+1 dimensions. A vacuum solution in which After this rescaling, the axion has the proper dimensions for
p=T for the bulk theory would necessarily require some finea scalar field in the 4d effective theory.
tuning of the bulk potential to obtain a realisficinstead,p The remaining components needed to implement a solu-
can have some non-trivial dependence on the extra dimertion to the strongCP problem closely resemble those found
sion which also breaks th&(1)pg. In going to the low in standard invisible axion models. Typically such models
energy effective theory, integrating out the bulk figldwill introduce heavy quarks which carfy(1)pq charge and
induce a scalé for the axion which plays the same role as couple to o—Kim-Shifman-Vainshtein-Zakharo KSVZz)
the symmetry breaking scale in the 4d invisible axion mod-axions [8]—or an extra Higgs doublet is added which
els. couples to o—Dine-Fischler-Srednicki-Zhitnitsky(DFS2)
The field equations for the componentsmofare axions [9]. To obtain the latter model within a Randall-

(2.9
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Sundrum scenario, we add an interaction between a pair of To generate the scale for the axion, the relative positions
brane Higgs doublet®; and®, and the bulk complex field of all three branes must be stabilized. In this section we shall
fo show how the introduction of singlereal Goldberger-Wise
[6] field stabilizesboth radion degrees of freedom that cor-
_ —_ respond to the two independent distances between pairs of
Sint= LRd4X V=hy [«Msg 1‘EijCDIlq)lz(‘TT(AY))z“L H.c]. branes. For simplicity we shall neglect the effect of the bulk
(2.9  complex scalap when analyzing the brane stabilization.
Consider a bulk space-time in which the UV and IR
Here we have extracted a factor of the Planck mass sathat branes reside as usual at the fixed points of the orbifpld,
is a dimensionless coupling. Using that on the IR brane=0 andy=Ay, respectively, while an intermediate brane
a(Ay)= (1/\/—)p1|\/| 326 and rescaling the axion using Eq. partitions the bulk into two regions with cosmolog|cal con-
(2.8) and the Higgs fields byb, ,—~€**Yd, , so that they stants Ao=—6k5 (0<y=y,) and A;=—6ki (y.<y
have canonically normalized kinetic terms, the leading be=<Ay). Matching the induced metric on both sides of the

havior from Eq.(2.9) in the low energy limit is axion brane, the bulk metric can be written in the form
Sii= fd X[ Kkere; @ Phe 2@ +He], (210 ds’=e 2y, dxtdx"+dy> 32

where for 0O=sy<y, and
Keff= ;Kpf(e‘kAyM5)2~O(TeV2). (2.12) ds’=e e 2k kay dxdx’+dy? (3.3

The standard model fields confined to the IR brane alsdor y,<y<Ay. The Israel jump conditions across the branes
have U(1)pq charges which we shall choose to be; for  require the UV, IR and axion branes to have tensions, respec-
the right-handed fermions and3 for the left-hande® U(2) tively, of
doublet fermions. With these assignments, the Higgs fields
haveU(1)pq charges+1 so that Eq(2.10 is an invariant
interaction. The fact that the Higgs fields transform non-
trivially underU(1)pq allows some of their degrees of free-
dom to mix with the massless mode in the effective theoryNote that when the cosmological constants are ecdkl,

0'0=6k0, 0'1:_6k1, Ua:3(k0_k1). (34)

that arises when we integrate out the extra dimen&2o®). =k,;=k, the axion brane becomes a tensionless “probe”

At this point the theory is essentially indistinguishable frombrane. For simplicity, we shall consider this case in the fol-
the 4d invisible axion model. lowing analysis.

Equation(3.4) summarizes the three fine tunings neces-

lIl. AN INTERMEDIATE BRANE sary for this model. One of these fine tunings is equivalent to

the vanishing of the cosmological constant in the low energy

The energy scale associated with the standard modelffective theory. As in the Randall-Sundrum scenario, we
fields remains naturally light since they are confined to theshall not attempt to resolve this fine tuning. In a scenario
IR brane at which the redshift suppresses the strength gravityith a further extra dimension, this vanishing can be reduced
by an exponential factor. Similarly, the introduction of an-to the tuning of the initial conditions rather than a tuning of
other brane, at some intermediate distance in the bulk, ¢he parameters in the gravitational actidi)].
<ya<Ay, will produce a new energy scake ¥¥aM,. A The remaining two fine tunings in E¢3.4) correspond to
simple mechanism for achieving a reasonable vaIue for thﬁming the two potentials for the positions of the IR and
axion scale occurs when the bulk complex scalar field is fregixion brane, relative to the UV brane, to be flat. The intro-
with a mass ofn, . If the brane potentials mainly act to force duction of a bulk scalar produces an effective potential,
p to assume natural values on the intermediate and IR/ #(ya,Ay), which breaks both of the symmetries associ-
branes, p(ya) =paM$? and p(Ay)=p;M3?, respectively, ated with arbitrarily changing, andAy.

