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Randall-Sundrum | cosmology as brane dynamics in an AdS-Schwarzschild bulk

Hael Collins* R. Holman! and Matthew R. Martih
Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
(Received 18 March 2002; published 13 June 2002

We explore various facets of the cosmology of the Randall-Sundrum scenario with two branes by consid-
ering the dynamics of the branes moving in a bulk AdS-Schwarzschild geometry. This approach allows us to
understand both in more detail and from a different perspective the role of the stabilization of the hierarchy in
the brane cosmology, as well as to extend to the situation where the metric contains a horizon. In particular, we
explicitly determine how the Goldberger-Wise stabilization mechanism perturbs the background bulk geometry
to produce a realistic cosmology.
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I. INTRODUCTION from a different perspective. In particular, in this approach,
there isno radion mode in the bulk metric. The radion ap-
The cosmology of Randall-SundrufRS) [1,2] models is pears as the geodesic relative distance between the branes.
of great interest for a variety of reasons, not the least offhis naturally leads us to ask how the equation of motion for
which is that these models allow us to understand some longhe radion gets generated, and in particular, how the GW
standing problems of particle physics, most notably the hiermechanism gets implemented. There should also be some
archy problem of mass scales. differences between the so-called Gaussian normal coordi-
Kraus [3] (see in particulaf4—7] as well as[8,9]) has  nates used in most of the works on RS1 cosmology and this
made the interesting observation that, for the so-called RSihethod, since in the latter, the bulkgatic, at least to a first
models[2], the brane cosmology can be found by solving theapproximation; all the cosmological evolution occurs on the
Israel junction condition§10] for a domain wall moving in  branes. This approach also allows the role of the GW mecha-
an AdS-SchwarzschildAdSS bulk geometry, which, by nism in producing an acceptable cosmology to be seen in
Birkhoff’s theorem in five dimensions, is the unique spheri-more detail than for the effective action used in the Gaussian
cally symmetric solution to the bulk Einstein equations withnormal formulation. Finally, we can make contact with the
a bulk cosmological constarit. ideas of holography18] by placing a horizon in the bulk
While the RS2 alternative to compactification is ex- geometry and seeing how that influences the cosmology and
tremely interesting from many points of view, such as thestabilization mechanisms.
AdS/CFT (conformal field theory correspondencéll], it Section Il provides the setup for our calculation. We de-
could be argued that from a particle physics perspective RSdcribe the bulk geometry and use it to compute the geodesic
geometries[1] are more useful, allowing as they do for distance between the branes. Doing this, it becomes clear
solutions to the hierarchy problem. The cosmology of RSlthat there is an issue in how to define what we mean by the
geometries has been studied extensively in the literaturfierarchy of scales between the branes, which was the point
[12-14, and a number of interesting results have beerof the RS1 scenaripl]. We discuss this in some detail and
found. The main difference between RS1 and RS2 cosmolaargue that when the bulk geometry has a horizon, the inter-
gies is that the existence ofio branes(the TeV and Planck brane separation doest set the hierarchy, at least not in as
braneg in the RS1 case allows the interbrane separation t@irect a manner as when the horizon is absent.
become a dynamical degree of freedom, the so-cadldibn. In Sec. Il we solve the junction conditions and find the
Depending on whether or not the radion has been stabilizedosmology on the branes. We write down the bulk and
in some way, such as with the Goldberger-Wise mechanisrboundary actions, the equations of motion and the junction
(GW) [17] or in some other way, the cosmological conse-conditions, from which the cosmological equations on both
guences and even consistency of RS1 models can be quiteanes is derived. We find as [ih2,16], that if the radion is
different. not stabilized, there is a constraint between the energy den-
Our purpose in this work is to treat the cosmology of RS1sities on the branes leading to one of them being negative.
models using the Kraus approach. That is to say, we consider The cosmology observed on a brane depends solely on its
the two branes to be moving in an AdSS bulk geometry andanotion through the bulk and since the two branes evolve
ask once again what is happening to the intrinsic brane gandependently there is no reason to expect that for general
ometry as specified through the Israel conditions. There ardensities on the branes they should both move in such a way
(at least two reasons for doing this. One is that this will that the hierarchy is maintained. In Sec. IV we show how the
allow us to understand some of the previously known resultpresence of the Goldberger-Wise mechanism alters the pic-
ture. In addition to fixing the geodesic distance between the
branes, the GW scalar field introduces small time-dependent
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turbation to the AdS background. We then consider an AdSSymmetry of the bulk metric allows us to consider a geodesic
metric which contains a horizon and find that the leadingbetween these branes that only propagates intthad r
correction to the purely AdS cosmology is suppressed comdirections:

pared with the corresponding result with only one brane

[3,4]. X3(N)=(t(\),r(x),0,0,0, (2.9

Section V contains our conclusions. : ' .
where\ is the affine parameter on the geodesic and we take

A=0,1 to correspond to the positions of the UV and IR
IIl. RS1 IN AdSS COORDINATES brane, respectively.

