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The cosmological constant and warped extra dimensions
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We study the behavior of a general gravitational action, including quadratic terms in the curvature, supple-
mented by a compact scalar field in 411 dimensions. The generalized Einstein equation for this system admits
solutions which are compact in one direction and Poincare´ invariant in the remaining directions. These solu-
tions do not require any fine-tuning of the parameters in the action—including the cosmological constant—
only that they should satisfy some mild inequalities. Some of these inequalities can be expressed in a universal
form that does not depend on the number of extra compact dimensions when the scenario is generalized beyond
411 dimensions.
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I. INTRODUCTION

The old idea that the universe might contain more than
observed four space-time dimensions has reemerged rec
in novel attempts to explain the weakness of gravity co
pared to the other forces@1# and the hierarchy problem@2#,
but it was realized earlier@3# that such theories might be ab
to address the cosmological constant problem@4#. The hope
is that with extra dimensions, the metric might be ab
through a nontrivial dependence on the extra coordina
both to accommodate an arbitrary value for the cosmolog
constant and to maintain Poincare´ invariance in 311 of the
directions. In their original treatment, Rubakov and Shapo
nikov @3# found that this idea could be realized with tw
extra dimensions but that the bulk metric contained a sin
larity. Moreover, their system was shown to be unstable
Ref. @5#. The more recent scenarios@2# involving 3-branes
reintroduce the cosmological constant problem in the form
a fine-tuning between the bulk cosmological constant and
brane tension. The attempts by Refs.@6# and@7# to avoid this
fine-tuning, using a model with naked singularities in t
bulk, also contained unsatisfactory features, described
Refs.@8# and @9#.

We pursue the original idea of Rubakov an
Shaposhnikov—that a nonfactorizable metric that depe
on an extra dimension could account for the presence
cosmological constant. In particular, we seek metrics that
periodic in this extra dimension so that it can be made na
rally compact when the period of the metric is identified w
the compactification radius.

The standard Einstein equation for a theory without a
3-branes but with a cosmological constant does not pe
metrics that simultaneously satisfy both requirements—
the metric is periodic and free of singularities. We therefo
consider the effect of including higher order terms in t
gravitational action which contain two powers of the curv
ture tensor@10#, such as a Gauss-Bonnet term@11–13#. Such
terms can be regarded as the next natural terms in an e
tive theory of the gravitational action such as might arise
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the low-energy expansion of some quantum theory of gr
ity.

We show that a general five-dimensional gravitational
tion including all terms up to fourth order in derivative
when supplemented by a compact scalar field permits m
rics that are periodic in the fifth coordinate and prese
Poincare´ invariance in the other four dimensions. This res
does not require any fine-tuning at the level of the para
eters in the action—including the cosmological constan
other than that they should satisfy some mild bounds. Mo
over, since these solutions are smooth and contain
singularities, either in the metric or in the scalar field, t
scenario does not require any 3-branes with an accomp
ing requisite fine-tuning between the brane tension and b
cosmological constant. The only requirement is that the co
pactification radius should be sufficiently small so as not
produce any discrepancies with current experiments.

In the next section, we review the solution to Einstein
equations in a five-dimensional~5D! theory with a cosmo-
logical constant and a free scalar field. Section III derives
field equations from a general action that includes quadr
terms in the curvature. In Sec. IV, we present several ex
solutions of these field equations and further show that w
the Gauss-Bonnet term alone the metric does not have p
odic, smooth, nonsingular solutions with 4D Poincare´ invari-
ance. The fifth section shows the requirements that a gen
R2 action should satisfy to admit periodic, smooth, nons
gular metrics and discusses a few representative cases f
numerically. Section VI examines a few general properties
including higher order terms in the effective action and d
cusses theories with more than one extra dimension. Sec
VII concludes.

II. BACKGROUND

In order to show the importance of higher derivati
terms in the action, we first examine the solutions for a fiv
dimensional theory with only the standard Einstein-Hilb
action and a free scalar field:1

1Our convention for the signature of the metric is~2,1,1,1,1!
while the Riemann curvature tensor is defined by2R bcd

a []dGbc
a

2]cGbd
a 1Ged

a Gbc
e 2Gec

a Gbd
e .
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S5M5
3E d4x dyA2g~2L1R!

2
1

2
E d4x dyA2g~¹af¹af!. ~2.1!

HereL andM5 are, respectively, the cosmological consta
and the five-dimensional Planck constant.gab is the metric
for the space-time. We denote the coordinates that co
spond to the usual space-time dimensions byxm, where
m,n,...50,1,2,3, and the fifth coordinate byy, with
a,b,c,...50,1,2,3,y. Ignoring the scalar field, whenL.0
the universe is an anti–de Sitter~AdS! space-time whileL
,0 corresponds to a de Sitter~dS! space-time. We shal
often work in units in whichM551.

