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Randall-Sundrum I cosmology as brane dynamics in an AdS-Schwarzschild bulk
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We explore various facets of the cosmology of the Randall-Sundrum scenario with two branes by consid-
ering the dynamics of the branes moving in a bulk AdS-Schwarzschild geometry. This approach allows us to
understand both in more detail and from a different perspective the role of the stabilization of the hierarchy in
the brane cosmology, as well as to extend to the situation where the metric contains a horizon. In particular, we
explicitly determine how the Goldberger-Wise stabilization mechanism perturbs the background bulk geometry
to produce a realistic cosmology.
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I. INTRODUCTION

The cosmology of Randall-Sundrum~RS! @1,2# models is
of great interest for a variety of reasons, not the least
which is that these models allow us to understand some lo
standing problems of particle physics, most notably the h
archy problem of mass scales.

Kraus @3# ~see in particular@4–7# as well as@8,9#! has
made the interesting observation that, for the so-called R
models@2#, the brane cosmology can be found by solving t
Israel junction conditions@10# for a domain wall moving in
an AdS-Schwarzschild~AdSS! bulk geometry, which, by
Birkhoff’s theorem in five dimensions, is the unique sphe
cally symmetric solution to the bulk Einstein equations w
a bulk cosmological constantL.

While the RS2 alternative to compactification is e
tremely interesting from many points of view, such as t
AdS/CFT ~conformal field theory! correspondence@11#, it
could be argued that from a particle physics perspective R
geometries@1# are more useful, allowing as they do fo
solutions to the hierarchy problem. The cosmology of R
geometries has been studied extensively in the litera
@12–16#, and a number of interesting results have be
found. The main difference between RS1 and RS2 cosm
gies is that the existence oftwo branes~the TeV and Planck
branes! in the RS1 case allows the interbrane separation
become a dynamical degree of freedom, the so-calledradion.
Depending on whether or not the radion has been stabil
in some way, such as with the Goldberger-Wise mechan
~GW! @17# or in some other way, the cosmological cons
quences and even consistency of RS1 models can be
different.

Our purpose in this work is to treat the cosmology of R
models using the Kraus approach. That is to say, we cons
the two branes to be moving in an AdSS bulk geometry a
ask once again what is happening to the intrinsic brane
ometry as specified through the Israel conditions. There
~at least! two reasons for doing this. One is that this w
allow us to understand some of the previously known res
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from a different perspective. In particular, in this approac
there isno radion mode in the bulk metric. The radion a
pears as the geodesic relative distance between the br
This naturally leads us to ask how the equation of motion
the radion gets generated, and in particular, how the G
mechanism gets implemented. There should also be s
differences between the so-called Gaussian normal coo
nates used in most of the works on RS1 cosmology and
method, since in the latter, the bulk isstatic, at least to a first
approximation; all the cosmological evolution occurs on t
branes. This approach also allows the role of the GW mec
nism in producing an acceptable cosmology to be seen
more detail than for the effective action used in the Gauss
normal formulation. Finally, we can make contact with t
ideas of holography@18# by placing a horizon in the bulk
geometry and seeing how that influences the cosmology
stabilization mechanisms.

Section II provides the setup for our calculation. We d
scribe the bulk geometry and use it to compute the geod
distance between the branes. Doing this, it becomes c
that there is an issue in how to define what we mean by
hierarchy of scales between the branes, which was the p
of the RS1 scenario@1#. We discuss this in some detail an
argue that when the bulk geometry has a horizon, the in
brane separation doesnot set the hierarchy, at least not in a
direct a manner as when the horizon is absent.

In Sec. III we solve the junction conditions and find th
cosmology on the branes. We write down the bulk a
boundary actions, the equations of motion and the junct
conditions, from which the cosmological equations on bo
branes is derived. We find as in@12,16#, that if the radion is
not stabilized, there is a constraint between the energy d
sities on the branes leading to one of them being negativ

The cosmology observed on a brane depends solely o
motion through the bulk and since the two branes evo
independently there is no reason to expect that for gen
densities on the branes they should both move in such a
that the hierarchy is maintained. In Sec. IV we show how
presence of the Goldberger-Wise mechanism alters the
ture. In addition to fixing the geodesic distance between
branes, the GW scalar field introduces small time-depend
corrections to the bulk metric which communicate the fie
content of each brane to the other. These features can be
explicitly since the GW field can be treated as a small p
©2002 The American Physical Society18-1



S
in
om
n

e
ei
th

ou
-

a

fo

tio
ic

io

io

rib

e

a

sic

ake
IR

that

dS

the

one
s

ce

HAEL COLLINS, R. HOLMAN, AND MATTHEW R. MARTIN PHYSICAL REVIEW D 65 125018
turbation to the AdS background. We then consider an Ad
metric which contains a horizon and find that the lead
correction to the purely AdS cosmology is suppressed c
pared with the corresponding result with only one bra
@3,4#.

