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Randall-Sundrum scenario with an extra warped dimension
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We investigate a scenario with two four branes embedded in six dimensions. When the metric is periodic and
compact in one of the dimensions parallel to the branes, the value of the effective cosmological constant for the
remaining five dimensions can assume a variety of values, determined by the dependence of the metric on the
sixth dimension. The picture that emerges resembles the Randall-Sundrum model but with an extra warped
dimension that allows the usual brane-bulk fine tuning to be satigfigwut finely tuning any of the param-
eters in the underlying six-dimensional theory. Although the action contains terms with four derivatives of the
metric, we show that when the branes have a finite, natural thickness, such terms have only a small effect on
the Randall-Sundrum structure. The presence of these four derivative terms also allows a configuration that
resembles that produced by a domain wall but which results from gravity alone.
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[. INTRODUCTION mined by both the 5D cosmological constant and the geom-
etry of the extra dimension. Therefore, we can achieve a 3
Two of the most enigmatic features of the universe are thet 1-dimensional Poincar@variance even when the 5D cos-
weakness of gravity compared to electroweak interactions—mological constant is not zero, by choosing the solution to
the hierarchy problem—and the small size of the cosmologithe field equations with the appropriate behavior in the extra
cal constant. A recent approafh| to the hierarchy problem dimension. However, some further mechanism is still re-
has observed that the presence of a small warped extra diuired to explain why this particular solution should be pre-
mension could naturally produce an exponential hierarchyerred.
between the scales of gravitational and standard model inter- This paper intends to combine these ideas into a scenario
actions. The new element in this and relaf@fiscenarios is that incorporates the Randall-Sundrum pictlt¢ but with-
the introduction of solitonic three-dimensional hypersur-out finely tuning any of the parameters in the action. The
faces, or three-branes, to which the standard model fields aseenario starts with an effective action for gravity in six di-
confined while gravity propagates in all the dimensions.mensions including terms with up to four derivatives of the
These models still require a fine tuning to produce a low-metric. It also includes two parallel four-branes, which are
energy effective 3-1-dimensional theory with no cosmo- compact in one dimension and extend infinitely in the other
logical constant. three. With some mild bounds on the parameters in the ac-
Extra dimensions might also provide a framework for ad-tion, we find that the equations of motion allow the geometry
dressing the cosmological constant problem. Instead of se¢f the resulting universe to contain a five-dimensional
ting the cosmological constant to an unnaturally small valueanti—de Sitter (Ad§) subspace with a warped metric that is
we can demand only that the theory should admit a nearlyperiodic in the sixth dimension.
flat effectively 3+ 1-dimensional theory below some high- A generic set of four derivative terms in the action appar-
energy scale—regardless of the value of the cosmologicaintly implies an infinite tension on the branes, however, this
constant. This picture was introduced by Rubakov andsingularity appears as an artifact of the vanishing thickness
Shaposhnikov with a six-dimensional modal. The idea is of the branes. When the brane has a finite thickness, it is
that the cosmological constant distorts, or warps, some or aflossible to show explicitly that the higher derivative terms
of the extra dimensions while leaving the theory with a 3can be neglected. An action that contaimsly gravity—
+ 1-dimensional Poincargymmetry. If this idea is extended including these four derivative terms but without any scalar
so that this warping is accomplished with a metric that isfields—also admits solutions in which gravity is localized
both smooth and periodic in the extra dimensions, then thergbout a hypersurface of codimension one. Far from this hy-
is no need to cut off the space or to encounter singularities ipersurface, the metric approaches an AdS metric as in the
the extra dimensions. second Randall-Sundrum modél], however, it is the four
An explicit realization occurs in 41 dimensions[4]  derivative terms and not a brane or a scalar field that effects
when the metric is smooth, nonsingular, and periodic in théhis localization of gravity.
extra dimension. We can then choose the extra dimension to
be compact with its size given by the period. At large dis-
tances compared to this period, the universe appears four
dimensional(4D). The 4D cosmological constant is deter-

