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Randall-Sundrum scenario with an extra warped dimension

Hael Collins* and Bob Holdom†

Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7
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We investigate a scenario with two four branes embedded in six dimensions. When the metric is periodic and
compact in one of the dimensions parallel to the branes, the value of the effective cosmological constant for the
remaining five dimensions can assume a variety of values, determined by the dependence of the metric on the
sixth dimension. The picture that emerges resembles the Randall-Sundrum model but with an extra warped
dimension that allows the usual brane-bulk fine tuning to be satisfiedwithout finely tuning any of the param-
eters in the underlying six-dimensional theory. Although the action contains terms with four derivatives of the
metric, we show that when the branes have a finite, natural thickness, such terms have only a small effect on
the Randall-Sundrum structure. The presence of these four derivative terms also allows a configuration that
resembles that produced by a domain wall but which results from gravity alone.
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I. INTRODUCTION

Two of the most enigmatic features of the universe are
weakness of gravity compared to electroweak interaction
the hierarchy problem—and the small size of the cosmolo
cal constant. A recent approach@1# to the hierarchy problem
has observed that the presence of a small warped extr
mension could naturally produce an exponential hierar
between the scales of gravitational and standard model in
actions. The new element in this and related@2# scenarios is
the introduction of solitonic three-dimensional hypers
faces, or three-branes, to which the standard model fields
confined while gravity propagates in all the dimensio
These models still require a fine tuning to produce a lo
energy effective 311-dimensional theory with no cosmo
logical constant.

Extra dimensions might also provide a framework for a
dressing the cosmological constant problem. Instead of
ting the cosmological constant to an unnaturally small val
we can demand only that the theory should admit a ne
flat effectively 311-dimensional theory below some high
energy scale—regardless of the value of the cosmolog
constant. This picture was introduced by Rubakov a
Shaposhnikov with a six-dimensional model@3#. The idea is
that the cosmological constant distorts, or warps, some o
of the extra dimensions while leaving the theory with a
11-dimensional Poincare´ symmetry. If this idea is extende
so that this warping is accomplished with a metric that
both smooth and periodic in the extra dimensions, then th
is no need to cut off the space or to encounter singularitie
the extra dimensions.

An explicit realization occurs in 411 dimensions@4#
when the metric is smooth, nonsingular, and periodic in
extra dimension. We can then choose the extra dimensio
be compact with its size given by the period. At large d
tances compared to this period, the universe appears
dimensional~4D!. The 4D cosmological constant is dete
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mined by both the 5D cosmological constant and the geo
etry of the extra dimension. Therefore, we can achieve
11-dimensional Poincare´ invariance even when the 5D cos
mological constant is not zero, by choosing the solution
the field equations with the appropriate behavior in the ex
dimension. However, some further mechanism is still
quired to explain why this particular solution should be p
ferred.

This paper intends to combine these ideas into a scen
that incorporates the Randall-Sundrum picture@1# but with-
out finely tuning any of the parameters in the action. T
scenario starts with an effective action for gravity in six d
mensions including terms with up to four derivatives of t
metric. It also includes two parallel four-branes, which a
compact in one dimension and extend infinitely in the oth
three. With some mild bounds on the parameters in the
tion, we find that the equations of motion allow the geome
of the resulting universe to contain a five-dimension
anti–de Sitter (AdS5) subspace with a warped metric that
periodic in the sixth dimension.

A generic set of four derivative terms in the action app
ently implies an infinite tension on the branes, however, t
singularity appears as an artifact of the vanishing thickn
of the branes. When the brane has a finite thickness,
possible to show explicitly that the higher derivative term
can be neglected. An action that containsonly gravity—
including these four derivative terms but without any sca
fields—also admits solutions in which gravity is localize
about a hypersurface of codimension one. Far from this
persurface, the metric approaches an AdS metric as in
second Randall-Sundrum model@5#, however, it is the four
derivative terms and not a brane or a scalar field that effe
this localization of gravity.