Section V contains our conclusions.

II. RS1 IN AdSS COORDINATES

Birkhoff’s theorem in five dimensions tells us that th
most general spherically symmetric solution to the Einst
equations with a bulk cosmological constant is given by
metric

ds252u~r !dt21
dr2

u~r !
1r 2dSk

2 , ~2.1!

wherer is the bulk coordinate,dSk
2 is the line element for

the fixedr 3-spatial hypersurfaces, which are homogene
and isotropic, andk50,61 is the 3-spatial curvature param
eter. Writing the bulk cosmological constant asL526/l 2,
the metric coefficientu(r ) is given by

u~r ![
r 2

l 2 1k2
m

r 2 , ~2.2!

wherel is the AdS radius of curvature andm is proportional
to the mass of the black hole in AdS@19#. In the RS2 picture
this interpretation can be made exact since there
asymptotic regions inr; in RS1, the compactness in ther
direction prevents such a direct interpretation. However,
nonzerom, the solutions have horizons atr 5r h where

r h
25

l 2

2
~2k1Ak214m/ l 2!. ~2.3!

In the RS2 case there is an explicit coordinate transforma
@20,21# that maps the above space-time to the cosmolog
metric for RS2 as written in Ref.@12#.

A. Geodesic interbrane separation

The first question we need to ask is: where is the rad
mode? It certainly isnot explicitly present in Eq.~2.1!, in
sharp contrast to what happens when the RS1 scenar
worked out in Gaussian normal coordinates@12,17,22#. We
can find this mode by realizing that it is supposed to desc
the interbrane separation. Given Eq.~2.1!, we can calculate
this explicitly, by computing the geodesic distance betwe
points on the two branes.

Consider two branes placed at

~ t,r ,xi !5„T0~t0!,R0~t0!,xi
…,

~ t,r ,xi !5„T1~t1!,R1~t1!,xi
…, ~2.4!

where thet0,1 are the proper times on the branes. We sh
take R0.R1 so that the brane atR1 will be the TeV or IR
brane while the brane atR0 is the Planck or UV brane. The
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symmetry of the bulk metric allows us to consider a geode
between these branes that only propagates in thet and r
directions:

Xa~l!5„t~l!,r ~l!,0,0,0…, ~2.5!

wherel is the affine parameter on the geodesic and we t
l50,1 to correspond to the positions of the UV and
brane, respectively.

The geodesic equations read

d

dl S u~r !
dt

dl D50

d

dl S 1

u~r !

dr

dl D1
1

2

]u

]r S 1

u~r !

dr

dl D 2

52
1

2

]u

]r S dt

dl D 2

.

~2.6!

In the sequel, we shall frequently takek50, i.e., we take the
fixed r hypersurfaces to have flat 3-spatial sections. Note
in this case, the horizon is located atr h5(m l 2)1/4.

The geodesic equations above have first integrals,

dt

dl
5

l L̃

u„r ~l!…

dr

dl
5 lAL̃21«2u„r ~l!…. ~2.7!

We have scaled all the dimensionful parameters by the A
radius of curvaturel so thatL̃ and« are dimensionless.

We can solve this set of equations and then impose
boundary conditions from Eq.~2.4!. However, we can save
some time by noting that the relevant distance is the
measured at thesamebulk time on both branes. This mean
that the geodesic we want is the one for whichL̃50. Inte-
grating thedr/dl equation, we find

r 2~l!5r h
2cosh~2«l1u!, ~2.8!

with

u5cosh21S R0
2

r h
2 D , 2«1u5cosh21S R1

2

r h
2 D . ~2.9!

Note that this assumes that bothR0 , R1 are larger thanr h .
The equation forr (l) in Eq. ~2.7! shows that, withL̃50, the
smallest value ofr allowed on this geodesic isr h .

From Eq. ~2.7! we can compute the geodesic distan
between the branes:

Ds5E
0

1

dlA ṙ ~l!2

u„r ~l!…
5u l«u

5
l

2 Fcosh21S R0
2

r h
2 D 2cosh21S R1

2

r h
2 D G .

~2.10!

In particular, in them→0 (r h→0) limit, we find
8-2
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Ds52 l ln
R1

R0
, or

R1

R0
5e2Ds/ l . ~2.11!

B. Hierarchy of scales in AdSS coordinates

We now ask how we see the fact that the separation
tween the branes gives rise to a hierarchy of mass sc
between the branes.