Il. PRELIMINARIES AND EFFECTIVE
ACTION DESCRIPTIONS

Randall and Sundruml] proposed that if the universe
were to consist of two three branes bounding a bulk region of
*Electronic address: hael@physics.utoronto.ca five-dimensional anti—de Sitter space-time, then the redshift
"Electronic address: bob.holdom@utoronto.ca induced by the bulk metric at one of the branes could gen-
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erate an exponential hierarchy between the Planck scale and
the scale of electroweak symmetry breaking. The action for
their scenario contains an Einstein-Hilbert term for the bulk

TeV brane

Rjk:MSJ d*xdr V= g[2Arst+R], (1) He

while the branes located at=0 andr=r only contribute Planck brane :

through their surface tensions, xM
RS _ a3 a, [ or FIG. 1. The geometry of a six-dimensional model with two four-
ranes M5frzod X h[—20gs] branes. The small periodic coordinateyisThe direction orthogonal

to the four-branes;, becomes the extra coordinate of the Randall-
= Sundrum model when we integrate out thelimension. We can
3 4y, \/
+ M5fr:r d*x V—h[20gg]- 2 recover the second Randall-Sundrum mddglby letting r .—ce.
¢ The model assumes an orbifold geometry abouD.
Hereguy is the metric for Ads, The existence of metric solutions that are periodicyin
- M AN e 2]r]i o 5 appears to be a fairly generic feature of actions that include
gundx“dx"=e 7, dxdX"+dr?, () terms beyond the standard Einstein-Hilbert tef§ For
. _ . example, when the theory is truncated so that the gravita-
andh,,, is the induced metric on the branes. We shall denotgional action contains only terms with up to four derivatives

the usual space-time directions by“, with w,v,...  of the metric and including a scalar field with AL
=0,1,2,3, andr describes the direction orthogonal to the =k(V,$V?3¢)?, the equations of motion for Eq¢4) admit
branes withM,N, ...=0,1,2,3;. Ms denotes the bulk periodic solutions over a range of the parameters
Planck mass. The bulk Einstein equations determing  {A,a,b,c,k}.

=6/1? and the specific choice afrs=6/ for the brane ten- We instead shall focus upon the simpler case whefe
sions is necessary for the Iow-e.nergy four-dimensigABl) describes a Casimir effect. Since the finjtdirection explic-
theory to be free of a cosmological constant. itly breaks 5+ 1-dimensional Poincarsymmetry, any quan-

As the cosmological constant and the surface tension apum vacuum contribution can differ in theand *,r) di-
pear in the action, they represent fundamental parameters géctions. We can include this effect by adding the following
the theory and we have no reasmpriori that the fine-tuning  energy-momentum tensor to the field equations:
condition is satisfied. If instead the quantities that appear in
the action arise from some more fundamental theory, then it T"ad’;= diag C,C,C,C,C,—-C). (5)
might be possible for a dynamical mechanism to exist that o _ ) )
favors solutions in which the low-energy, four-dimensionalAny contribution proportional to the identity can be absorbed
theory is nearly flat. into the .defmmon _of the cosmploglcal qonsténSatlsfa_c-

We can adapt the picture developed in R@f without  tOrY; periodic solutions then exist whed is above a mild
branes to one which resembles the Randall-Sundrum comound. o
struction but where the AdSlength is not uniquely deter- ~ T0 produce a Randall-Sundrum scenario in five of the
mined by the higher-dimensional cosmological constant. Thélimensions, we shall examine a metric of the form
structure for such a model would includavo extra A= N ry) dx@dx?
dimensions—one small periodic dimension to avoid fine- Gan(X",1,y) dX7dx
tuning the cosmological constant and a second to generate — AA N M N 2
the electroweak Planck hierarcklyig. 1. & (X dxT dxTdy ©

As in Ref.[4], we consider gravity as an effective theory, with an AdS; metric for the &*,r) subspace,
expanded in powers of derivatives, with a scalar figld

d2=gynydxMdxN=e 2y dx#dx'+dr2  (7)