When the metric has the form

ds25gab dxa dxb5eA~y!hmn dxm dxn1dy2, ~2.2!

the mm andyy components of the Einstein equation for E
~2.1! are

2 3
2 ~A8!22 3

2 A952L1 1
4 ~f8!2

2 3
2 ~A8!252L2 1

4 ~f8!2 ~2.3!

while the equation for the scalar field is

f912A8f850. ~2.4!

A solution to Eqs.~2.3!,~2.4! is given by

eA~y!5eA0 cos1/2@2A2 2
3 L~y2y0!#,

f8~y!52A2L sec@2A2 2
3 L~y2y0!#, ~2.5!

whereA0 andy0 are constants of integration, in addition
the trivial f8(y)50 solution. WhenL,0 ~dS!, we are able
to obtain periodic solutions. However, the scalar field pe
odically becomes singular and the metric becomes im
nary. In order to remove this unacceptable behavior from
space-time, we require 3-branes to cutoff the manifold
extra dimension before the ill-behaved region is encounte
When L.0 ~AdS!, only thef8(y)50 solution is real and
the theory can only be compact if we return to the origin
Randall-Sundrum scenario@2#. Thus for either sign ofL, the
scenario must contain some 3-branes which necessita
fine-tuning of the brane tension with the value of the cosm
logical constant.

In the following, we shall see how the addition of a ge
eral R2 action can lead to an acceptable dependence of
warp functionA(y) on an extra compact dimension. No
that such an action encounters a difficulty when the ex
dimension is not compact@14#, as noted in Ref.@15#. If we
consider variations about a flat 4D metric,hmn→gmn

(4)(xl),
we can relate the five-dimensional curvature for Eq.~2.2! to
the four-dimensional curvature through

R~xm,y!5e2A~y!R~4!~xm!1¯ , ~2.6!
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whereR(4) is the curvature associated withgmn
(4) . By integrat-

ing out the extra dimension,

E d4x dyA2gM5
3R~xm,y!5E d4xA2g~4!M5

3R~4!~xm!

3E dy eA~y!1¯ , ~2.7!

we determine the effective Planck’s constantM4 measured
by a four-dimensional observer in terms of the 5D Planc
constantM5 throughM4

2[M5
3*dyeA(y). As long as this in-

tegral is finite we can define a four dimensional effecti
theory of gravity. This argument fails at the next order sin

E d4x dyA2gR25E d4xA2g~4!~R~4!!2E dy11¯ ,

~2.8!

so that in an effective theory, this term receives a correct
proportional to the volume of the extra dimension. The pro
lem only worsens at higher orders where the@R(4)#k terms
receive an enhancement of*dye(22k)A(y). One way@15# to
evade this difficulty occurs when the term induced in the
effective theory is purely topological, as is the case for
4D Gauss-Bonnet term. In this paper we instead consid
scenario with compact extra dimensions along with a gen
R2 action; a Gauss-Bonnet term alone is insufficient for o
picture, as we show below.

III. GRAVITY FROM A GENERALIZED ACTION

A generic action with up to four derivatives of metric ca
be written as

S5Sf1M5
3E d4x dyA2g~2L1R1aR21bRabR

ab

1cRabcdR
abcd1¯ !. ~3.1!

The additional terms can be interpreted as a squared W
tensor

CabcdC
abcd5

1

6
R22

4

3
RabR

ab1RabcdR
abcd, ~3.2!

a Gauss-Bonnet term

E5R224RabR
ab1RabcdR

abcd, ~3.3!

and a third possible independent term

T5
1

2
R223RabR

ab1RabcdR
abcd. ~3.4!

The Weyl term vanishes when the metric is conformally fl
as is the case for Eq.~2.2!, so we are free to add som
multiple of the Weyl term to Eq.~3.4! without affecting the
field equations. Later we shall usem and l to denote the
coefficients of the third term~3.4! and Gauss-Bonnet term
respectively,
0-2
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m[16a15b14c, 3l[10a12b1c. ~3.5!

We include the effect of a scalar field, initially throug
the action for a free field

Sf5E d4x dyA2g~2 1
2 k0¹af¹af!, ~3.6!

although later we shall add a term (¹af¹af)2 which is of
the same order as theR2 terms. Note that we have include
a coefficientk0 in Eq. ~3.6!.