with p,,p1~O(1), and tovanish on the UV branep(0) Let us examine a single massive bulk scalar field,
=0, then integrating over the bulk yields a scale
2, —241/4 1 1
LN \/_(2+m k ) —kya. (31) S¢: ng d5X \/_g |:_ E a¢Va¢_ Emz(bz (35)

Ms  (3+mk 212 pat

Since we have assumed that the brane potentials ii2Z58).  with a massm=k./»”’—4; we also definev=2+¢. Note
areU(1)pqsymmetric, as long as they are analytic functionsthat we have extracted a factor M so thate(y) is dimen-

of p, p=0 will be an extremum on the branes so we do notsionless. As in the standard Goldberger-Wise mechanism, we
need to fine tung(0)=0 to be a minimum. assume that the actions on the three branes,
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If this potential is to stabilize both of the radion parameters,
thenz, andz, are set by

sy Mgf d*x=h[ = \o($?—v$)?]
y=0
+M§J dx/=h[—\a($?=0))?]
Y=VYa

+M§f d*x=h[—\y(¢?~v5)?] (3.6
y=Ay

AV IV off

Ay Az 0
IV et AV
= k=0, (3.1

These first partial derivatives are

essentially act to fix the value of the scalar field tove v,
andvq on the UV, axion and IR branes, respectivély.ep-

Zy &Veﬁ

2, Neg 270

resents the determinant of the induced metric on the appro-kMg 0z,

priate brane.
The scalar field satisfies a Klein-Gordon equation in the
bulk and its solution in each of the two bulk regions is

kM2 9z 122"

X4 (VP—4)zh [vizh 2= 2vuatvizht?

poly) forO=ys=y,, +2(v+2)[vezs *—val?
b(y)= o (37
$1(y) forys<ys<Ay, [vozl 2—v,]?
+v(v+ 2)25”—2,,
where 1-z,
v+2q2
—(r=2)kya_ 2(v-2)lV0 T VaZa 7]
Vo€ 2= Va (,1o)k(y— +v(v—2)z —_—
DoY) == e 8 1-22
(v+2)k 42;1
— - Y, 4+ -
Vg~ Uga€ aef(V72)ky 1_(Zl/Za)2V
1—e_2kaa
7 4 z; v—2 2
X (V+2) - Val == —U1
e~ (rm2KAY-YL) Za Za
bi(y)=—— L a(v+2)k(y=2y)
. 1— e 2vk(Ay-ya) 2,]7+2\2
+(v—2)|va—v, - (3.12
— e (P 2)K(AY-yy) a
Ya~ U1® e 2Ky and
1— e 2vk(Ay-ya)
4
(38) aveff: 221
. . . . . 921 1—(z12,)*”
Integrating the scalar field action over the extra dimension
produces an effective potential fgg, andAy, z,]"7? Lz "2
X4 (v2—4) - v 2 —2v01
Zs az,

Ver(Ya, Ay) = Méf dye Y [V,¢V3p+m?¢?],
(3.9

which becomes, in terms af,=e Ya andz;=e kY,

Vei(Za,21)  (voz8 2=v,)?
3 2 Z
kMg 1-z;

Av+2)

(U -0 ZV+2)2
L (v-2)
1-z

[Ua(zllza)yiz_vl]z

1—(24/2,)%"

Z}(v+2)

+(vP=4)v]

21 2v
Za
é V*Z_U 2

Za 1

212" P va—v1(21/2)" )2

z, 1—(2,/2,)?"

2”[va<z1/za>v—2—v1]2]

1—(z1/2,)%"

+2(v+2)(va

+v(v—2)

Z;

Zy

+v(v+2)

(3.13

Both z, andz; are exponentially small so higher powers of

[Ua_vl(zllza)v+2]2

Z(v—2).
1—(24/2,)%" alr=2)

(3.10

105004-4

these factors in Eq$3.12 and(3.13 contribute negligibly.