VS R — b
Sbulk_MGf d'xdrdyy—g(2A +R+aR?+bR,pR? When A(y) is a periodic function ofy, we can obtain a
abed compact extra dimension with a very nontrivigldepen-
+CRapcdR™ - +) dence without any singularities. The shapeAdly) deter-

. mines the effective cosmological constant of g, metric.
+ Mef d*x drdyy—g(—3 V.¢V2h+AL). (4  Since this metric is conformally flat, the linear combinations

Herey represents the coordinate of the extra periodic dimen-

sion, With ab, ... =0,1,2,3ry. A., andMe denote the cos-  !Since we do not require that vanish, quantum contributions no
mological constant and the six dimensional Planck mass, réenger need to cancel the classical contributiomAtorather, they
spectively. are only regarded as some component of the tatal
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of the R? terms that represents the squared Weyl tensor willvhen the contribution from the bulk cosmological constant is
not contribute to the equations of motion. It is convenient topartially canceled by effects from the warp function in Eq.
parametrize the two remaining linear combinations by (11).
In the weak 5D gravity limitMgsl>1, the self-coupling
n=20a+6b+4c, A=15a+3b+c. (8) terms become negligible and the leading behavior is gov-
erned by the Einstein-Hilbert terms in E40). If we include
Before examining the detailed form of the equations thatwo four-branes at =0 andr=r_ with respective tensions
determine the warp functioA(y) with a Randall-Sundrum ¢(® and ¢{"¢), then we recover the action considered by
5D subspace, we derive a 5D effective action by integratindRandall and Sundruri],
out the sixth dimension in the warped background given by
the metric(6). There, the scalar curvatuRreis related to the

scalar curvaturd? of the 5D metricgyy and derivatives of seff= Mgf d*x drv—g(2A g+ R)
the warp function

R=e AVR-5A" -2 (A")2 9 +Mgf dhV =l - 20

r=

Here the prime denotesyaderivative. Similarly, the compo-

o : . NE ( c)
nents of the Ricci and Riemann tensors in the full theBgy, + Mgfr= d*x\'—h[ - 20y (14)
andR®, .4, can be expanded in terms of the analogous ten-
sors for the Randall-Sundrum subspaRg,, and ﬁMNpq. . . .

Integrating out the smaly, dimension in a background Here the effective tension on tire=0 brane is

such as Eq(7) whereR is constant produces a five dimen-
sional effective action, M2 0= M4 (O)I dy @0, (15

e =M f d*x drv—g (2A g+ R+ aggR2+ bRy RN
A R with an analogous expression for ther . brane.hy,y rep-
+CeRunpoRMNP O+ - - ). (100  resents the metric induced on the branes=a orr=r by
the metricgyy .
This action should reproduce the leading behavior for small  The fine tunings of the tensions on the Planck brane
x*-dependent perturbations about Ad$), R*?, or de Sitter ) (ro)y
. and the TeV brane n Ref.[1] are

space backgrounds. The new parameters that appear in tt$|s ) Lo ) | (1]
effective action depend partially upon the “fundamental” pa-
rameters of the original action but also upon the behavior of VBA = g(e?f)z — agff) . (16)
the warp function. Thus, in the low-energy theory, the 5D

cosmological constant is i i , L N
Numerically, we find solutions periodic in thg direction

Ve provided that the effective cosmological constant is of the
MgAeﬁ:Mgf dyeSPNA — 3 (¢')%+ 5 (A")? same order or smaller than the full cosmological constant,
0 |Aex| =O(A). Using the desired value of .4 from Eq. (16)
(11) and applying' Eqs(;l), (12), and(lS), we can find solgtions
that are periodic iny and satisfy Eq.(16) without finely
tuning any of the parameters when

+5m(A")2 = %N (A)Y]
while the 5D Planck mass is

:Mgfoytidy é3/2)A(Y)[1_%(3;;_4X)(A/)2]. (12) (U(O))ZSO(A) 17)

In making this transition from the effective parameters back

The coefficients of th&k? terms are to the 6D parameters, any exponential factors are either small
or tend to cancel. In the Appendix we show two representa-
Ve i les, witha(®=0.586 ando(®=0.396 in units
M3a —M4af dy VAW 13 tive examples, . .
ser=Ved || Y 19 hereA=—1.