Birkhoff's theorem in five dimensions tells us that the 1he geodesic equations read

most general spherically symmetric solution to the Einstein d dt
equations with a bulk cosmological constant is given by the _( u(r)—) =0
metric dA d\
2 d{ 1 dr\ 1ou/ 1 dr\?2 1gu/dt\?
,, dr 2452 — | — ]t — = === —|=—
ds’=—u(r)dt HTGR dxg, (2.) dhlu(r) dn) 2 ar lu(r) dn 2 ar\d\] -

(2.6

wherer is the bulk coordinatedEﬁ is the line element for | the sequel, we shall frequently take:0, i.e., we take the
the fixedr 3-spatial hypersurfaces, which are homogeneousixed r hypersurfaces to have flat 3-spatial sections. Note that
and isotropic, antk=0,* 1 is the 3-spatial curvature param- jn this case, the horizon is locatedrat= (!2)¥4.

eter. Writing the bulk cosmological constant As= -6/, The geodesic equations above have first integrals,
the metric coefficienti(r) is given by

dt IC
ok dh ur(x
U=y z+k=1z, (2.2 u(r(x))
r e
wherel is the AdS radius of curvature andis proportional T L2+&%u(r(\)). 2.7

to the mass of the black hole in Ad$9]. In the RS2 picture
this interpretation can be made exact since there arg/e have scaled all the dimensionful parameters by the AdS

asymptotic regions i; in RS1, the compactness in the ,qj,s of curvaturé so thatl ande are dimensionless.
direction prevents such a direct interpretation. However, for \ye can solve this set of equations and then impose the

nonzerop, the solutions have horizons mtry, where boundary conditions from Eq2.4). However, we can save
) some time by noting that the relevant distance is the one
rﬁ:%(_kJr K2+ 4u1?). 2.3 measured at theamebulk time on both branes. This means

that the geodesic we want is the one for whick 0. Inte-

. . . . grating thedr/d\ equation, we find
In the RS2 case there is an explicit coordinate transformation

[20,21] that maps the above space-time to the cosmological r2(A\)=r2cosh2e\ + 6), (2.9
metric for RS2 as written in Refl12].
with

A. Geodesic interbrane separation 2

2
The first question we need to ask is: where is the radion 9:C05h_1(?§), 2e+ 0= COSh_l(?%)- 2.9
mode? It certainly isot explicitly present in Eq(2.1), in n h
sharp contrast to what happens when the RS1 scenario jote that this assumes that bd¥y, R, are larger tham,, .
worked out in Gaussian normal coordinafé®,17,23. We The equation for (\) in Eq.(2.7) shows that, witd =0, the
can find this mode by realizing that it is supposed to describ%mallest value of allowed on this geodesié is, . '

the interbrane separation. Given Eg.1), we can calculate From Eq.(2.7) we can compute the geodesic distance
this explicitly, by computing the geodesic distance betweerbetween the branes:

points on the two branes.

Consider two branes placed at 1 r(\)2
i i As=j A\ \/ ———=|I
(tyrlxl):(TO(TO)!RO(TO)lXI)l 0 u(r()\)) | 8|
(t,r,x)=(T1(7y),Ry(71),X), (2.9 | (RS (R
=5 cosh 7z —cosh Z/ |
where ther, , are the proper times on the branes. We shall " " (2.10

take Ry>R; so that the brane &; will be the TeV or IR
brane while the brane &, is the Planck or UV brane. The In particular, in thew—0 (rp—0) limit, we find
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Ry Ri_ el 1 f 4
As=—1| InR—o, or R—O—e . (2.11 Sbra”e_m Od Xy —hg[ =200+ 167GsLy]
1 4y, [—h_
B. Hierarchy of scales in AdSS coordinates + 87Gs od X\ —hoKg