II. PRELIMINARIES AND EFFECTIVE
ACTION DESCRIPTIONS

Randall and Sundrum@1# proposed that if the univers
were to consist of two three branes bounding a bulk region
five-dimensional anti–de Sitter space-time, then the reds
induced by the bulk metric at one of the branes could g
©2001 The American Physical Society03-1
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HAEL COLLINS AND BOB HOLDOM PHYSICAL REVIEW D 64 064003
erate an exponential hierarchy between the Planck scale
the scale of electroweak symmetry breaking. The action
their scenario contains an Einstein-Hilbert term for the b

Sbulk
RS 5M5

3E d4xdr A2ĝ@2LRS1R#, ~1!

while the branes located atr 50 and r 5r c only contribute
through their surface tensions,

Sbranes
RS 5M5

3E
r 50

d4x A2ĥ@22sRS#

1M5
3E

r 5r c

d4x A2ĥ@2sRS#. ~2!

Here ĝMN is the metric for AdS5,

ĝMN dxMdxN5e22ur u/ lhmndxmdxn1dr2, ~3!

andĥmn is the induced metric on the branes. We shall den
the usual space-time directions byxm, with m,n, . . .
50,1,2,3, andr describes the direction orthogonal to th
branes with M ,N, . . . 50,1,2,3,r . M5 denotes the bulk
Planck mass. The bulk Einstein equations determineLRS
56/l 2 and the specific choice ofsRS56/l for the brane ten-
sions is necessary for the low-energy four-dimensional~4D!
theory to be free of a cosmological constant.

As the cosmological constant and the surface tension
pear in the action, they represent fundamental paramete
the theory and we have no reasona priori that the fine-tuning
condition is satisfied. If instead the quantities that appea
the action arise from some more fundamental theory, the
might be possible for a dynamical mechanism to exist t
favors solutions in which the low-energy, four-dimension
theory is nearly flat.

We can adapt the picture developed in Ref.@4# without
branes to one which resembles the Randall-Sundrum
struction but where the AdS5 length is not uniquely deter
mined by the higher-dimensional cosmological constant. T
structure for such a model would includetwo extra
dimensions—one small periodic dimension to avoid fin
tuning the cosmological constant and a second to gene
the electroweak Planck hierarchy~Fig. 1!.

As in Ref. @4#, we consider gravity as an effective theor
expanded in powers of derivatives, with a scalar fieldf,

Sbulk5M6
4E d4x dr dyA2g~2L1R1aR21bRabR

ab

1cRabcdR
abcd1••• !

1M6
4E d4x dr dyA2g~2 1

2 “af“

af1DL!. ~4!

Herey represents the coordinate of the extra periodic dim
sion, witha,b, . . . 50,1,2,3,r ,y. L, andM6 denote the cos-
mological constant and the six dimensional Planck mass
spectively.
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The existence of metric solutions that are periodic iny
appears to be a fairly generic feature of actions that incl
terms beyond the standard Einstein-Hilbert terms@4#. For
example, when the theory is truncated so that the grav
tional action contains only terms with up to four derivativ
of the metric and including a scalar fieldf with DL
5k(“af“

af)2, the equations of motion for Eq.~4! admit
periodic solutions over a range of the paramet
$L,a,b,c,k%.

We instead shall focus upon the simpler case whereDL
describes a Casimir effect. Since the finitey direction explic-
itly breaks 511-dimensional Poincare´ symmetry, any quan-
tum vacuum contribution can differ in they and (xl,r ) di-
rections. We can include this effect by adding the followi
energy-momentum tensor to the field equations:

Tvac
a
b5diag~C,C,C,C,C,2C!. ~5!

Any contribution proportional to the identity can be absorb
into the definition of the cosmological constant.1 Satisfac-
tory, periodic solutions then exist whenC is above a mild
bound.

To produce a Randall-Sundrum scenario in five of t
dimensions, we shall examine a metric of the form

ds25gab~xl,r ,y! dxa dxb

5eA(y)ĝMN~xl,r ! dxM dxN1dy2 ~6!

with an AdS5 metric for the (xl,r ) subspace,

dŝ25ĝMN dxM dxN5e22ur u/ lhmn dxm dxn1dr2. ~7!

When A(y) is a periodic function ofy, we can obtain a
compact extra dimension with a very nontrivialy depen-
dence without any singularities. The shape ofA(y) deter-
mines the effective cosmological constant of theĝMN metric.
Since this metric is conformally flat, the linear combinatio

1Since we do not require thatL vanish, quantum contributions n
longer need to cancel the classical contribution toL; rather, they
are only regarded as some component of the totalL.