Although Eg. (16) actually contains two fine tunings,
with analogous expressions fbogz andce,. In these expres- Goldberger and Wis¢6] showed that including a massive
sions we have freely integrated by parts. bulk scalar field with quartic couplings to the brane, thereby

For the theory to resemble the standard Randall-Sundrurgenerating a nontrivial effective potential fog, eliminates
picture, the five dimensional theory of gravity should beone of these fine tunings. Since we expect that some such
weak,Mgl>1. SinceA .4~ 2, we require the effective 5D mechanism can be adapted to our picture, we are left with
cosmological constant to be small, which can easily occuone condition onA.¢ in terms OfO'(O) When Eq.(17) is
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saﬂsﬂed_, solupons of_ t_he eq_uat|ons_ of mongn from E4). SLIAA”— L (A")2+ SA"(AN)2]+ SN(A)
can satisfy this condition without finely tuning any of the

parameters in the action. The vanishing of the 4D effective -5 (A2

cosmological constant in the Randall-Sundrum scenario in

this picture thus reduces to a dynamical question as to why —172e7AM[10+ 3(3u—4N)(A")?]

the flat solutions are favored. o
+101 " 4e A0 +X]
=—A+C—3(¢")>%
Ill. EXACT ANALYSIS a(47)
The equation of motion for the scalar field is

When we include_on_e or twp chimension one branes " +5A ¢ =0 (20)
orthogonal to the periodig direction, in order to find a so-
lution in which the low-energy effective theory for an ob- when the scalar field depends only on thedirection, ¢
server on one of these branes is flat, the tension of the brangs®(y). The sum of the equations in E(L9) provides a
requires a nonvanishing value of the effective 5D cosmologisingle differential equation foA(y) which we can integrate

cal constant,A¢, Eq. (16). The method for numerically numerically. Once a periodic solution is found, the difference

demonstrating the existence of such solutions has been d%f these equations determines the behavior of the scalar field.

tailed in Ref.[4] for a 5D theory with a flat 4D subspace. ote that since the scalar field appears in EgS) and (20

o only through its derivatives, onlyp’ is guaranteed to be
The qualitative results from Ref4] do not change when we periodic; ¢(y) monotonically increases and must thus as-

start from a theory in 5- 1 dimensions and alter only slightly s,me values only over a compact range.
when a small cosmological constant appears in the 5D sub- e have found periodic solutions throughout the param-
space. The flat solutions, for whidp,n= 7un IN EQ. (6),  eter spac€l8) for small 5D cosmological constants of either

the theory is invariant under translations and rescalings in

the other five coordinates, we are free to choose coordinates

25~ = 15 ~ B in whichA(0)=A’(0)=0 without any loss of generality. We
TAs] THATSVIOuA=F for O<pA<ts, also setA”(0)=0. We then numerically integrated EG.9)
BUA for S<nA for an initial choice forA”(0). What we find is that for a

(18) particular value ofA”(0), thewarp function returns to its
initial conditions after some finitg.: A(y)=A(y+Y.).
Note that when we substitute the equations of motid)

although the exact location of the boundary corresponding tinto the expression for the effective cosmological constant

the second case of Eq18) has not been precisely deter-
mined. 5 A [¥e 6 6
When a 5D cosmological constanty is included, the MsAeﬁ:Mef dy gl%(y){rz— j2(b+ C)(A')?
form of A(y) alters slightly from itsA .4= 0 value; however, 0
numerical integrations show that the warp function remains 4 _AW)
periodic as long aB\ 4| < O(|A|), so that periodic solutions —jae "V (10a+2b+c)
exist without any additional fine tunings as long as Ey)
is satisfied. This bound includes the case wherein the 5@nd rewrite this expression in terms of the parameters of the
effective theory of gravity is weak. Thus it is possible to effective theory(11)—(13), we find
satisfy M2A o> 1 even whileMZA ~1~1. 6