Upon varying the action with respect to the metric w
obtain @16#

2gabL1Rab2
1
2gabR21

2gab@aR21bRcdR
cd1cRcdefR

cdef#

12aRRab24cRacRb
c12cRacdfRb

cdf22~b12c!RcdRacdb

11
2~4a1b!gab¹

2R2~2a1b12c!¹a¹bR

1~b14c!¹2Rab5Tab, ~3.7!

where Tab represents the energy-momentum tensor for
scalar field

Tab[
1
2 k0@¹af¹bf2 1

2 gab¹cf¹cf#. ~3.8!

For a nonfactorizable metric of the form of Eq.~2.2!, the
sum of themm and theyy components of Eq.~3.7! yields an
equation in which the free scalar field does not appear,

m@ 1
2 A-813A8A-1~A9!214A9~A8!2#

1 3
2 l@A9~A8!21~A8!4#23~A8!22 3

2 A9522L,

~3.9!

so that the difference of these components can be use
determine its behavior,

k0~f8!25m@A-812A8A-14~A9!2#13lA9~A8!223A9.
~3.10!

The scalar field equation appears in Eq.~2.4!, but it is not
independent being a consequence of Eqs.~3.9! and ~3.10!.
When A(y) is a periodic function ofy, then Eq.~3.10! im-
plies thatf8(y) should also be periodic. Since this equati
is nonlinear inA(y), the integral off8(y) over one period is
in general finite and nonzero sof must itself be compact
Any additional dependence of the action onf, rather than on
its derivatives, must be through periodic functions.

IV. ANALYTICAL SOLUTIONS

The full fourth-order set of differential equations for
theory with a free scalar field and a set ofR2 terms with
arbitrary coefficients does not admit a simple analytic so
tion except for special cases. In this section, we study
such examples of exact solutions. Although these soluti
do not produce warp functionsA(y) that are smooth, non
singular and periodic, they provide partial boundaries for
08402
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region of the$L,l,m% parameter space in which we hav
found such solutions numerically. One of these surfaces
quires both them andl terms in the field equations. Amon
this class of solutions is a metric which falls off expone
tially as y→6`, as in Ref.@14# but without the need of a
3-brane. A second of the surfaces,m50, represents a theor
with only a Gauss-Bonnet term at theR2 order. Note that a
third boundary lies along the surfaceL50 where we can
trivially satisfy the field equations~3.9!, ~3.10!, and ~2.4!
with constant solutionsA(y)5A0 andf(y)5f0 . We have
found nontrivial periodic solutions only whenL,0 andm
,0.

A. An exact solution

We can discover an interesting set of exact solutions
noting that the linear combination of field equations th
eliminates the scalar field~3.9! does not depend onA(y)
except through its derivatives and does not contain the fi
coordinate explicitly. Together these properties allow E
~3.9! to be recast as a second order differential equation

mF1

2
P2

d2P

dz2 1
1

2
PS dP

dz
D 2

13zP
dP

dz
1P214Pz2G

1
3

2
l@Pz21z4#23z22

3

2
P522L, ~4.1!

through the introduction of

z[
dA

dy
and P~z![

dz

dy
. ~4.2!

A simple set of solutions in the full$L,l,m% parameter space
is found by substituting

P~z!5az21b ~4.3!

into Eq. ~4.1! which imposes the constraints

L5
3

4

b

a12
, l52

a

b

3a14

a12
, m5

3

2

1

b

1

a12
. ~4.4!

The resulting warp functionA(y) is periodic provided that
ab.0:

eA~y!5eA0 $cos@Aab~y2y0!#%21/a. ~4.5!

Note that this solution forA(y), when substituted into Eq
~3.10!, implies that the scalar field is constant,f8(y)50.

In general, this solution is not satisfactory since it co
tains singularities whena.0 and becomes complex for ge
neric values ofa,0. Whena52 1

2 n, wheren is a positive
integer, the behavior improves so thateA(y) is everywhere
real and nonsingular whenL,0, although for this caseeA(y)

vanishes at regular intervals. We shall find in the next sec
that the set of solutions in Eq.~4.5! forms a boundary in the
$L,l,m% parameter space beyond which periodic, nonvani
ing solutions exist whenL,0 andm,0.
0-3
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We can also use Eq.~4.5! to generate a variant of th
usual Randall-Sundrum scenario@14#, but without including
a 3-brane. For example, whena.0 andL,0, we find that

eA~y!5eA0 sech„A2 4
3 a~a12!L~y2y0!…1/a. ~4.6!