We now ask how we see the fact that the separation be- 1
tween the branes gives rise to a hierarchy of mass scales 4 fd4 hil — 20+ 167GeLl
between the branes. 167Gs )1 X [ =20, 5L1]

This is easy whequ=0, sinceu(r)=r?/1? and the bulk L
line element can be written as 4

+ V= . .
87rG5f1d xv—h1K4 (3.2

2 2

r - |
dszzl—z(—dt2+dx2)+r—2dr2, (2.12

wheredx?=12d32_. If we now ask what sets the scale on
each brane, the fact that the braifesleast at a given instant

of bulk time) are located at a fixed value pfllows us to set

r=R,dr=0 which tells us that the relation between distance

measurements on the two branes is given by the R{I&3.
As we saw above, this is just 2%, which is exactly the
standard RS resu|tL].

A subscript 0(1) refers to the UV(IR) brane. HereGg de-
notes the bulk Newton constartty ;, Ko and o are the
determinant of the induced metric, the trace of the extrinsic
curvature and brane surface tension respectively for the ap-
propriate brane. If we define a unit normal orthogonal to the
tangent space of the branes pyy,],, then the induced
metric and the extrinsic curvature are given in the bulk co-
ordinates, for example on the UV brane, by

[holab=9ab—[Nolal Nolp

The u#0 case contains some extra subtleties. In this
case, fork=0 the line element becomes

[Kolab=[holS[ Mol Vel noly- 3.3

r? r2
2 =2
dte+ |2dx + 2

(2.13 The field content on each is summarized £xy;; we shall
generally study the case where the fields on each brane pro-

12 2 duce the energy momentum tensor of a perfect fluid.

Following [3,4], we allow the positions of the branes

. ) o ] ) ~within the bulk to evolve so as to give rise to cosmological
At fixed r this metric will nottake the Minkowski form. This  eyojution on each brane. The position of the brane in the

makes the comparison between branes somewhat less obyjrection transverse to the brane, given in E2j4), will be
ous, but we can ask how distance scales on each brane coyated to the cosmological scale factor on the given brane.

pared to the case where all quantities staticin bulk time  Now choose the normal to the brane to be of the form
t. In this situation it is again the rati®?/RZ that sets the

relative scales between the branes. It is important to note that
this is not related to the interbrane separation in any simple

way as can be seen from E@.10. o )
This last point makes the issue of stabilization of the hi-where the dot denotes a derivative with respect to the proper

erarchy somewhat murkier in this formalism. For the no-limé on the appropriate brane. Noting that the condition
horizon case, stabilizing the interbrane distance stabilizes thg*’nan,=1 relatesT, to R,
hierarchy; with a horizon, there are two variables to deal

with: namely the ratid?f/Rg as well as one of the positions [R(2)+ u(Rg)J¥?
Ry, say. In the limit thaR?> \ul?=r2, we recover the no- T T URy
horizon results. 0

r° u
dsz:‘(ﬁ‘rz

[Nola==(—Ry,Tp,0,0,0, (3.4

(3.5

we can write the induced metric in terms of brane coordi-

Ill. RS1 COSMOLOGY WITH AN AdSS BULK nates o,Xx'):

The gravitational action for the RS1 scenario will be
taken as the sum of the bulk Einstein-Hilbert action with a
cosmological constamt,

dsi=—u(Ro)[T3— (U(Ry)) 2R3]1d 75+ R3( 7o) dS.2

= —dTS-i- RS( To)dEE

1
Sbulk:m f d®x\V—g[—2A +R], (3.1) [Nhol ., dx“dx” (3.6

whereu, v run over brane coordinates. At the UV brane, the

and a boundary action of the form extrinsic curvature becomes
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1 du(Ry) Ro>1. On the IR brane, after squaring both sides of Eq.
[Kol,dxtdx’= = —[ ot 5 R }dr% (3.13, we see that we also need to impose=*6/ in
U(Ro(70))To IRo order for the large terms in the;>1 limit to cancel,
FU(Rg) ToRod3 2. (3.7 2
. . N R2+ Ry k- ! —R’¢%+ %(r R?