The structure of the matrix of second derivatives is such that
as long as the intermediate brane is not too close to the UV
brane, one eigenvalue will be of the orddrwhile the other
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will be of the orderz. This structure breaks down when contribution from the complex field will be negligible com-
z3~2, in which case the smaller eigenvalue receives correcpared to that arising from integrating out the fieddas long
tions of the orderzi’~z;. For the scale required for the 8SU0.Va V1> Pa.P1.

axion, the intermediate brane will be sufficiently far from the

UV brane that we are well within the;>z> regime. Retain- Multiple branes

i 4 . . . . .
ing terms up to order;, we have In the preceding example with a single intermediate
Py brane, we observed that for each brane we have one fine
Za eff:4(2+ 6)23[(2+ 6)v§2§6—(4+ €)vguazi+ ng] tuning. Aside from the one fine tuning for the effective cos-

kMg 9Z4 mological constant at low energies, these fine tunings can be
. . interpreted as requiring the potentials for the radions—for
—4e(2+e)z‘1‘va 2 (va 2 _vl) the relative separations among the branes—to vanish. A
Zy Zy single bulk scalar field was sufficient to break the flatness
O with respect to both independent inte_rbran_e distances: This
a»“1h technique can be extended to scenarios with multiple inter-
2¢ mediate branes which could then have several large mass
2 Nett_, 4 2 2| 21 scales a ing in the | th
— =474 (2+ )22 = ppearing in the low energy theory. . _
kMg dz; Z3 As an example, consider a theory with two intermediate
B branes at positiong=y, andy=y,. Including a free mas-
—(2+€)(4+ €)vav; o +(4+€)U§) sive scalar field in the bulk with potentials on these branes
Za such thatg(y,) =v, and ¢(y,) =v} but otherwise identical
+(’)(z§). (3.14 to the case above, we find that the branes are stabilized at
The second equation determines the equilibrium distance be- ky,=—In vo . ky,=-In vo (3.19
tween the intermediate and IR branes, a € Vb
Ak 1 o, and
Z_a —mv—a[(4+€)+\/6(4+6)], (315)

kAy:—%ln(l ! ﬂ[4—0—.5—1-\/6(4-!-:5)] (3.20

22+e Vo

while the first equation, after using E®.15), determines the

distance between the intermediate and UV branes, . . .
to leading order in powers of the small exponentials. The

e(dt o) [ 2.1402 matrix of second derivatives_, fora, vy, and _Ay, given by _
z§=ﬁ< 1+ M “ U_é ] (3.16 Egs. (3.19 and(3.20, has eigenvalues which are all posi-
Vo (2+¢€)? [Za] vy tive,
In Egs.(3.15 and(3.16 we have implicitly chosen the root )\amsezngie_‘lkya
which corresponds to a minimum in both thg and z; di-
rections. At these extrema, the second partial derivatives are, Ap~8e2iMie HY% (3.21)

to leading order ine and in the small exponentials,
) N~ 1672 IM7e Y,
9V o P

=8e%v2ZMje #Wa . . -
Jy> a4 to leading order ine. In deriving Eg.(3.2) we have as-
sumed that the branes are sufficiently separatsd
>e 3 ande k4Y>e 3%, for the eigenvalues to assume

2
(?A\/e;f: 1663/20§M4e—4kAy (3.17 this form.
Jay
2y IV. BULK POTENTIALS
0“Veg _
oAy~ 16€%%2MZe™ 4k, While we can arrange for an invisible axion with the cor-
a

rect symmetry breaking scafewithout any unnatural con-

The eigenvalues of this matrix of second derivatives are botftraints on the theory, it becomes more difficult to avoid

positive, some fine tuning when we attempt to use a bulk potential to
produce this behavior. In this section we shall determine how

8ezv§M§e*4'<Ya and 1&3’%§M§e*4“y, (3.18 carefully we need to tune the form of simple potentials for

the bulk complex field to produce a reasonable value for this

so the relative positions of the branes are stable. scale.

The bulk complex scalar which contains the axion might As we saw for the inclusion of an intermediate brane, if
disrupt the stabilization of the branes if it produces too largep<<1 until some intermediate positioy,, then the warping
a contribution to the total effective potential. However, thefactor from the bulk metric yield§~e*YaM,. We can ob-

105004-5
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tain some intuition as to the necessary form for the bulk Vip)
potential by noting that the field equation fpr Vv, o=
"—4kp'= v 4.1
P p = 5p! ( . ) //
-~ s
is that of a particle rolling in the inverted potential, 0 p o F;z p