Although this solution requires fine-tuning the parameters
the action, as given in Eq.~4.4!, it achieves a metric whos
zero mode is centered abouty5y0 and which falls off expo-
nentially asy→6`. Unlike previous examples@17# which
used a thick brane to obtain this behavior, Eq.~4.6! does not
require any scalar field. Since this theory has an infinite e
dimension, some method of trapping the standard mo
fields neary5y0 is further required.

The endpoints of the set of solutions in Eq.~4.6!, shown
in Fig. 1, have interesting properties. Takinga→` (m50,
lL52 9

4 ), so that the region in which the first derivative
the warp function smoothly changes sign has a vanish
thickness, the solution~4.6! approaches the warp functio
studied by Randall and Sundrum@14#,

eA~y!5eA0e22A2L/3uy2y0u. ~4.7!

At the other end point,a→0 (l50, mL5 9
32 ), the warp

function produces a Gaussian metric

eA~y!5eA0e4L/3~y2y0!2
, ~4.8!

which for L,0 decreases more rapidly away fromy5y0
than the standard Randall-Sundrum metric.

B. Insufficiency of a Gauss-Bonnet term alone

A theory with only a Gauss-Bonnet contribution to theR2

action has the advantage of producing a set of differen
equations with no more than second derivatives of the w
function A(y). Unfortunately, for our purpose restricting t
such a theory too greatly constrains the form of the solutio
Without them terms, Eq.~3.9! implies that all the extrema o
A(y), if they exist, are all local maxima or all local minim
depending upon the sign ofL since at the points wher
A8(y)50, A9(y)5 4

3 L. However, the surfacem50 is still
important as it provides a partial boundary to the region
the full $L,l,m% parameter space in which satisfactory, pe
odic solutions do exist.

When the metric has the form~2.2!, any warp function
A(y) that has an extremum will encounter a singularity on
a finite distance away from it. Integrating the scalar fie
equation~2.4!, f8(y)5A24Le22@A(y)2A0#,2 and substitut-
ing this result into the linear combination of Eqs.~3.9! and
~3.10! that eliminatesA9(y) whenm50 yields a first order

2With f8(y)50, the only possible solutions are those of the fo

A~y!56@16A12
4
3 lL#1/2

y2y0

Al
1A0 , ~4.9!

where any of the four possible sign choices is allowed. The cas
a scalar field in aL50 theory was solved in Ref.@12#.
08402
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differential equation. Its solution determinesA(y) implicitly:

6~y2y0!5
Al

2Ax011
arctanhSA 16x

x011
D

2
Al

2Ax021
arctanSA 16x

x021
D , ~4.10!

where

x[Ax0
21 4

3 lLe24„A~y!2A0… and x0[A12 4
3 lL.

~4.11!

The signs on the right side of Eq.~4.10! cannot be chosen
separately; however, the minus sign should be used to ob
A8(y)50 at some point. In the limitl→0, Eq.~4.10! repro-
duces Eq.~2.5!.

In the interestingL,0 region, from the expression~4.10!
we observe that no acceptable solutions exist for any va
of l. For example, whenl,0, A(y) becomes singular in Eq
~4.10! at a finite distance fromy0 . For l.0, the warp func-
tion also contains a singularity, but this time it appears in
second derivative. Solving Eq.~3.9! for A9(y), we note that
it becomes singular wheneverA8(y)56l21/2, which again
occurs at a finite value ofy. Appendix A contains a fuller
discussion of the properties of the solution~4.10! and the
location of its singularities.

V. AN ANALYSIS OF THE FULL R2 ACTION

Before describing our approach for finding numerical s
lutions and presenting several representative examples
summarize with a sketch of the parameter space in Fig
The unshaded area of the figure, which lies in theL,0 and
m,0 region of the$L,l,m% parameter space, shows whe
smooth, non-singular, periodic warp functions exist. We c
describe another boundary by solving forl as a function of
m in Eq. ~4.4!,

lL52
8

3
mL64A2mL2

9

4
; ~5.1!

we immediately observe that the shape of the curve of s
tions ~4.5! is the same for all values of the cosmologic
constant,L,0, if the l and m axes are appropriately re
scaled. This feature corresponds to a rescaling invarianc
the field equation~3.9! under y→sy, m→s2m, l→s2l
and L→s22L, wheres is a real constant. Therefore, w
can express our results in terms of two dimensionless par
eters$lL,mL%.