This is easy whenm50, sinceu(r )5r 2/ l 2 and the bulk
line element can be written as

ds25
r 2

l 2 ~2dt21dxW2!1
l 2

r 2 dr2, ~2.12!

wheredxW2[ l 2dSk50
2 . If we now ask what sets the scale o

each brane, the fact that the branes~at least at a given instan
of bulk time! are located at a fixed value ofr allows us to set
r 5R,dr50 which tells us that the relation between distan
measurements on the two branes is given by the ratioR1

2/R0
2.

As we saw above, this is juste22Ds/ l , which is exactly the
standard RS result@1#.

The mÞ0 case contains some extra subtleties. In t
case, fork50 the line element becomes

ds252S r 2

l 2 2
m

r 2Ddt21
r 2

l 2 dxW21
dr2

r 2

l 2 2
m

r 2

. ~2.13!

At fixed r this metric will not take the Minkowski form. This
makes the comparison between branes somewhat less
ous, but we can ask how distance scales on each brane
pared to the case where all quantities arestatic in bulk time
t. In this situation it is again the ratioR1

2/R0
2 that sets the

relative scales between the branes. It is important to note
this is not related to the interbrane separation in any sim
way as can be seen from Eq.~2.10!.

This last point makes the issue of stabilization of the
erarchy somewhat murkier in this formalism. For the n
horizon case, stabilizing the interbrane distance stabilizes
hierarchy; with a horizon, there are two variables to d
with: namely the ratioR1

2/R0
2 as well as one of the position

R0, say. In the limit thatRi
2@Am l 25r h

2 , we recover the no-
horizon results.

III. RS1 COSMOLOGY WITH AN AdSS BULK

The gravitational action for the RS1 scenario will b
taken as the sum of the bulk Einstein-Hilbert action with
cosmological constantL,

Sbulk5
1

16pG5
E d5xA2g@22L1R#, ~3.1!

and a boundary action of the form
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Sbrane5
1

16pG5
E

0
d4xA2h0@22s0116pG5L0#

1
1

8pG5
E

0
d4xA2h0K0

1
1

16pG5
E

1
d4xA2h1@22s1116pG5L1#

1
1

8pG5
E

1
d4xA2h1K1 . ~3.2!

A subscript 0~1! refers to the UV~IR! brane. HereG5 de-
notes the bulk Newton constant,h0,1, K0,1 and s0,1 are the
determinant of the induced metric, the trace of the extrin
curvature and brane surface tension respectively for the
propriate brane. If we define a unit normal orthogonal to
tangent space of the branes by@n0,1#a , then the induced
metric and the extrinsic curvature are given in the bulk c
ordinates, for example on the UV brane, by

@h0#ab5gab2@n0#a@n0#b

@K0#ab5@h0#a
c@h0#b

d¹c@n0#d . ~3.3!

The field content on each is summarized byL0,1; we shall
generally study the case where the fields on each brane
duce the energy momentum tensor of a perfect fluid.

Following @3,4#, we allow the positions of the brane
within the bulk to evolve so as to give rise to cosmologic
evolution on each brane. The position of the brane in
direction transverse to the brane, given in Eq.~2.4!, will be
related to the cosmological scale factor on the given bra
Now choose the normal to the brane to be of the form

@n0#a56~2Ṙ0 ,Ṫ0 ,0,0,0!, ~3.4!

where the dot denotes a derivative with respect to the pro
time on the appropriate brane. Noting that the condit
gabnanb51 relatesṪ0 to Ṙ0,

Ṫ05
@Ṙ0

21u~R0!#1/2

u~R0!
, ~3.5!

we can write the induced metric in terms of brane coor
nates (t0 ,xi):

ds0
252u~R0!@ Ṫ0

22„u~R0!…22Ṙ0
2#dt0

21R0
2~t0! dSk

2

52dt0
21R0

2~t0!dSk
2

[@h0#mndxmdxn ~3.6!

wherem, n run over brane coordinates. At the UV brane, t
extrinsic curvature becomes
8-3
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@K0#mndxmdxn56
1

u„R0~t0!…Ṫ0
F R̈01

1

2

]u~R0!

]R0
Gdt0

2

7u~R0!Ṫ0R0dSk
2 . ~3.7!

The signs that appear in the definition of the normal a
consequently in the extrinsic curvature determine how
space is sliced. We shall use the upper sign in Eq.~3.4!
which corresponds to keeping the spacer ,R0(t0). The
form of the extrinsic curvature at the IR brane is exactly
same, once we replace the subscripts, except that the l
signs should be used to retain the regionr .R1(t1).

Let p0 andr0 be the pressure and density of the perf
fluid on the UV brane so that the UV brane stress energ

@T0#m
n 5diag~2r0 ,p0 ,p0 ,p0!. ~3.8!