The bulk equations of motion for a universe with an AdS Aeﬁ=|—g - lq(lanﬁJr 2Dgsi+ Cot) = 7z |—4)\eﬁ. (22
subspace?), are obtained by varying the full actidd),

: 21

We would have obtained the same result by inserting the
metric in Eq.(7) into the equations of motion for the effec-

;:L[%A””"‘ gA,AW‘i‘ %5 (AH)2+ %A”(A,)z] tive action, Eq(]_O)

_l_'X[A//(A/)Z_l_ g(AI)4]_2A//_ g(A/)2 IV. THICK BRANES
In passing to the weak gravity limit in order to ignore the

R? terms in the 5D theory14), we might worry that while
their effect on the bulk dynamics is small, they nevertheless
might significantly alter the brane tension. Indeed, the par-
ticular linear combination of terms for which

Meff= 16aeﬁ+ 5beff+ 4Ceff¢ 0 (23)

— 172" AN+ (3u—4N)[A"+ F(A")?]}

+ 2174 e A Fu+ ]

1
=—A—C+Z(¢')2 (19
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generates terms of the forafs(r) or [8(r)]? for Eq. (7), From this result we notice that in the bulkst 1), since
which implies that the brane tension receives an infinite corR— — 20 ~2, the weak gravity condition i#Msl>1. At the
rection. Note that this feature is present in the originall,
Randall-Sundrum scenario. Therefore, in its original form,
even in the weak-field limit and when the coefficients of the

R? terms are small but generic, small effects in the bulk can |

rane ¢(~0), in order to be able to neglect the? terms
relative toR, we require

have a large effect on the brane tension.
The origin for thesed-function divergencies is the zero
thickness of the brane. Yet while we can remove such sever.ghus, assuming that gravity is weakly coupled in the bulk so

divergencies by giving the brane a finite thickness, in order e N . .
to recover the Randall-Sundrum picture, we must addition:[halt Msl>1, bothx~1"" and k~Ms automatically satisfy

(30

- o Eq. (30).
ally show that theR? terms can be neglected in this case. the above analysis applies to the positive tension brane,
Therefore, we shall examine a solution of the form or “Planck brane’[1], although the same infinite corrections
~ M 4N _ o) ) ) to the negative tension brane arise wheg+ 0. Negative
gun dX* dxT=e7 gy, dx“dx"+dr (24 tension branes do not admit a thick wall description, at least

in the regime in which theR? terms become negligible.
However, we can also add a warped, compact extra dimen-
sion to a scenario that does not contain any thin negative
tension branes, such as that of Lykken and Raridal.

The purely gravitational action of Eq10), which in-
cludesR? terms, can also generate a warp function in the 5D

_ subspacg24) that resembles that in E28) but without the
S= Mgf d*x dr\/—_g[R— IVu®VMd—Vv(d)], need for a scalar field to generate a domain wall. In this case,
(25  We sl havé

for the exact.4= b= Ce=0 case, and then study the size
of R compared th%, both near the brane and deeply within
the bulk.

An elegant formalism for obtaining a thick domain wall
generated by a scalar fiefti(r),

2
has been used by several autk{d’rs_Q] V\iho noted thgt vyhen . o(r)=— —In[2 coslixr)], (31)
the scalar potential has the following “superpotential” form: Kl
1/oW\? 1, but where the width« ! and the asymptotic AdSlengthl
V(®)=35| -5 | —3W(P), (260 are, respectively,
Sa .\l
the 5D warp function and domain-wall profile are, respec- o= 3= A4V2A efrpress vz
tively, =2 pheft '
1 oW _ 112
Go=—ZW(®D), §b="—. 27 | 3T AV2A e 32
3 oD - : (32