A periodic solution for a generic set of values ofL, l, and
m is found by numerically integrating the differential equ
tion ~3.9!. The coordinatey does not explicitly appear in Eq
~3.9! which moreover only depends on the warp functi
through its derivatives. Thus, we can always translate by
→y2y0 and A(y)→A(y)1A0 to obtain another solution
Therefore we can chooseA(0)5A8(0)50 without any loss
of generality. We also choseA-(0)50 which limits our so-

of
0-4



w
we
a
i-

r
ly
it
rm
e-
r

ion
r

re

is
n
a
d
h

ly

r

n

-

at

to

the

of
by

he
-

-

r-

e-

a
olu
ns
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lutions to those that are even about the origin, although
did not find any periodic solutions that are odd when
relaxed this constraint. The subsequent evolution of the w
function away fromy50 then depended solely upon the in
tial value of the second derivativeA9(0).

An arbitrary value forA9(0), given some set of values fo
$lL,mL%, does not lead to a periodic solution. Generical
the warp function tended to reach a singularity at a fin
distance or to approach asymptotically a solution of the fo
A8(y)5const asy→`. Between these two extremes, pr
cisely chosen values ofA9(0) produce periodic solutions fo
arbitrarily chosen values oflL andmL within the unshaded
region of Fig. 1. This result demonstrates the existence
periodic solutions which naturally select a compactificat
radius without the need to add a 3-brane to the theory o
fine-tune the parameters in the action~3.1!, as long as they
lie within the allowed region of parameter space.

When the scalar field enters the action only through a f
kinetic term, the value ofk0(f8)2 is negative for all the
periodic solutions that we found numerically. Although th
result implies that the kinetic energy term has the wro
sign, it appears to be an artifact of truncating the scalar
tion; this unphysical feature disappears when higher or
terms appear in the scalar action. An example of suc
solution is placed at the end of this section.

One region of parameter space that admits a semiana
approximation of the solution is whereLm;e2!1 with
Ll@” 1. In this region we can try an oscillating solution fo
the warp function of the form

A~y!5A01e cos@v~y2y0!#

1A2e2 cos@2v~y2y0!#1O~e3! ~5.2!

for a small amplitudee. When substituted into Eq.~3.9!, the
only terms that areO(e) are those linear inA(y):

1
2 mA-82 3

2 A95O~e2! ~5.3!

FIG. 1. A plot of the parameter space$l,m%. For convenience,
we have chosenL521 in generating this figure. The shaded r
gion does not appear to contain periodic solutions forA(y) while in
the unshaded region, we have found periodic solutions numeric
for arbitrarily chosen points. The curve depicts the surface of s
tions of Eq.~4.5!; the darker line shows the location of the solutio
in Eq. ~4.6!.
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which, to leading order, requiresv2'23/m so that the pe-
riod of the compact dimension is

yc'2pA2m/3. ~5.4!

The O(e2) terms, which arise from the following terms i
Eq. ~3.9!,

1
2 mA-813mA8A-1m~A9!223~A8!22 3

2 A9522A1O~e3!,
~5.5!

determine the value ofe in terms of the cosmological con
stant

e2'2
4

3

L

v2 , ~5.6!

and the coefficient of theO(e2) term in the warp function
A252 1

4 . Thus, for the linear terms to dominate requires th
Lm' 9

4 e2!1. Note that since thel terms in the field equa-
tions contain at least three powers of the warp function,
this orderl can be arbitrary provided it does not alter thee
expansionLl@” 1.

This semianalytic estimate is confirmed when we plot
numerical solution to Eq.~3.9! for L521, l50, andm5
20.01 shown in Fig. 2. HoldingL521 andl50 fixed and
varyingm, we have checked that the period and amplitude
the numerical solutions is better and better approximated
Eqs.~5.4! and ~5.6! as we letm→0.

We can find numerical solutions arbitrarily close to t
surfacem50, for l, 9

4 andL521, and to the surface de
scribed by Eq.~5.1!, provided m.2 81

128. Apparently, an-
other boundary exists for solutions withm,2 81

128 which ex-
tends approximately along the linem; 9

8 l. We have

FIG. 2. A periodic warp functionA(y) for L521, l50 and
m520.01. The initial condition isA9(0)521.460889. The value
of k0(f8)2 oscillates about24, also with a small period and am
plitude.

FIG. 3. A periodic warp functionA(y) for L5l5m521. The
initial condition is A9(0)55367.89. Despite their cusped appea
ance, the minima are smooth.

lly
-
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HAEL COLLINS AND BOB HOLDOM PHYSICAL REVIEW D 63 084020
indicated this boundary in Fig. 1 by extending the shad
region beyond the curve~5.1!. As l and m approach this
boundary from above, the numerical solutions grow m
cusped as in the more extreme example depicted in Fi
where the warp function has broad maxima and sharp, d
minima. The amplitude is also significantly larger so th
eA(y) changes by several orders of magnitude. Although
figure appears to have cusps at the minima, the func
A(y) is actually smooth at these points and has no disco
nuities in the slope.