The Israel condition@10# relating the discontinuity in the
extrinsic curvature to the presence of the brane is given

D@K0#mn5
1

3
s0@h0#mn

18pG5F @T0#mn2
1

3
@T0#l

l@h0#mnG . ~3.9!

We shall assume that the two 3-branes reside at the fi
points of anS1/Z2 orbifold so that the jump in the extrinsi
curvature isD@K0#mn52@K0#mn . Although Eq.~3.9! appears
to yield two constraints from the temporal and the spat
components, theD@K0#tt constraint follows from the
D@K0# i j constraint@3#,

AṘ0
21u~R0!5

1

6
R0s01

4pG5

3
R0r0 , ~3.10!

provided energy and momentum are conserved on the b

d

dt0
~r0R0

3!52p0

d

dt0
R0

3 . ~3.11!

The main advantage of letting the brane positions wit
the bulk evolve in time is that the bulk metric is unaffect
by the behavior of the branes other than by their specify
which slice of the AdS-Schwarzschild metric Eq.~2.1! is
relevant. Thus, for the UV brane we have

AṘ0
21u~R0!5

1

6
R0s01

4pG5

3
R0r0 , ~3.12!

while on the IR brane,

2AṘ1
21u~R1!5

1

6
R1s11

4pG5

3
R1r1 . ~3.13!

The sign change corresponds to the fact that the norma
the two branes have opposite orientations. As in Ref.@3#, the
evolution on the UV brane approaches a standard Robert
Walker cosmology when we make the fine tunings056/l
required in the original RS1 scenario and consider the li
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R0@ l . On the IR brane, after squaring both sides of E
~3.13!, we see that we also need to imposes1566/l in
order for the large terms in theR1@ l limit to cancel,

Ṙ1
21

R1
2

l 2 1k2
m

R1
25

1

36
R1

2s1
21

4pG5

9
s1r1R1

2

1S 4pG5

3
R1r1D 2

. ~3.14!

In fact, we must chooses1526/l so as to satisfy the Israe
condition, Eq.~3.13!, which, in turn, leads to a universe i
which the energy densityr1 must be negative to obtain stan
dard FRW cosmological evolution on the IR brane,

Ṙ1
21k52

8pG5

3l
r1R1

21
m

R1
2 1S 4pG5

3 D 2

r1
2R1

2 .

~3.15!

If the interbrane separation is kept fixed atDz in the origi-
nal Gaussian normal coordinates of the RS modelwithout a
stabilization mechanism at play, then it was shown in R
@12# that the energy densities on the branes have to sati

r052r1e22Dz/ l . ~3.16!

How does this constraint emerge from the AdSS bulk co
dinate approach? In order to compare with Ref.@12# we set
m50, k50, and impose the fine tuning above:s052s1
56/l . Now assume that the geodesic distance between
branes has been fixed so thatDs52 l ln(R1 /R0) is constant.
From this it follows that

1

R1

dR1

dt1
5

1

R0

dR0

dt1
5

dt0

dt1

1

R0

dR0

dt0

5

AR0
2

l 2 2
l 2

R0
2

dR0

dt

AR1
2

l 2 2
l 2

R1
2

dR1

dt

1

R0

dR0

dt0

'
R0

R1

1

R0

dR0

dt0
5eDs/ l

1

R0

dR0

dt0
.

~3.17!

Using Eq.~3.17! in Eqs.~3.12! and ~3.13!, then

Ṙ0
2

R0
2

5
8pG5

3l
r01•••,

Ṙ1
2

R1
2

52
8pG5

3l
r11•••,

~3.18!

where the brane tensions satisfy the fine-tuning condit
and we assume that the energy densities are small comp
to the tension. In this limit, we arrive atr0'2r1e22Ds/ l .
8-4
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IV. AdSS COSMOLOGY WITH A STABILIZATION
MECHANISM

When the bulk space-time only contains a cosmolog
constant, Birkhoff’s theorem allows us to write the metric
the conventional, time-independent form given in Eq.~2.1!.
The motion of the branes through this bulk depends on
local environment of the branes, as expressed by the Is
junction condition, so that without any means of interacti
each brane evolves independently. However, the existenc
a fixed hierarchy requires that the motions of the branes m
be carefully correlated. From this perspective then, the
pearance of an unphysical energy density is not altoge
surprising. We have simply imposed a constraint upon t
independently moving branes without any mechanism to
force it.

To evade Birkhoff’s theorem, the mechanism that sta
lizes the hierarchy must distort the background away from
pure AdSS space-time. These distortions will then appea
the extrinsic curvature term of the Israel equation which th
allows the motions of the branes to be naturally correla
with real, positive, independent densities on each brane.
cause of this correlated motion of the branes, we gener
expect that the cosmology observed on either of the bra
now should depend on the field content of both, as was s
in @12#. Note that this distortion can be small compared w
the scale of the bulk cosmological constant—thus allowin
perturbative treatment—since the terms that yielded an F
cosmology on the branes were subleading and only bec
important once the tension was finely tuned to cancel
leading bulk effect.