—V(p), under the influence of @egativefriction term. If the

particle starts ap=0 with a small initial velocity, it tends to FIG. 1. We shall study the profile of a bulk fiep whose po-
accelerate. Thus, in regions where the potential is approxiential is given by the toy model shown by the solid line. It can be
mately constant, its value will be exponentially larger after aregarded as a crude model fosp<p; of a quartic, double-well
finite interval or, conversely, throughout most of the intervalpotential shown by the dashed line.

p(y) will be exponentially small. This evolution should not

occur throughout the entire bulk since then the inte¢2al) f/|\/|4~ple*kAy (4.5
would then only produce afr-e ¥AYM,~TeV. If V(p) de-

creases substantially after has become sufficiently large, which is too small forp; of a natural size(1). Infact p,

this change will act to dissipate the “kinetic energy” pro- should be somewhat small if the presence of the scalar field
duced by the friction term and will grow more slowly so is not to distort the background Ag$eometry. Foru<0
thatp is not exponentially weighted toward that latter end ofthe zeros of the denominator can generate much larger scales
this stage of its evolution in the bulk. After this dissipative than(4.5); when |~ ukAy=n7—48 (n=1,2,3...),

stage, we could follow it with another region in whit{p)

: . _ —kay

is approximately flat—as long asdoes not grow exponen- \/_,U« €

tially larger than its values during the prior stage before it fIMa~pa 1—p 0 (4.6
reaches the IR brane, the exponential factor in 2d7) en-

sures that the integral will be dominated by intermediate valyy only if we finely tunes<10"6.

ues ofy. Note that in either case, if we relax the requirement
p(0)=py=0 thenp, must itself be tuned to be of the order
A. A free massive bulk field <10 ©. In this caseu should also satisfy.> 1 since other-

The simplest potential is a mass term for the bulk scalarWise the large negative mass squared favors an exponentially

From the preceding arguments, a positive mass squared terfde value ofp(y) within the bulk so that we would find

will have the effect of accelerating the growth of the field >My.

already produced by the friction term as we move from the

UV to the IR brane. Although it might seem that a negative B. A potential well

mass term could slow the effects of the friction term, we The reason that a mass term alone does not succeed is that
shall see that this case also does not produce an acceptaiy potential contains no feature which might allow a brief
value for f without some fine tuning. Since the field equa- growth of p(y) which appears in the vicinity of €@y,

tions for this potential can be solved exactly, we present bot: Ay pyt which is damped soon after so that the field as-

cases. _ _ sumes arO(1) value at the IR brane.
Consider a generalized mass term, to allow for either a 15 model this behavior with a potential which we can
stable or unstable extremum @0, solve exactly, we shall study the following toy potential:
1
V(p)= 5 (n—2)k%p?, (4.2 Vo for p=pa
R V(p(y))= VO[“M forpa=p=rs
where u is a dimensionless parameter. Wher0, the so- p
lution is 0 for p=py
. 4.
(y)=p M2 e sinh(\/uky) 43 @7
PRIZPITS oy gint Vukay) ' where
while for £<0, Ap=pp=pa. (4.8
. The parameters specifying this potential ate p, andV,.
2ky . b 0
p(y)=pM¥? € SIn(yV— #ky) ) (4.4  We next shall estimate how carefully the form of the poten-
e sin(y/— ukAy) tial must be tuned to achieve an acceptable valud.for

Naively, Eq.(4.7) resembles a portion of a double well
Here we have imposed the boundary conditip(@)=0 and potential seen in the vicinity of the origin, as shown in Fig. 1,
p(Ay)=p,. For u>0, the scald is always of the order and we assume that(—p)=V(p). Note thatV(p) could

105004-6
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grow again for larger values gf, but as long as this growth
occurs for valuep(y)>p4, it will not affect our derivation.
Note also that we are implicitly assuming thaty) is a
monotonically increasing function of, which occurs pro-
vided the well is not so deep that all the “kinetic energy” is
dissipated and the particle rolls back toward 0. It is also
important thatp(0)=0 at the UV brane, which as in the
intermediate brane case can be arranged without any addi-
tional fine tuning, since it is difficult for any natural potential

40 32
f2/M§=§a2e‘2"ya— §a2[1+ 3k(yp—Ya)]e 2

8 1
-3 ale 2K(Yp—Ya) g 2kyp 4 §[P§ +16p,k

X(Yo—Ya) @— 1283(yp—Ya) 2a?]e™ 2k8Y

to suppress it quickly enough to prevent the snyalegion

from dominating Eq.(2.7). We shall assume hereafter that

po=0 andp;~0O(1).