Most solutions within the unshaded region of Fig. 1 te
to lie between the extremes depicted in Figs. 2 and 3 a
the example provided by Fig. 4. More examples are p
sented in Appendix B.

Finally, we must address whether the kinetic energy te
in the scalar action can have the correct sign,k051, when
A(y) is periodic. If we include the additional term3

2 1
4 k1~¹af¹af!2 ~5.7!

then the field equations~3.7! require

m@ 1
2 A-812A8A-1 3

2 ~A9!212A9~A8!2#

1 3
4 l@2A9~A8!21~A8!4#2 3

2 ~A8!22 3
2 A9

52L1 1
4 k0~f8!21 1

8 k1~f8!4

m@A8A-2 1
2 ~A9!212A9~A8!2#1 3

4 l~A8!42 3
2 ~A8!2

52L2 1
4 k0~f8!22 3

8 k1~f8!4. ~5.8!

Since these expressions are only quadratic in@f8(y)#2, we
can solve for

@f8~y!#25
k0

3k1
F216H 1224

k1

k0
2

3FL1mS A8A-2
1

2
~A9!212A9~A8!2D

1
3

4
l~A8!42

3

2
~A8!2G J 1/2G ~5.9!

3Other terms of the same order are possible, such asRab¹
af¹bf,

but the squared kinetic term is the simplest to analyze.

FIG. 4. An example of a periodic warp function that lies b
tween the extremes represented by Figs. 2 and 3. For this sketc
usedL521, l523, andm522. The initial condition isA9(0)
542.2832125.
08402
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and substitute the result into Eq.~5.8! to obtain a differential
equation forA(y). This equation still admits periodic solu
tions such as the example sketched in Fig. 5 forL521, l
50, m520.1, k051, andk1520.25 and choosing the mi
nus root4 in Eq. ~5.9!. The value ofk0(f8)2 is positive so we
obtain the standard normalization for the scalar kinetic
ergy.

VI. DISCUSSION

A. Higher order terms in the effective action

The gravitational action that we have considered sho
be regarded as only the first few terms of a possibly infin
effective action arranged in powers of derivatives. Therefo
we might worry whether higher order terms will spoil th
periodic behavior seen in the last section. Here we brie
motivate why the existence of smooth, periodic, nonsingu
solutions might be a generic feature of this scenario.

The smallL region of the generalized parameter spa
formed by the coefficients of the terms in the effective a
tion, still should admit warp functions that approximate
nusoids as in Eq.~5.2!,

A~y!5A01e cos@v~y2y0!#1O~e2!. ~6.1!

For this approximate solution, the amplitude of the oscil
tions is assumed to be smallO(e), so terms in the equation
of motion with fewer powers ofA(y) tend to dominate the
shape of the warp function. For an action with a general
of Rk terms included, the leading behavior in thee!1 limit
is

2
3

2

d2A

dy2 1
1

2
m

d4A

dy4 1 (
k53

`

(
i

mk,i

d2kA

dy2k 5O~e2!,

~6.2!

where themk,i are some linear combinations of the coef
cients of theRk terms. When the warp function is of the form
~6.1!, these linear terms have solutions as long as the co
cientsmk,i are such that the equation

4The choice of the plus root gives a periodic solution that ag
requiresk0,0.

we
FIG. 5. A periodic warp functionA(y) ~solid line! and f8(y)

~dashed line! for L521, l50, m520.1, k051, andk1520.25.
The initial condition isA9(0)523.77364592.
0-6
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3

2
1

1

2
mv21 (

k53

`

(
i

~21!kmk,iv
2~k21!50 ~6.3!

has a real root. As before, the cosmological constant ca
related to the amplitudee, by solving for theO(e2) terms of
the field equations of the full Lagrangian. Thus, when
cosmological constant is small,L;O(e2), then the full pa-
rameter space contains a region in which the warp func
is, up to O(e2) corrections, given by a sinusoid~6.1!. As
with the parameterl in the R2 action, the other parameter
which appear in the full equations of motion, which we d
note bylk,i , only appear in terms that are at least cubic
powers of the warp function and so only need to satisfy
weaker requirement that they do not ruin thee expansion,
lk,iL@” 1.