The Goldberger-Wise stabilization mechanism@17# adds a
free massive scalar field to the bulk with a potential on e
brane to fix the boundary values of the scalar field,

SGW5
1

8pG5
E d5xA2gF2

1

2
¹af¹af2

1

2
m2f2G

1
1

8pG5
E

0
d4xA2h0@2l0~f22v0

2!2#

1
1

8pG5
E

1
d4xA2h1@2l1~f22v1

2!2#. ~4.1!

We have normalized the fields to extract the fac
(8pG5)21 to simplify the form of some of the later equa
tions. Varying the total action produces the usual Einst
and scalar field equations in the bulk,

Rab2 1
2 gabR52Lgab1Tab

¹2f2m2f50, ~4.2!

while at the UV brane the equations of motion are

D@K0#ab5 1
3 s@h0#ab18pG5†@T0#ab2 1

3 @T0#c
c@h0#ab‡

@n0#a]af52l0~f22v0
2!f ~4.3!
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with an analogous equation at the IR brane. Here,@T0#ab and
Tab are the energy-momentum tensors associated with
fields confined to the brane and withf, respectively.

The presence of the scalar field alters the bulk geome
but in the limit where it is small compared to the cosmolo
cal constant,ml!1, we can treat its effect as a perturbatio
to the AdSS background,

ds252u~r !@11x tt~ t,r !#dt21
1

u~r !
@11x rr ~ t,r !#dr2

1r 2dSk50
2 , ~4.4!

where throughout this section we setk50. In this metric we
have still assumed that the three large spatial dimensions
isotropic. Since the scalar field is responsible for the per
bations,x tt andx rr will be of the same order asTab .

As the induced metric at the brane suggests, the scaleR1
(,R0) is associated with the scale factor of a Friedman
Robertson-Walker~FRW! universe whilel is naturally of the
order of the Planck length. Therefore, for an acceptable c
mology, we can assume thatl /r !1 throughout the bulk. In
this limit the form of the metric naturally suppresses ter
with time derivatives relative to those withr derivatives.
This feature greatly simplifies the analysis of the back re
tion of the scalar field on the bulk geometry since Eq.~4.2!
will effectively only constrain ther dependence ofx tt , x rr
andf. This behavior can be seen, for example, by consid
ing Ttt which is given up tox tt , x rr corrections by

Ttt5
1
2 ~] tf!21 1

2 u2~r !~f8!21 1
2 u~r !m2f21••• ~4.5!

with f8[] rf. If neither brane is near the black hole hor
zon, then ther-derivative term is enhanced by a factor
u2(r )'r 4/ l 4 relative to the time derivative term. The sam
feature appears in the Einstein equations~4.2!. Thus, as long
as the time derivatives are not excessively large, as we s
later show, the bulk field equations only constrain the rad
dependence.

Expanding the field equations to first order inx tt , x rr and
f2, and substituting in the zeroth order solution for an A
~or AdSS! background, we find

12

l 2 x rr 1
3u

r
x rr8 5uf821m2f2

12

l 2 x rr 2
3u

r
x tt8 52uf821m2f2

3

r
] tx rr 52f8] tf

12

l 2 x rr 1F2
r 2

l 2 1uG x rr8

r
2F6

r 2

l 2 2uG x tt8

r
2ux tt9

5uf821m2f2 ~4.6!

from the Einstein equations and
8-5
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uf91u8f81
3u

r
f82m2f50 ~4.7!

from the scalar field equation~4.2!. The Bianchi identity re-
lates these equations so that, for example, the last equati
Eq. ~4.6! is not independent.

A. A stabilized AdS cosmology

For a purely AdS space, i.e.m50, and in the limit that we
suppress the contributions of time derivatives, we can so
the scalar field solution to find, as in Ref.@17#,

f~r !5
1

r 2 @a~ t !r n1b~ t !r 2n#, ~4.8!

where

n[A41m2l 2. ~4.9!

Substituting this solution into Eq.~4.6! and solving for the
metric perturbations yields

x tt~ t,r !5
1

3

a~ t !b~ t !~n224!23c~ t !

r 4 1d~ t !

x rr ~ t,r !5
1

3
a2~ t !~n22!r 22(22n)

2
1

3
b2~ t !~n12!r 22(21n)1

c~ t !

r 4 . ~4.10!

The functionsa(t), b(t), c(t), and d(t) are constants o
integration with respect to ther derivatives and are only
fixed to this order inl /r by the third equation of Eq.~4.6!
which requires that

] tc52 2
3 ~n12!b] ta1 2

3 ~n22!a] tb. ~4.11!