Let us define positiony, <y} such thatp(y,)=p, and
p(Yp)=pp. The solution to Eq(4.1) for this toy potential
with the boundary conditiong(0)=0 and p(Ay)=p; is
then

p(y)=c(e*-1) (4.9
for 0<y<ys,,
1 V,
= 4Ky 1y Y radk(y—ya) —
ply)=c(e™=1)= 752 Ap(e 1)
1V,
K A_p(y_ya) (4.10
for y,<y<y, and
1V,
=c e4ky_1 _ - Y e’4kya—e’4kyb e4ky
1V,
(4.1)

K A_p(yb_Ya)

for y,<<y. For convenience we have defined the constadat
be

piME? 1 Vo et

= _ " (a—4kyy__ a—4kyy
T ey 16k2AP(e ¢ )e

AkAy 1

1 VO Yo~ Ya

~ K g AT (4.12

8
- §a[p1—4k(yb—ya)a]

X (1— e~ 2K0b~Ya)) e~ 2K(AY Yol 2KAY 4 ...

(4.19
For e ¥ase Kb e kAY e have
L, \/E K, 4.1
— JE— a
M, 3 ae” VYa, (4.15

The chief contribution to Eq(2.7) comes from the region
Y~VYa-

We can now show that to achieve a realistic valueyfor
requires finely tuning the potential. In terms of the param-
etersy,,Yp of the solution we have

pal\/l§3/2: a[l_e*4k(yb*ya)]+ R
PoMs 2= dKka(yy—ya) +e *y )

X[p1—4ka(yp,—Ya) ]+ ---. (4.19

Note thatp,, pp, and a are the parameters specifying the
shape of the potential. The first line in E@.16 indicates
that we must tunen *p,M; *?~1 to within a fractional
correction of the ordee™*0b~Ya), We can evade this fine
tuning if y,~vy,; however, then we must finely tune the
value of p, to within an ordere™ *<(4¥=¥v) correction. From
Eqg. (4.15 and Eq.(1.2), 16sky,=<23 and an electroweak-
Planck hierarchy of 10'® requireskAy~37. Assumingy,
~Y, yields then an exponentially small correction.

V. CONCLUSIONS

The original Randall-Sundrum scenario contains only
two, widely separated, energy scales associated, respectively,
with the bulk and the IR brane physics. Since these scales
could naturally be exponentially different, this model pro-
vides an attractive alternative explanation of the hierarchy
between the gravitational and electroweak physics. In this

To learn whether the potential requires any fine tunings, werticle we have shown that other, intermediate scales can be
can reparametrize the slope of the potential in terms of théncorporated into the Randall-Sundrum scenario, such as are

natural scales availabl&, Mg,

Y
=16k’M %

0
Ap (4.13

needed for the invisible axion solution to the strd®ig prob-
lem.

The basic requirement for generating a scale much lower
than the Planck mass from a bulk field is to find a mecha-
nism which excludes this field from the region near the UV
brane. The introduction of an intermediate brane produces

where o should be some constant of order one. To leadinghis behavior. When the potential on the UV brane causes the

order in powers of the exponential factors, the inte@eal)
is then

field to vanish there, most of the contribution to the effective
symmetry breaking scale comes from the region between the

105004-7
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intermediate and the IR brane. The position of the intermestrong CP problem in extra dimensional scenarios—for ex-
diate brane then determines the scale needed by the invisibéanple, the QCD gauge fields could be promoted to bulk
axion. In this scenario, thg(1)pq symmetry breaking pro- fields[12,13—it provides an intriguing example of a warped
ceeds differently than in standard+3 picture since it re- geometry with multiple scales exponentially below the
sults from the non-trivial profile of the bulk complex scalar pPlanck mass. More generally, the existence of intermediate
field whose phase is the axion. scales allows the possibility of a hidden sector which is natu-
A Single additional scalar field is needed to stabilize thera”y Suppressed by a |arge7 but no'[.F>|anc|(ian7 mass. It would
two independent distances between the pairs of branes. Frogiso be interesting to understand the origin of multiple mass

a low energy perspective, this field produces an effectivecales from the perspective of the AdS/CFT correspondence
potential which breaks the necessity to tune the potentials fqri 1],

the two radion parameters to be flat. This stabilization only
requires a very mild tuning to ensure that the complex scalar

does not disrupt the mechanism. The r-esulting radions have ACKNOWLEDGMENT
masses of the order of tHg(1)pq breaking scale and near
the electroweak scale, respectively. This work was supported in part by DOE grant DE-FG03-
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