The problem of establishing the existence of more gen
periodic solutions becomes only more difficult at higher
ders. However, well-behaved periodic solutions do seem
nerically to exist for subsets of the terms of the general fi
equations other than the linear terms. As an example,
such subset of the terms in Eq.~3.9!,

1
2 mA-81@4m1 3

2 l#A9~A8!250, ~6.4!

also has periodic solutions whenl/m.2 8
3 . One subset of

the terms in theR3 action is
n

q

or
to
as

08402
be

e

n

-

e

al
-
e-
d
ne

A--1c1A-8~A8!22c2A9~A8!450, ~6.5!

which has periodic solutions for some subregion of the sp
c1 ,c2.0. This behavior also suggests that it is plausible t
periodic solutions should exist in some region of the e
larged parameter space when higher order terms are inclu
in the gravitational action.

B. The scenario ind dimensions

Although for clarity we have concentrated on a scena
in which the universe contains 311 infinite dimensions and
one extra compact dimension, the picture can be general
to higher dimensions with many of the features found abo
intact. The most trivial modification of the metric~2.2!
would be of the form

ds25eA~y!Fhmn dxm dxn1 (
i 51

d25

dzi
2G1dy2 ~6.6!

for a theory ind total space-time dimensions. Although th
warp functionA(y) must still be a periodic function ofy, the
zi directions can be trivially compactified with arbitrary com
pactification radii. The generalized Einstein equation~3.7!
for this scenario produces the following two independent d
ferential equations:
m̃@ 1
2 A-81 d21

2 A8A-1 3~d21!
8 ~A9!21 ~d21!

8

2
A9~A8!2#1l̃@A9~A8!21 d21

8 ~A8!4#2 ~d21!~d22!
8 ~A8!22 d22

2 A9

52L1 1
4 k0~f8!2

d21
4 m̃@A8A-2 1

2 ~A9!21 d21
2 A9~A8!2#1 d21

8 l̃~A8!42 ~d21!~d22!
8 ~A8!252L2 1

4 k0~f8!2. ~6.7!
ion

ters
in
As before, only two of the three possible linear combinatio
of R2 terms contribute,5

m̃54~d21!a1db14c,

l̃5
d24

4
@d~d21!a1~d21!b12c#. ~6.8!

As in thed55 case, for a conformally flat metric such as E
~6.6! the squared Weyl termCabcdC

abcd does not contribute
to the equations of motion~6.7!. l̃ vanishes ford54 since
the Gauss-Bonnet term then corresponds to the Euler f
and is a topological density. Incidentally, for the solution
be periodic in this unphysical case which only h

5Note that in Eq.~3.5! we have definedl5
2
3 l̃ud55 to agree with

the conventional normalization for the Gauss-Bonnet term.
s

.

m

(211)-dimensional Poincare´ invariance,m must be moder-
ately fine-tuned to lie within the interval2 1

24 ,m,0.
An interesting feature of this more general field equat

is that the analytic solutions of Eq.~4.5! are still solutions
whend.5. The generalization of Eq.~4.4! is then

L[
~d21!~d22!2

36
L̄5

b

8

~d21!~d22!

2a1d21
,

l̃[
3

2
l̃52

a

b

~d22!~3a1d21!

2a1d21
, ~6.9!

m̃[
16m̃

~d21!2 5
d22

b~2a1d21!
.

Here we have introduced a rescaled set of parame

$L̄,l̄,m̄% to emphasize that the shape of the curve shown
0-7
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Fig. 1, Eq.~5.1! is in fact universal—it is the same for arb
trary L,0 and in arbitrary dimensiond.4 whenm and l
are appropriately rescaled:

l̄L̄52
8

3
m̄L̄64A2m̄L̄2

9

4
. ~6.10!

Note that while the location of this set of solutions is ind
pendent ofd and L when plotted in the$l̄L̄,m̄L̄% plane,
individual points along this curve do not correspond to
same solutions since both the period and the exponent in
~4.5! depend ond.

VII. CONCLUSIONS

A theory with an extra compact dimension and an act
with a set ofR2 terms and a compact scalar field conta
sufficient freedom to permit a metric that maintains Poinc´
invariance in 311 of the dimensions without any fine-tunin
of the terms in the action. Although the resulting field equ
tions are fourth order, the existence of these metrics can
shown numerically. The examples that we have found
smooth, periodic, and contain no singularities or ze
throughout space-time. As a check, we have confirmed
when the numerical solutions for the warp function and s
lar field are substituted back into the action, the integral o
the extra dimensions gives zero, so that the effective fo
dimensional cosmological constant vanishes. We have
found several exact solutions which, while they do not the

TABLE I. A brief list of some of the values ofl andm that give
periodic, smooth, nonsingular solutions whenL521.

l m A9(0) period Amax2Amin

1
10 2

1
10 8.38996422 1.2596 0.5174

1 2
1
30 12.20618213 0.9608 0.4321

0 2
1
4 8.96881784 2.4476 1.4186

0 2
1
10 8.35597222 1.2264 0.4950

0 2
1

1000 64.61423 0.1148 0.0422
210 21 3.7145907 2.1898 0.6545
21 21 5367.88 3.005 7.159

210 210 34282 4.419 8.501
2256 2256 10439 9.524 8.633

TABLE II. A list of values of the cosmological constantL that
give periodic, smooth, nonsingular solutions givenl5m52

1
10.