The scalar field must satisfy the jump conditions d
scribed by Eq.~4.3!. However, if as in@17# we assume tha
the potentials on the branes are sufficiently rigid,l0 ,l1
→`, then the scalar field value is forced to the minimu
value of the potential on each brane,

f~T0 ,R0!5v05a~T0!R0
221n1b~T0!R0

222n

f~T1 ,R1!5v15a~T1!R1
221n1b~T1!R1

222n .
~4.12!

Now, we saw in Sec. II that the stabilized hierarchy in the
coordinates corresponds to fixing the geodesic distance
tween the branes along aconstant timegeodesic, so thatT0
5T1. Settinga5a(T0)5a(T1) and b5b(T0)5b(T1), we
thus find
12501
in

e

-

e
e-

a5
v02v1~R1 /R0!21n

12~R1 /R0!2n
R0

22n

b5
v1~R1 /R0!22n2v0

12~R1 /R0!2n S R1

R0
D 2n

R0
21n .

~4.13!

when evaluated at either brane. This result is exactly tha
Ref. @17# except for the implicit time dependence inR0 and
R1.

When the scalar field satisfies Eq.~4.12!, the scalar po-
tentials vanish and the only contribution to the energ
momentum tensor on the branes is due to the fields confi
to the branes which we take to be a perfect fluid stress ten
as in Eq.~3.8!. For fluids satisfying the conservation law o
Eq. ~3.11!, we only need to solve for thei j component since
thett component of the Israel condition does not give rise
an independent constraint. Retaining only the corrections
ear in the perturbations and unsuppressed by powers ofl /r in

@K0# i j 5
Au~R0!1Ṙ0

2

R0

3@12 1
2 x rr ~T0 ,R0!1•••#@h0# i j , ~4.14!

the Israel condition on the UV brane becomes

2
R0

2

l 2 1Ṙ0
25

R0
2

3l
s01

8pG5

3l
r0R0

21
R0

2

l 2 x rr ~T0 ,R0!.

~4.15!

At the IR brane, since we have different signs from the o
posite orientation for the normal, we arrive at

2
R1

2

l 2 1Ṙ1
252

R1
2

3l
s12

8pG5

3l
r1R1

21
R1

2

l 2 x rr ~T1 ,R1!.

~4.16!

In both of these equations, we have neglectedO(r2) correc-
tions.

The small change in the bulk background produced by
Goldberger-Wise field will in general require a correspon
ing shift in the usual choice of the brane tensions to can
the cosmological constant in the effective cosmology on
brane. We therefore set the brane tensions to

s05
6

l S 11
1

2
ds0D and s152

6

l S 11
1

2
ds1D .

~4.17!

Substituting these into Eqs.~4.15! and ~4.16! and using our
solution for the metric perturbation in Eq.~4.10! yields
8-6
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Ṙ0
25

8pG5

3l
r0R0

21
c~T0!

l 2

1

R0
2

1Fds02
4~v12v0!2

3

R1
8

R0
8G R0

2

l 2 1•••

Ṙ1
252

8pG5

3l
r1R1

21
c~T1!

l 2

1

R1
2

1Fds12
4~v12v0!2

3 G R1
2

l 2 1•••. ~4.18!

Since we wish to establish that the leading behavior mim
a FRW cosmology, we have neglectedO(ml) corrections in
Eq. ~4.18! by settingn52.

The final functionc(t) is determined on the branes by th
requirement that the hierarchy should be stabilized. As
@17#, we can determine the preferred separation between
branes for a given set of parameters (m,v0 ,v1) by integrat-
ing the scalar action over the radial dimension to define
effective potential forR1 /R0:

E d4xA2geff@2Veff~R0 ,R1!#

[E
R1

R0
drE d4xA2g@2 1

2 ¹af¹af2 1
2 m2f2#. ~4.19!

Substituting Eq.~4.8! into Eq. ~4.19! and integrating over a
constant time hypersurface so that we can use Eq.~4.13!, we
discover that the dependence on geodesic distanceR1 /R0 in
the effective potential factorizes

Veff~R0 ,R1!5
R0

4

l 2 V̂effS R1

R0
D ~4.20!

with

V̂eff~x!5
~n22!@v02v1x21n#2

12x2n

1
~n12!@v02v1x22n#2x2n

12x2n
. ~4.21!

In the ml!1 limit, V̂eff(x) is minimized by

x5
R1

R0
'S v1

v0
D 4/m2l 2

. ~4.22!