FIG. 1. The geometry of a six-dimensional model with two fou
branes. The small periodic coordinate isy. The direction orthogonal
to the four-branes,r, becomes the extra coordinate of the Randa
Sundrum model when we integrate out they dimension. We can
recover the second Randall-Sundrum model@5# by letting r c→`.
The model assumes an orbifold geometry aboutr 50.
3-2
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RANDALL-SUNDRUM SCENARIO WITH AN EXTRA . . . PHYSICAL REVIEW D64 064003
of the R2 terms that represents the squared Weyl tensor
not contribute to the equations of motion. It is convenient
parametrize the two remaining linear combinations by

m̃[20a16b14c, l̃[15a1 5
2 b1c. ~8!

Before examining the detailed form of the equations t
determine the warp functionA(y) with a Randall-Sundrum
5D subspace, we derive a 5D effective action by integrat
out the sixth dimension in the warped background given
the metric~6!. There, the scalar curvatureR is related to the
scalar curvatureR̂ of the 5D metricĝMN and derivatives of
the warp function

R5e2A(y)R̂25 A92 15
2 ~A8!2. ~9!

Here the prime denotes ay derivative. Similarly, the compo
nents of the Ricci and Riemann tensors in the full theory,Rab

and R bcd
a , can be expanded in terms of the analogous t

sors for the Randall-Sundrum subspace,R̂MN and R̂MNPQ .
Integrating out the smallyc dimension in a background

such as Eq.~7! whereR̂ is constant produces a five dime
sional effective action,

Sbulk
eff 5M5

3E d4x drA2ĝ ~2Leff1R̂1aeffR̂
21beffR̂MNR̂MN

1ceffR̂MNPQR̂MNPQ1••• !. ~10!

This action should reproduce the leading behavior for sm
xm-dependent perturbations about AdS5 ~7!, R4,1, or de Sitter
space backgrounds. The new parameters that appear in
effective action depend partially upon the ‘‘fundamental’’ p
rameters of the original action but also upon the behavio
the warp function. Thus, in the low-energy theory, the 5
cosmological constant is

M5
3Leff5M6

4E
0

yc
dye(5/2)A(y)@L2 1

4 ~f8!21 5
2 ~A8!2

1 5
8 m̃~A9!22 5

24 l̃~A8!4# ~11!

while the 5D Planck mass is

M5
35M6

4E
0

yc
dy e(3/2)A(y)@12 1

8 ~3m̃24l̃ !~A8!2#. ~12!

The coefficients of theR̂2 terms are

M5
3aeff5M6

4aE
0

yc
dy e(1/2)A(y), ~13!

with analogous expressions forbeff andceff . In these expres-
sions we have freely integrated by parts.

For the theory to resemble the standard Randall-Sund
picture, the five dimensional theory of gravity should
weak,M5l @1. SinceLeff; l 22, we require the effective 5D
cosmological constant to be small, which can easily oc
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when the contribution from the bulk cosmological constan
partially canceled by effects from the warp function in E
~11!.

In the weak 5D gravity limit,M5l @1, the self-coupling
terms become negligible and the leading behavior is g
erned by the Einstein-Hilbert terms in Eq.~10!. If we include
two four-branes atr 50 and r 5r c with respective tensions
s (0) and s (r c), then we recover the action considered
Randall and Sundrum@1#,

Seff5M5
3E d4x drA2ĝ~2Leff1R̂!

1M5
3E

r 50
d4xA2ĥ@22seff

(0)#

1M5
3E

r 5r c

d4xA2ĥ@22seff
(r c)

#1•••. ~14!

Here the effective tension on ther 50 brane is

M5
3seff

(0)5M6
4s (0)E

0

yc
dy e2A(y), ~15!

with an analogous expression for ther 5r c brane.ĥMN rep-
resents the metric induced on the branes atr 50 or r 5r c by
the metricĝMN .

The fine tunings of the tensions on the Planck bra
(seff

(0)) and the TeV brane (seff
(r c)) in Ref. @1# are

A6Leff5seff
(0)52seff

(r c) . ~16!

Numerically, we find solutions periodic in they direction
provided that the effective cosmological constant is of
same order or smaller than the full cosmological consta
uLeffu&O(L). Using the desired value ofLeff from Eq. ~16!
and applying Eqs.~11!, ~12!, and~15!, we can find solutions
that are periodic iny and satisfy Eq.~16! without finely
tuning any of the parameters when

~s (0)!2&O~L!. ~17!