L A9(0) period Amax2Amin

220 494520 0.7210 8.0777
210 53680 0.9502 7.1593
24 87404 1.9086 7.4489
24 47.264364 1.4166 1.9249
22 14.5276037 1.262 0.7918
2

1
2 5.32842445 1.1708 0.3155

2
1
4 3.5543619 1.1586 0.2167

2
1
10 2.14671387 1.1517 0.1348
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selves provide satisfactory metrics, bound the region of
rameter space in which exist the desired smooth, nonsing
metrics that are periodic in the extra dimension. Moreov
these exact solutions continue to exist for an arbitrary nu
ber of extra dimensions and can be expressed in a unive
dimension-independent form.

We emphasize that resulting picture involves a comp
space with a warp function, but no brane. Therefore the
gin of matter could be similar to that in the Kaluza-Kle
picture; the full higher-dimensional theory should conta
matter fields which give the effective four-dimensional m
ter fields through dimensional reduction. The quantum c
rections involving these matter fields could make a vacu
contribution to the energy-momentum tensor that differen
ates between the large and small dimensions, in addition
contribution that can be absorbed intoL. The resulting equa-
tions can still be treated in the manner we have describe
find periodic solutions.

As in the original proposal by Rubakov and Shaposhnik
@3# to address the cosmological constant problem using e
dimensions, the existence of metrics with periodic wa
functions that are flat in the other 311 dimensions leaves
unanswered the question of whether they are preferred
other possibilities. For example, we have also found a c
of metrics that, while still periodic in one dimension, corr
spond to 311 de Sitter or anti–de Sitter spaces in the oth
components. There is also the question of stability, a
whether these solutions can be reached from generic in
conditions. The answers to these problems are central to
search for a realistic cosmology, but the problems are
namical in nature and a fine turning of fundamental para
eters is now not obviously required.
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APPENDIX A: SINGULARITIES IN THE SOLUTIONS
FOR A GAUSS-BONNET ACTION

In Sec. IV B, we mentioned that the warp function~4.10!
for a Gauss-Bonnet action encounters singularities after o

FIG. 6. A pair of periodic warp functionA(y) for L524 and
l5m520.1. The initial condition for the solid curve isA9(0)
587404 while that of the dashed curve isA9(0)547.264364.
Again, both functions are smooth everywhere.
0-8
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a finite interval in the extra dimension whenL,0. More-
over, the character of these singularities depends upon
sign ofl. Whenl,0, if we letA(y)→2` in Eq. ~4.10!, we
discover that this divergence occurs at

6~y2y0!5
p)

8

1

A2L
@~11A12 4

3 lL!1/2

1~12A12 4
3 lL!1/2#. ~A1!

Note that the sum on the right side is always real, provid
l,0 andL,0.

For l.0, another type of singularity occurs since then
becomes possible to haveA9(y) diverge whenA8(y)5
6l21/2. Equations~3.9! and ~3.10! imply that AlA8(y)5
6A16x, so insertingx50 into Eq.~4.10!, we see that these
singularities also occur at a finite value ofy,
B

n-

. B

h
i,

08402
he

d

t

6~y2y0!51 1
2A l

x011
arctanh

1

Ax011

2 1
2A l

x021
arctan

1

Ax021
. ~A2!

Since A9(y)5 4
3 L when y is an extremum, whenL.0

the warp function only contains minima. Thus we have t
possibility thatA(y)→1` which, from Eq.~4.10!, occurs as
y→6`. However, forlL. 3

4 , A9(y) diverges at a finite
value fory.

APPENDIX B: SEVERAL MORE EXAMPLES

In Table I, we list the properties of several more examp
of periodic solutions.

In Table II, we holdl andm fixed while varyingL. Note
that a periodic solution for a specific choice of$L,l,m% is not
necessarily unique; two different values forA9(0) can lead
to two different periodic solutions. An example of this ph
nomenon is listed in Table II and illustrated in Fig. 6.
B
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