The signs that appear in the definition of the normal and 1z R7 36 171" Tg R
consequently in the extrinsic curvature determine how the 5
space is sliced. We shall use the upper sign in B¥) +(47TGSR ) (3.14
which corresponds to keeping the spaceRy(7o). The 3 '

form of the extrinsic curvature at the IR brane is exactly the

same, once we replace the subscripts, except that the lowgr fact, we must choose;= — 6/l so as to satisfy the Israel

signs should be used to retain the regioAR, (7). condition, Eq.(3.13), which, in turn, leads to a universe in
Let pg and py be the pressure and density of the perfectwhich the energy density; must be negative to obtain stan-

fluid on the UV brane so that the UV brane stress energy islard FRW cosmological evolution on the IR brane,

[TO]Z:diaq_p01p01pO=p0)' (38) ) 87G 72 477G 2
R+ k=— ——p,R24 5+ | ——| p?R?
" . . . 1 3| pig EZ 3 PRy
The Israel conditiof10] relating the discontinuity in the 1
extrinsic curvature to the presence of the brane is given by (3.19

If the interbrane separation is kept fixedAat in the origi-
AlKolw= UO[hO]uv nal Gaussian normal coordinates of the RS mad#tout a
stabilization mechanism at play, then it was shown in Ref.
1 12] that the energy densities on the branes have to satis
+87Gg| [Tol, 5[TohlNol,|. @9 2 % y
, , po=—pie 7. (3.19
We shall assume that the two 3-branes reside at the fixed
points of anS'/Z, orbifold so that the jump in the extrinsic How does this constraint emerge from the AdSS bulk coor-
curvature isA[Ko] ., = 2[Ko],,, . Although Eq.(3.9) appears  dinate approach? In order to compare with Rég] we set
to yield two constraints from the temporal and the spatial ,=0, k=0, and impose the fine tuning abovey=— o,

components, theA[Ko],, constraint follows from the =6/, Now assume that the geodesic distance between the

A[Ko]jj constraint3], branes has been fixed so thes= —I In(R;/R,) is constant.
From this it follows that
VR U(Ry) = SRoot 7G5k (3.10
o en0 3 O ' 1 dR, 1 dR, dr 1 dRy
provided energy and momentum are conserved on the brane Ry dm Rodrm dm Ry d7g
d d 2 2
d—TO(poR8>= —pod—mRS. (3.1 [Ro1° dR
12 R dt 1 dR,
The main advantage of letting the brane positions within = —2 R dre
the bulk evolve in time is that the bulk metric is unaffected 12 dRy o Y70
by the behavior of the branes other than by their specifying |_2_ E dt
which slice of the AdS-Schwarzschild metric E@.1) is 1

relevant. Thus, for the UV brane we have

— 1 4A7Gg "R, Ry drg Ry dr,
RS“F U(Ro) 6 R00'0+ 3 Ropo, (312 1 0 0 0 0 (317)
while on the IR brane, Using Eq.(3.17) in Egs.(3.12 and(3.13, then
- 1 477G - .
-\ R%"' U(Rl)z_Rl(Tl+—5R1p1. (313) R(z) 87TGS Ri 87TG5
6 3 - 3l Po y _2 3] p1+
RO Rl
The sign change corresponds to the fact that the normals of (3.18

the two branes have opposite orientations. As in R&f.the

evolution on the UV brane approaches a standard Robertsowhere the brane tensions satisfy the fine-tuning condition
Walker cosmology when we make the fine tuniag= 6/ and we assume that the energy densities are small compared
required in the original RS1 scenario and consider the limito the tension. In this limit, we arrive aty~—p,e~ 29"
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IV. AdSS COSMOLOGY WITH A STABILIZATION with an analogous equation at the IR brane. HEFg) 5, and
MECHANISM Tap are the energy-momentum tensors associated with the
[ields confined to the brane and wiih respectively.
The presence of the scalar field alters the bulk geometry,
but in the limit where it is small compared to the cosmologi-
al constantmlI<1, we can treat its effect as a perturbation
9 the AdSS background,

When the bulk space-time only contains a cosmologica
constant, Birkhoff's theorem allows us to write the metric in
the conventional, time-independent form given in Egj1).
The motion of the branes through this bulk depends on th
local environment of the branes, as expressed by the Isra
junction condition, so that without any means of interacting 1
each brane evolves independently. However, the existence of qs?= —u(r)[ 1+ y,(t,r)]dt2+ —[1+ x,,(t,r)]dr?