In making this transition from the effective parameters ba
to the 6D parameters, any exponential factors are either s
or tend to cancel. In the Appendix we show two represen
tive examples, withs (0)50.586 ands (0)50.396 in units
whereL521.

Although Eq. ~16! actually contains two fine tunings
Goldberger and Wise@6# showed that including a massiv
bulk scalar field with quartic couplings to the brane, there
generating a nontrivial effective potential forr c , eliminates
one of these fine tunings. Since we expect that some s
mechanism can be adapted to our picture, we are left w
one condition onLeff in terms of seff

(0) . When Eq.~17! is
3-3
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HAEL COLLINS AND BOB HOLDOM PHYSICAL REVIEW D 64 064003
satisfied, solutions of the equations of motion from Eq.~4!
can satisfy this condition without finely tuning any of th
parameters in the action. The vanishing of the 4D effect
cosmological constant in the Randall-Sundrum scenario
this picture thus reduces to a dynamical question as to
the flat solutions are favored.

III. EXACT ANALYSIS

When we include one or two codimension one bran
orthogonal to the periodicy direction, in order to find a so
lution in which the low-energy effective theory for an o
server on one of these branes is flat, the tension of the br
requires a nonvanishing value of the effective 5D cosmolo
cal constant,Leff , Eq. ~16!. The method for numerically
demonstrating the existence of such solutions has been
tailed in Ref.@4# for a 5D theory with a flat 4D subspace
The qualitative results from Ref.@4# do not change when we
start from a theory in 511 dimensions and alter only slightl
when a small cosmological constant appears in the 5D s

space. The flat solutions, for whichĝMN5hMN in Eq. ~6!,

exist in the region of parameter space, whereL,m̃,0, and

l̃L.H 2 25
4 m̃L15A10m̃L2 15

2 for 0,m̃L< 9
10 ,

25
12 m̃L for 9

10 <m̃L,
~18!

although the exact location of the boundary correspondin
the second case of Eq.~18! has not been precisely dete
mined.

When a 5D cosmological constantLeff is included, the
form of A(y) alters slightly from itsLeff50 value; however,
numerical integrations show that the warp function rema
periodic as long asuLeffu&O(uLu), so that periodic solutions
exist without any additional fine tunings as long as Eq.~17!
is satisfied. This bound includes the case wherein the
effective theory of gravity is weak. Thus it is possible
satisfyM5

2Leff
21@1 even whileM6

2L21;1.
The bulk equations of motion for a universe with an Ad5

subspace~7!, are obtained by varying the full action~4!,

m̃@ 1
2 A-81 5

2 A8A-1 15
8 ~A9!21 25

8 A9~A8!2#

1l̃@A9~A8!21 5
8 ~A8!4#22A92 5

2 ~A8!2

2 l 22e2A(y)$61~3m̃24l̃ !@A91 3
4 ~A8!2#%

1 2l 24 e22A(y)@ 1
4 m̃1l̃ #

52L2C1
1

4
~f8!2 ~19!
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5
4 m̃@A8A-2 1

2 ~A9!21 5
2 A9~A8!2#1 5

8 l̃~A8!4

2 5
2 ~A8!2

2 l 22 e2A(y)@101 5
4 ~3m̃24l̃ !~A8!2#

110l 24 e22A(y)@ 1
4 m̃1l̃ #

52L1C2 1
4 ~f8!2.

The equation of motion for the scalar field is

f91 5
2 A8f850 ~20!

when the scalar field depends only on they direction, f
5f(y). The sum of the equations in Eq.~19! provides a
single differential equation forA(y) which we can integrate
numerically. Once a periodic solution is found, the differen
of these equations determines the behavior of the scalar fi
Note that since the scalar field appears in Eqs.~19! and~20!
only through its derivatives, onlyf8 is guaranteed to be
periodic; f(y) monotonically increases and must thus a
sume values only over a compact range.