Note that by adding anO(m2l 2) constant to the right side o
Eq. ~4.19!, we can arrange the minimum to occur atV̂eff

50, thus keeping theR0
4 coefficient in Eq.~4.20! from driv-

ing R0→0 or R0→`.
Once the relative brane separation has settled to the v

determined by Eq.~4.22!, the motion of the branes is corre
lated so that, as in Eq.~3.17!,
12501
s

n
he

n

ue

Ṙ05
dR0

dt0
'Ṙ15

dR1

dt1
. ~4.23!

In the absence of a stabilizing mechanism, this condition w
arbitrarily imposed as a constraint on the two brane sys
which required a negative energy density on one of
branes. We now see that Eq.~4.23! arises as a natural con
sequence of minimizing the radion effective potential a
instead of constraining the field densities on the branes
fixes the remaining integration functionc(t) evaluated on the
branes at equal times,c[c(T0)5c(T1),

c5 l 2R1
2S 12

R1
2

R0
2D 21F8pG5

3l
~r0R0

21r1R1
2!

1
1

l 2 ~ds0R0
22ds1R1

2!1
4

3l 2 ~v12v0!2R1
2G .

~4.24!

When Eq.~4.24! is substituted into the equation for the ev
lution of the IR brane, the leadingr1 term cancels the den
sity term in Eq.~4.18! with the undesired sign. The next t
leading term inr1, where the expansion is in powers of th
exponential hierarchy, has the required sign for a we
behaved FRW cosmology:

Ṙ1
25

8pG5

3l

R1
2

R0
2 Fr11r0

R0
4

R1
4GR1

2

1Fds0

R0
4

R1
4 2ds11

4

3
~v12v0!2G R1

2

R0
2

R1
2

l 2 1•••. ~4.25!

Choosing the tensions such that the second term vanis
we see that the presence of a stabilized radion has led
realistic effective cosmology on the branes,

Ṙ1
2

R1
2

5
8pG5

3l
e22Ds/ l@r11r0e4Ds/ l #1•••. ~4.26!

The fixed hierarchy implies that the equation for the evo
tion of the UV brane is exactly the same up to a rescaling
e22Ds/ l ,

Ṙ0
2

R0
2

5
8pG5

3l
@r01r1e24Ds/ l #1•••. ~4.27!

We might have naively expected that once the hierar
between the two brane system is stabilized, the cosmolog
evolution should depend on the field content of both bran
weighted by possible exponential factors. The appro
where the brane cosmology arises from the motion of
branes through a nearly static bulk explicitly shows the o
gin of this dependence. By distorting the bulk from pu
anti–de Sitter space, the scalar field both communicates
energy density from one brane to the other as in Eq.~4.24!
and cancels the unphysical term in the IR brane motion.
8-7
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noted in @12#, the presence of matter on the UV brane c
easily overwhelm the effect of matter on the IR brane and
drive the cosmology unless it is exponentially smaller th
that of the IR brane. Also, Eq.~4.26! suggests that we shoul
define the effective Newton constant for an observer on
IR brane to be

GN[
G5

l
e22Ds/ l ; ~4.28!

this result also agrees with the effective Newton const
appropriate for two masses confined to the IR brane, as
rived in @12#.

We can also discuss some of the corrections to Eq.~4.26!
which would allow us to distinguish a brane-induced co
mology from a standard FRW cosmology. As in Eq.~3.15!,
the presence ofr1

2 effects reflects a general feature of bran
induced cosmologies. To find the detailed form of such c
rections would require solving the equations of motion
second order in the metric perturbations since, from E
~4.24!, ~4.10!, x rr has terms that depend linearly on the fie
densities of the branes. The leadingO(ml) corrections are
proportional toR1

2, or R0
2, and can be eliminated by appro

priately choosing the brane tensions. If we do not fine-tu
the brane tensions, then the cosmology will contain a te
resembling an effective cosmological constant.

The solutions to the perturbed metric were found in
limit in which the time derivatives are suppressed in t
equations of motion. We can determine when these te
would be important, thus requiring that the fullr and t de-
pendent equations be solved, by comparing the typical
of such terms in the solutions presented above. For exam
the scalar potentials in Eq.~4.1! hold the value of the field
constant at the branes so that as the brane moves, ther andt
derivatives are related via

Ṫ0] tf1Ṙ0f85
df

dt0
50. ~4.29!

Thus, using Eq.~3.5! and neglectingṘ0
2 compared to

u(R0)5R0
2/ l 2,

] tf'2
R0

l
Ṙ0f8. ~4.30!