a fixed hierarchy requires that the motions of the branes must u(r)

be carefully correlated. From this perspective then, the ap- +r2gs2 (4.4
pearance of an unphysical energy density is not altogether k=0 '
surprising. We have simply imposed a constraint upon two . . . .
indgpengently moving brgrzles vf/)ithout any mechanis[r)n to enwhere throughout this section we $et 0. In th|s metric we
force it. _have S'FI|| as_sumed that the _thret_a large spgtlal dimensions are

To evade Birkhoff's theorem, the mechanism that stabi-'SOt.rOp'C' Since the s_calar field is responsible for the pertur-
lizes the hierarchy must distort the background away from £2t0NS:xu andx,, will be of the same order af,,.
pure AdSS space-time. These distortions will then appear i AS the mduce_:d metrllc at the brane suggests, th_e Rale
the extrinsic curvature term of the Israel equation which thu%< Ro) is associated with Fhe scale.faqtor of a Friedmann-
allows the motions of the branes to be naturally correlate obertson-WalkefFRW) universe whild is naturally of the
with real, positive, independent densities on each brane. Bé)_rder of the Planck length. Therefore, for an acceptable cos-
cause of this correlated motion of the branes, we generall .olo_gy{ We can assume thm.<1 throughout the bulk. In
expect that the cosmology observed on either of the bran Q.'S I|r_n|t the fprm of the metnc naturally SUPPresses terms
now should depend on the field content of both, as was se 't.h time derlvat|ves_ rela_lt_lve to those W"h derivatives.
in [12]. Note that this distortion can be small compared with . is feature greatl_y simplifies the analysis of t_he back reac-
the scale of the bulk cosmological constant—thus allowing a{'(.)n of th? scalar field on the bulk geometry since E42)
perturbative treatment—since the terms that yielded an FRW! effectl_vely only constrain the dependence ofy, X .
cosmology on the branes were subleading and only becan?é‘d¢' Th!s bghaymr can be seen, for example, by consider-
important once the tension was finely tuned to cancel thd'9 Zu Which is given up toyy, x corrections by
leading bulk effect. ,

ThegGoIdberger-Wise stabilization mechanigti] adds a Tu=3(0$)*+ 3U%(1)(¢") 2+ zu(nm’ ¢+ - (4.5
free massive scalar field to the bulk with a potential on each

brane to fix the boundary values of the scalar field with ¢' =4, ¢. If neither brane is near the black hole hori-
' zon, then ther-derivative term is enhanced by a factor of

1 1 u?(r)~r#/1* relative to the time derivative term. The same
— =V, pVip— —mPep? feature appears in the Einstein equati¢h®). Thus, as long
2 2 as the time derivatives are not excessively large, as we shall
1 later show, the bulk field equations only constrain the radial
+ ﬁf d4x+/— ho[_)\o((ﬁ?_vg)z] dependence.
3570 Expanding the field equations to first ordenin, x,, and
1 ¢?, and substituting in the zeroth order solution for an AdS
+ mf d4x/— hl[_)\l(¢2_vi)2]_ 4.1 (or AdSS background, we find
5J1

1
_ 5y [—
SGW_8’7TG5f d°xy—g

12 3u
We have normalized the fields to extract the factor T2 X T i = U2+ mP g
(87Gs) ! to simplify the form of some of the later equa-
tions. Varying the total action produces the usual Einstein 12 3u
and scalar field equations in the bulk, T2 X~ TX{t: —ugd'2+m’¢?

Rab— 39abR=~AGap+ Tap 3
F&ter = 2(1)'0%({)

V2p—m?¢p=0, (4.2)
while at the UV brane the equations of motion are |1_22er+ er_§+u XTQ_{GI_E_U} )(Tt/t_u)d,t
A[Ko]ab:%U[ho]ab+87765[[To]ab_%[To]g[ho]ab] — U2+ mP 2 (4.6)
[No]2dap=2No($*—v) ¢ (4.3 from the Einstein equations and
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3u _ 2+v
u¢/r+ur¢/+_¢)/_m2¢:0 (47) :UO vl(RllRO) g,,,
' 1—(Ry/Ro)*
from the scalar field equatiof@.2). The Bianchi identity re-
lates these equations so that, for example, the last equation in b vl(RllRo)Z"’—vo R, 2VR2+”
Eq. (4.6) is not independent. - 1—(Ry/Rg)?" Ry o -