We have found periodic solutions throughout the para
eter space~18! for small 5D cosmological constants of eith
sign. Two such examples are sketched in the Appendix. S
the theory is invariant undery translations and rescalings i
the other five coordinates, we are free to choose coordin
in whichA(0)5A8(0)50 without any loss of generality. We
also setA-(0)50. We then numerically integrated Eq.~19!
for an initial choice forA9(0). What we find is that for a
particular value ofA9(0), the warp function returns to its
initial conditions after some finiteyc : A(y)5A(y1yc).

Note that when we substitute the equations of motion~19!
into the expression for the effective cosmological const
~11!

M5
3Leff5M6

4E
0

yc
dy e3/2A(y)F 6

l 2 2
6

l 2 ~b1c!~A8!2

2
4

l 4 e2A(y)~10a12b1c!G , ~21!

and rewrite this expression in terms of the parameters of
effective theory~11!–~13!, we find

Leff5
6

l 2 2
4

l 4 ~10aeff12beff1ceff!5
6

l 2 2
8

l 4leff . ~22!

We would have obtained the same result by inserting
metric in Eq.~7! into the equations of motion for the effec
tive action, Eq.~10!.

IV. THICK BRANES

In passing to the weak gravity limit in order to ignore th
R̂2 terms in the 5D theory~14!, we might worry that while
their effect on the bulk dynamics is small, they neverthel
might significantly alter the brane tension. Indeed, the p
ticular linear combination of terms for which

meff[16aeff15beff14ceffÞ0 ~23!
3-4
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RANDALL-SUNDRUM SCENARIO WITH AN EXTRA . . . PHYSICAL REVIEW D64 064003
generates terms of the form] r
2d(r ) or @d(r )#2 for Eq. ~7!,

which implies that the brane tension receives an infinite c
rection. Note that this feature is present in the origin
Randall-Sundrum scenario. Therefore, in its original for
even in the weak-field limit and when the coefficients of t
R̂2 terms are small but generic, small effects in the bulk c
have a large effect on the brane tension.

The origin for thesed-function divergencies is the zer
thickness of the brane. Yet while we can remove such se
divergencies by giving the brane a finite thickness, in or
to recover the Randall-Sundrum picture, we must additi
ally show that theR̂2 terms can be neglected in this cas
Therefore, we shall examine a solution of the form

ĝMN dxM dxN5es(r )hmn dxmdxn1dr2 ~24!

for the exactaeff5beff5ceff50 case, and then study the siz
of R̂ compared toM5

2, both near the brane and deeply with
the bulk.

An elegant formalism for obtaining a thick domain wa
generated by a scalar fieldF(r ),

S5M5
3E d4x drA2ĝ@R̂2 1

2 “̂MF“̂

MF2V~F!#,

~25!

has been used by several authors@7–9# who noted that when
the scalar potential has the following ‘‘superpotential’’ form

V~F!5
1

2 S ]W

]F D 2

2
1

3
W2~F!, ~26!

the 5D warp function and domain-wall profile are, respe
tively,

] rs52
1

3
W~F!, ] rF5

]W

]F
. ~27!

We shall use the solution of Gremm@9# for a single do-
main wall atr 50 (r c→`) with

W~F!5
6

l
sinSA 6

k l
F D

and

s~r !52
2

k l
ln@2 cosh~kr !#,

F~r !52A 6

k l
arctanF tanhS 1

2
kr D G . ~28!

Here l corresponds to the asymptotic AdS5 length as in Eq.
~7! andk21 is the thickness of the brane. The scalar cur
ture is now free of singularities everywhere,

R̂5
8k

l
2S 8k

l
1

20

l 2 D tanh2~kr !. ~29!
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From this result we notice that in the bulk (r @k21), since
R̂→220l 22, the weak gravity condition isM5l @1. At the
brane (r'0), in order to be able to neglect theR̂2 terms
relative toR̂, we require

M5A l

k
@1. ~30!

Thus, assuming that gravity is weakly coupled in the bulk
that M5l @1, bothk; l 21 andk;M5 automatically satisfy
Eq. ~30!.

The above analysis applies to the positive tension bra
or ‘‘Planck brane’’@1#, although the same infinite correction
to the negative tension brane arise whenmeffÞ0. Negative
tension branes do not admit a thick wall description, at le
in the regime in which theR̂2 terms become negligible
However, we can also add a warped, compact extra dim
sion to a scenario that does not contain any thin nega
tension branes, such as that of Lykken and Randall@10#.