As we saw earlier in Eq.~4.5!, thef8 terms are enhanced b
a factoru2(r )5r 4/ l 4 over ] tf terms,

Ttt5
1
2 ~] tf!21 1

2 u2~R0!~f8!21•••

5
1

2

R0
4

l 4 F l 2

R0
2Ṙ0

2~f8!21~f8!2G1•••,

~4.31!

so that despite Eq.~4.30!, the first term is still negligible
compared with the second.
12501
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B. A stabilized AdSS cosmology

The meaning of a stabilized hierarchy becomes less c
when a black hole horizon is introduced into the bulk metr
even if the horizon does not actually appear in the bulk. T
parameterm in the AdSS metric breaks the conformal fla
ness of the metric in the large 311 dimensions, which is
needed to define an unambiguous hierarchy. Yet when
parameter is sufficiently small

r 2

l 2 2
m

r 2 @1 for R1<r<R0 ~4.32!

so that we can still neglect the time derivatives, the quan
that sets the hierarchy and therefore must be fixed by
stabilization mechanism is stillR1 /R0[e2Ds/ l , up to
m-dependent corrections. In fact, if these corrections are
be larger than those due to the time derivatives that we
neglecting, then the black hole mass should not be too sm

1@
lAm

r 2
,

l

Am
. ~4.33!

Neglecting time derivatives again, the important terms
the bulk Einstein equations~4.6! and bulk scalar field equa
tion ~4.7! are

12x rr 1
3

r

r 42m l 2

r 2 x rr8 5
r 42m l 2

r 2 f821m2l 2f2

12x rr 2
3

r

r 42m l 2

r 2 x tt8 52
r 42m l 2

r 2 f821m2l 2f2

~4.34!

and

r 42m l 2

r 2 f91
5r 42m l 2

r 3 f82m2l 2f1•••50. ~4.35!

While we requireml.0 in order to determine the effec
of the presence of the horizon on the Goldberger-W
mechanism, once the hierarchy has been stabilized,O(ml)
terms will be unimportant for the leading description of t
brane cosmology. Settingml→0 in Eqs.~4.34!–~4.35! yields
the following leading behavior for the scalar field,

f~r !5a~ t !2
b~ t !

m l 2 lnF12
m l 2

r 4 G1O~ml! ~4.36!

while for corrections to the background metric we find

x tt~ t,r !5d~ t !1
21

r 42m l 2 Fc~ t !1
8

3

b2~ t !

m l 2

1
8

3

b2~ t !r 4

m2l 4 S 12
1

2

m l 2

r 4 D lnF12
m l 2

r 4 G G

8-8
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x rr ~ t,r !5
4

3

b2~ t !

m l 2~r 42m l 2!
lnF12

m l 2

r 4 G
1

c~ t !

r 42m l 2 , ~4.37!

up to O(ml) terms.
Determining the boundary conditions as before and

taining only the leadingm-dependent corrections yields th
following cosmology on the IR brane

Ṙ1
25

8pG5

3l

R1
2

R0
2 Fr11

R0
4

R1
4 r0GR1

21O~m2!

1FR0
4

R1
4 ds02ds11

4

3
~v12v0!2G R1

2

R0
2

R1
2

l 2 . ~4.38!

Upon fine-tuning the brane tensions,

Ṙ1
2

R1
2

5
8pGN

3
@r11r0e4Ds/ l #1O~m2!1•••, ~4.39!

where e2Ds/ l[R1 /R0 as before and the effective Newto
constant is defined in Eq.~4.28!. Notice that unlike the sce
nario with a single brane@3,4#, where the leading terms in
the brane cosmology are of the form

Ṙ2

R2
5

8pG5

3l
r1

m

R4 1•••, ~4.40!

such a term, linear inm, does not appear in the two bran
scenario. In the one brane scenario, such a term beha
with its R24 dependence, like a radiation fluid but is ca
celed here by the stabilization mechanism. Therefore,
tu

e

t.

12501
-

es,

e

distance between the IR brane and the horizon can be m
smaller than in the single brane model and still produce
acceptable cosmology, at least until terms quadratic inr0,1
andm become important.

V. CONCLUSIONS

There were two main points we wanted to make in t
work. The first was that, while some of the features of R
models are less obvious in the AdSS formulation presen
above, and despite the fact that the bulk is static to lead
order in this formulation, when the black hole horizon va
ishes, the brane cosmologies have the same behavior he
in the Gaussian normal formulation. This was nota priori
obvious, especially because the bulk geometry appears q
different in the two different formulations.

The second point was that introducing a horizon into
geometry can modify the cosmological behavior on the
brane. While we were only able to see this in a perturbat
expansion inr h/r , we were able to see that the stabilizatio
mechanism cancels the leading effect so that the ‘‘dark
diation’’ contribution that generically appears in the o
brane scenario is absent here.

It would be interesting to go beyond a perturbative so
tion in the mÞ0 case; this is technically complicated an
may involve some conceptual issues such as how the hor
affects the boundary conditions on bulk fields, the GW sca
in particular. We hope to return to this in a future publicatio
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