(4.13
A. A stabilized AdS cosmology

For a purely AdS space, i.e.=0, and in the limit that we ~When evaluated at either brane. This result is exactly that of
suppress the contributions of time derivatives, we can solv&ef.[17] except for the implicit time dependence Ry and
the scalar field solution to find, as in R¢L7], R;.
L When the scalar field satisfies E@.12), the scalar po-
N _ tentials vanish and the only contribution to the energy-
b(r)= rj[a(t)r Fbmr-r], (4.8 momentum tensor on the bra):]es is due to the fields confgiJXed
to the branes which we take to be a perfect fluid stress tensor,
as in Eq.(3.9). For fluids satisfying the conservation law of
Eq. (3.11), we only need to solve for thg component since
the 77 component of the Israel condition does not give rise to
v=a+mi®, (4.9 an independent constraint. Retaining only the corrections lin-
ear in the perturbations and unsuppressed by powers of

where

Substituting this solution into Eq4.6) and solving for the

metric perturbations yields i
K- Vu(Ry) +R3

1 a(t)b(t)(v2—4)—3c(t) [Kolij= Ro

Xu(t,r)= 3 7 +d(t) .
X[1=3xn(To,Ro)+---I[holij,  (4.14
X (t,0)= %aZ(t)(,j_z)rﬂ(% v) the Israel condition on the UV brane becomes
1 B c(t) R; ., RS  87G R3
—3b* (O (r+2)r 2+ (410 217 +Re=77 0ot —5poRE+ 2 X (To,Ro)-

(4.195
The functionsa(t), b(t), c(t), andd(t) are constants of

integration with respect to the derivatives and are only At the IR brane, since we have different signs from the op-
which requires that

__2 2 _ R% . R% 87TG5 R%
oc=—35(v+2)bda+5(v—2)adsb. (4.11) |—2+R§=—§Ul— ——pR2+ |7er(T1:R1)-

3l

The scalar field must satisfy the jump conditions de- (4.18
scribed by Eq(4.3). However, if as inf17] we assume that
the potentials on the branes are sufficiently rigig,,\;  In both of these equations, we have neglec®#@?) correc-
—oo, then the scalar field value is forced to the minimumtions.

value of the potential on each brane, The small change in the bulk background produced by the
Goldberger-Wise field will in general require a correspond-
H(To Ro)=vo=a(To)R52+V+b(To)Raz_V ing shift in the usual choice of the brane tensions to cancel

the cosmological constant in the effective cosmology on the
brane. We therefore set the brane tensions to
&(T1,R)=v,=a(T)R 2 "+b(THR; 2 7.
(4.12

6
and o;=—+

1
1+_50'0 I

2

0'0:_

Now, we saw in Sec. Il that the stabilized hierarchy in these 2
coordinates corresponds to fixing the geodesic distance be- (4.1
tween the branes alongamnstant timegeodesic, so thal,

=T,. Settinga=a(Ty)=a(T;) andb=b(Ty)=b(T;), we  Substituting these into Eq$4.15 and (4.16) and using our
thus find solution for the metric perturbation in E¢4.10 yields
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., 8uG c(Ty 1 . dRy, . dR
2: —5 2 0 == :_1
R§ 3] poRg+ Iz R70 R, dro R; ar (4.23
I 4(v1—vo)? R_? R_é n In the absence of a stabilizing mechanism, this condition was
7o 3 RS| 127 arbitrarily imposed as a constraint on the two brane system
which required a negative energy density on one of the
' 87Gs o(Ty) 1 branes. We now see that E@.23 arises as a natural con-
R§=—Tp1R§+I—2—2 sequence of minimizing the radion effective potential and
R1 instead of constraining the field densities on the branes, it
. V21 R2 fixes the remaining integration functia{t) evaluated on the
4(v1—vo)°|RT -
+| 8o,— —3 |—2+ — (4.18 branes at equal times=c(Ty)=c(T,),
2\ -1
Since we wish to establish that the leading behavior mimics c=1?R3| 1— = | |—5—(poR2+p.R3)
a FRW cosmology, we have neglect&dml) corrections in Ro 3l
Eq. (4.18 by settingv=2. 1 4
The final functionc(t) is determined on the branes by the + 5 (80oR3— 601R) + =5 (v1—v)2R2|.
requirement that the hierarchy should be stabilized. As in I 3l
[17], we can determine the preferred separation between the (4.24)

branes for a given set of parameters,¢,,v,) by integrat-
ing the scalar action over the radial dimension to define aWhen Eq.(4.24) is substituted into the equation for the evo-

effective potential folR, /Ry: lution of the IR brane, the leading;, term cancels the den-
sity term in Eq.(4.18 with the undesired sign. The next to
leading term inp,, where the expansion is in powers of the
4y [— _
f d"V=gel —Ver(Ro,Ry)] exponential hierarchy, has the required sign for a well-