The purely gravitational action of Eq.~10!, which in-
cludesR̂2 terms, can also generate a warp function in the
subspace~24! that resembles that in Eq.~28! but without the
need for a scalar field to generate a domain wall. In this ca
we still have2

s~r !52
2

k l
ln@2 cosh~kr !#, ~31!

but where the widthk21 and the asymptotic AdS5 length l
are, respectively,

k5S 324A2Leffmeff

22meff
D 1/2

,

l 5S 324A2Leffmeff

2Leff
D 1/2

, ~32!

with 0<Leffmeff<
9

32 , Leff,0 andmeff<0. This configura-
tion requires one fine tuning amongLeff , leff , and meff ,
given in Ref.@4# by

Leffleff52~324A2Leffmeff!~
9
8 2 1

2 A2Leffmeff!, ~33!

which can presumably be effected by the appropriat
warped compactification in the sixth dimension.

TheR̂2 terms in this case are in no sense negligible—th
play the same role asF(r ) above and balance against theR̂

term to produce the solution~31!. In particular, uR̂u
@uleffR̂

2u for r @k21 translates into

45
2 210A2Leffmeff!1, ~34!

which is nowhere satisfied in the allowed range forLeffmeff .

2This configuration corresponds to Eq.~4.6! of Ref. @4#.
3-5
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V. CONCLUDING REMARKS

An intriguing feature of this model is that for each choi
of the parameters in the action that admits a periodic w
function, a family of solutions exists. Elements of this fam
are specified by the value of the 5D effective cosmologi
constantLeff . Alternatively, since eachLeff is associated
with a unique period—or at worst a discrete set
periods—of the warp function, we can also specify an e
ment by the size of the sixth dimensionyc . This behavior
differs from a factorizable geometry such as the origi
Kaluza-Klein picture which has a continuous set
solutions—labeled by the compactification radius—which
not related toLeff.

While this scenario does not require any unnatural cho
of the parameters in Eq.~4! to satisfy Eq.~16!, this condition
is not the unique solution to the equations of motion. So
further dynamical mechanism is still required that favors
bulk Leff that obeys Eq.~16!.

The picture that we have described allows solutions w
a stable exponential electroweak Planck hierarchy withou
unnatural choice of the parameters in the action. Since
picture crucially relies on the presence ofR2 terms in the
action, one might worry whether it persists upon includi
further higher orderRn terms. However, in Ref.@4# we ar-
gued that such periodic solutions should exist generically
an action composed of general powers of the curvature
sors. In particular, the small cosmological constant ca
M6

2L21@1, with Leff50, admitted a semianalytic descrip

FIG. 2. A periodic warp functionA(y) for L521 andl5m
520.1. The initial condition isA9(0)54.639 239 91. The value o
the AdS length, which appears in Eq.~7!, is l 510, which corre-
sponds tos (0)50.586.
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tion of these periodic solutions. Including a small 5D cosm
logical constant does not greatly perturb these solutions
that the physically interesting case in which the effective
theory of gravity is weak, should continue to exist even w
higher-order terms in the underlying 6D theory.
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APPENDIX: EXAMPLES OF PERIODIC WARP
FUNCTIONS

Since the existence of periodic metrics resulting from E
~19! can only be demonstrated numerically, it is helpful
present a couple of examples. For a smallLeff , that is,
M6l @1, the shape of the warp functionA(y) and the param-
eter space in which periodic ones exist@Eq. ~18!# are nearly
the same as in theLeff50 case. In Figs. 2 and 3, the AdS5

lengthl that appears in theĝMN components of the metric, is
the same in both cases, although the forms ofA(y) differ
markedly in the two examples. Figure 2 shows a typical p
file of a warp function for a small cosmological constan
M6

2L21@1, while Fig. 3 shows an example in whic
M6

2L21;1. In these numerical solutions it is more conv
nient to choosel rather than the brane tension,s (0), however,
we can accommodate an arbitrarys (0) (&AuLu) by adjust-
ing the 5D AdS lengthl which is a property of the solution
and does not itself appear in the original 6D action.

FIG. 3. A periodic warp functionA(y) for L521, l522, and
m520.9. The initial condition isA9(0)53.199 870 015. The value
of the AdS length isl 510, which corresponds tos (0)50.396.
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