We shall use the solution of Gremff] for a single do-

main wall atr — 0 (=) with With 0<<A gipter=15, Aex<<O and uy=0. This configura-
C

tion requires one fine tuning amonBes, Nes, and pies,

6 6 given in Ref.[4] by
W(d)= —sin( \ﬁ@)
! . Aether=— (3= 4\2A cppren) (3~ 3\ 2N eptter), (39)

and which can presumably be effected by the appropriately
2 warped compactification in the sixth dimension.
o(r)y=— Hln[z coslixr)], TheR? terms in this case are in no sense negligible—they
play the same role a(r) above and balance against tRe
6 1 term to produce the solutior(31). In particular, |R)|
P(r)=2 Harctariitan){ixr) : (28) |\ 4R for r>« 1 translates into
Herel corresponds to the asymptotic Adngth as in Eq. 2= 10V2A efper<l, (34
(7) and k! is the thickness of the brane. The scalar curva- o
ture is now free of singularities everywhere, which is nowhere satisfied in the allowed range AQ¥itqf -
= O[B4 2D it 29
T | 12 anir(«r). (29 2This configuration corresponds to E@.6) of Ref.[4].
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0.17A(y) 1 TAQ)
0 : y 0 /2

1 j N "1 2 3 4 5 6 7 8 9 10 11 12
FIG. 2. A periodic warp functiorA(y) for A=—1 and\=pu FIG. 3. A periodic warp functioi(y) for A=—1,x=-2, and

=—0.1. The initial condition iA"(0)=4.639 239 91. The value of #=—0.9. The initial condition i"(0)=3.199 870 015. The value
the AdS length, which appears in E), is | =10, which corre-  of the AdS length id =10, which corresponds to(®=0.396.

sponds tar(®)=0.586. . .. . .
tion of these periodic solutions. Including a small 5D cosmo-

V. CONCLUDING REMARKS logical constant does not greatly perturb these solutions, so
that the physically interesting case in which the effective 5D
An intriguing feature of this model is that for each choice theory of gravity is weak, should continue to exist even with
of the parameters in the action that admits a periodic warpigher-order terms in the underlying 6D theory.
function, a family of solutions exists. Elements of this family
are specified by the value of the 5D effective cosmological ACKNOWLEDGMENTS
constantA .. Alternatively, since each\y is associated
with a unique period—or at worst a discrete set of This work was supported in part by the Natural Sciences
periods—of the warp function, we can also specify an ele@nd Engineering Research Council of Canada.
ment by the size of the sixth dimensign. This behavior
differs from a factorizable geometry such as the original APPENDIX: EXAMPLES OF PERIODIC WARP
Kaluza-Klein picture which has a continuous set of FUNCTIONS
solutions—labeled by the compactification radius—which is

not related toA . Since the existence of periodic metrics resulting from Eq.

While this scenario does not require any unnatural choiceglg) can only be demonstrated numerically, it is helpful ©
of the parameters in E@4) to satisfy Eq.(16), this condition present a couple of examples. qu a smaly, that is,
is not the unique solution to the equations of motion. Somé! ol>1, thg shape of th? warp functigx(y) and the param-
further dynamical mechanism is still required that favors act€" SPace in which periodic ones exisn. (18)] are nearly
bulk A that obeys Eq(16). the same as in thAeﬁ=0Acase. In Figs. 2 and 3, the AdS
The picture that we have described allows solutions witHengthl that appears in thgyy components of the metric, is
a stable exponential electroweak Planck hierarchy without athe same in both cases, although the formsAy) differ
unnatural choice of the parameters in the action. Since thig1arkedly in the two examples. Figure 2 shows a typical pro-
picture crucially relies on the presence Rf terms in the file of a warp function for a small cosmological constant,
action, one might worry whether it persists upon includingM3A ~*>1, while Fig. 3 shows an example in which
further higher ordeR" terms. However, in Refl4] we ar- MéA‘1~1. In these numerical solutions it is more conve-
gued that such periodic solutions should exist generically fonient to choosé rather than the brane tensiar®), however,
an action composed of general powers of the curvature terwe can accommodate an arbitrar{® (< \|A]) by adjust-
sors. In particular, the small cosmological constant caseing the 5D AdS length which is a property of the solution
MéA‘1>1, with A =0, admitted a semianalytic descrip- and does not itself appear in the original 6D action.
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