R behaved FRW cosmology:
EJ oer dxV—g[—3VapVip—3m?¢?]. (419

R ., 8mGs R} RS
' f=TS R—é p1+poR—2 R
Substituting Eq(4.8) into Eq. (4.19 and integrating over a 0 !
constant time hypersurface so that we can use£43), we p 4 2 R?
discover that the dependence on geodesic distRa¢R, in + 50°R_‘1‘ — oo+ §(U1_U0)2} 212 +.. (429

the effective potential factorizes

R? R Choosing the tensions such that the second term vanishes,
o 1 L .
Ver(Ro,Ry) = Tz‘Veﬁ(—) (4.20  We see that the presence of a stabilized radion has led to a

Ro realistic effective cosmology on the branes,
with 52
R 8wG
_;: 5e—2As/I[pl+pOe4As/I]+ .. (4.26
. (v—2)[vg— v x3""]? Rz 3l
Ver(X) = 1_y2v
The fixed hierarchy implies that the equation for the evolu-
(v+2)[vo—v X2 "]?X%" tion of the UV brane is exactly the same up to a rescaling by
0 1 (4 2]) e—2AS/|
1—x2" ' '
PSS ‘o ini RG _ 87Gs —4As/]
In themI<<1 limit, Vg4(X) is minimized by Ez T[po-l—ple 1+---. 4.2
0
R v 4/m?|2
X= _1%(_1> (4.22 We might have naively expected that once the hierarchy
Ro oo between the two brane system is stabilized, the cosmological

) ) ) evolution should depend on the field content of both branes,
Note that by adding af(m??) constant to the right side of \yeighted by possible exponential factors. The approach
Eq. (4.19, we can arrange the minimum to occur &tz  where the brane cosmology arises from the motion of the
=0, thus keeping th&j coefficient in Eq.(4.20 from driv-  branes through a nearly static bulk explicitly shows the ori-
ing Ryp— 0 or Ry— . gin of this dependence. By distorting the bulk from pure
Once the relative brane separation has settled to the valwnti—de Sitter space, the scalar field both communicates the
determined by Eq(4.22, the motion of the branes is corre- energy density from one brane to the other as in B4
lated so that, as in Eq3.17), and cancels the unphysical term in the IR brane motion. As
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noted in[12], the presence of matter on the UV brane can B. A stabilized AdSS cosmology

easily overwhelm the effect of matter on the IR brane and S0 e meaning of a stabilized hierarchy becomes less clear
drive the cosmology unless it is exponentially smaller than,en 4 plack hole horizon is introduced into the bulk metric
that of the IR brane. Also, Eq4.26 suggests that we should o\ ep if the horizon does not actually appear in the bulk. The

define the effective Newton constant for an observer on thf)arameter,u in the AdSS metric breaks the conformal flat-

IR brane to be ness of the metric in the large+t3L dimensions, which is
needed to define an unambiguous hierarchy. Yet when this

Gu= %e‘ 2As/1. 4.29 parameter is sufficiently small
N ' '
| T Et for Ry=r=R (4.32
> or sr< .
this result also agrees with the effective Newton constant 1% r? ' °

appropriate for two masses confined to the IR brane, as de-
rived in[12]. so that we can still neglect the time derivatives, the quantity
We can also discuss some of the corrections to(E@6  that sets the hierarchy and therefore must be fixed by the
which would allow us to distinguish a brane-induced cos-stabilization mechanism is stillR;/Ry=e 2", up to
mology from a standard FRW cosmology. As in E§.15, p-dependent corrections. In fact, if these corrections are to
the presence qfi effects reflects a general feature of brane-be larger than those due to the time derivatives that we are
induced cosmologies. To find the detailed form of such corneglecting, then the black hole mass should not be too small,
rections would require solving the equations of motion to

second order in the metric perturbations since, from Egs. N
(4.24), (4.10, x,, has terms that depend linearly on the field 1>— —. (4.33
densities of the branes. The leadi@ml) corrections are 2w

proportional toR?, or R3, and can be eliminated by appro- o o _ _ _
priately choosing the brane tensions. If we do not fine-tune Neglecting time derivatives again, the important terms in
the brane tensions, then the cosmology will contain a ternihe bulk Einstein equation@.6) and bulk scalar field equa-

resembling an effective cosmological constant. tion (4.7) are
The solutions to the perturbed metric were found in the
limit in which the time derivatives are suppressed in the 34— ul? ré—pul?
. . . 12 + — [ ¢r2+m2|2¢2
equations of motion. We can determine when these terms Xre T T2 X r2
would be important, thus requiring that the fullandt de-
pendent equations be solved, by comparing the typical size 314 12 (412
of such terms in the solutions presented above. For example, 12x — — éu =" 2’“ &' 2+ mA2g?
the scalar potentials in E¢4.1) hold the value of the field rr r
constant at the branes so that as the brane moves,ahet (4.34
derivatives are related via
and
T05t¢+R0¢':d_¢:0- (4.29 ré— ul? 5ré— ul?
d7o 7'+ 5 —¢' ~mA%p+...=0. (4.35

r
Thus, using Eq.(3.5 and neglectingR5 compared to _ , _ _
u(Ro) =R¥I2, While we requirem|>0 in (_)rder to determine the effec_t
of the presence of the horizon on the Goldberger-Wise
R mechanism, once the hierarchy has been stabili¢¥dl)
dip~— —2Rydh. (430  terms will be unimportant for the leading description of the
| brane cosmology. Settingl— 0 in Eqgs.(4.34—(4.35 yields
the following leading behavior for the scalar field,
As we saw earlier in Eq4.5), the ¢’ terms are enhanced by
a factoru?(r)=r*/1* over d,¢ terms, b(t)
$(r)=a(t)— Wln

ul?

1—r—4 +O(ml) (4.36

Ty=3(0$)*+ 3U*(Ro) (') + - - -
while for corrections to the background metric we find

4r 2
_ 01D B2 2 N2l
=5 7| @) (@) }+ , e 8 b2(t)
(4.31) Xu(t,r)= (t)+m C(t)+§F
so that despite Eq(4.30, the first term is still negligible 8 bz(t)r“( _ E:“_lz inl 1— :“_'2
compared with the second. 3wt 2 r4 r4
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4 bR
G

rza smaller than in the single brane model and still produce an
acceptable cosmology, at least until terms quadratipgin
c(t) and u become important.

+ mi, (4.SD

M'T distance between the IR brane and the horizon can be much

V. CONCLUSIONS
up to O(ml) terms.

Determining the boundary conditions as before and re- Theré were two main points we wanted to make in this
taining only the leading:-dependent corrections yields the work. The first was that, while some of the features of RS1

following cosmology on the IR brane models are less obvious in the AdSS formulation presented
above, and despite the fact that the bulk is static to leading

., 87Gs Ri g ) order in this formulation, when the black hole horizon van-

Ri=—3 RZ|P1T RaPO R+ O(u?) ishes, the brane cosmologies have the same behavior here as
0 ! in the Gaussian normal formulation. This was @opriori
Rg 4 Ri Rf obvious, especially because the bulk geometry appears quite
+ ?600— So1+ §(vl—vo)2 R (4.38 different in the two different formulations.

1 0 The second point was that introducing a horizon into the

Upon fine-tuning the brane tensions, geometry can modify the cosmological behavior on the IR

brane. While we were only able to see this in a perturbative

R% 87Gy, expansion ir,/r, we were able to see that the stabilization

= [p1+poe®¥+O(u?)+---, (439 mechanism cancels the leading effect so that the “dark ra-

Rf 3 diation” contribution that generically appears in the one
brane scenario is absent here.

It would be interesting to go beyond a perturbative solu-
tion in the u#0 case; this is technically complicated and
may involve some conceptual issues such as how the horizon
affects the boundary conditions on bulk fields, the GW scalar
in particular. We hope to return to this in a future publication.

wheree 2¥'=R, /R, as before and the effective Newton
constant is defined in E¢4.28). Notice that unlike the sce-
nario with a single brang3,4], where the leading terms in
the brane cosmology are of the form

R?_8mGs T (4.40
— p _4 .. ., .
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