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The cosmological constant and warped extra dimensions
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We study the behavior of a general gravitational action, including quadratic terms in the curvature, supple-
mented by a compact scalar field ir-4 dimensions. The generalized Einstein equation for this system admits
solutions which are compact in one direction and Poingavariant in the remaining directions. These solu-
tions do not require any fine-tuning of the parameters in the action—including the cosmological constant—
only that they should satisfy some mild inequalities. Some of these inequalities can be expressed in a universal
form that does not depend on the number of extra compact dimensions when the scenario is generalized beyond
4+1 dimensions.
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[. INTRODUCTION the low-energy expansion of some quantum theory of grav-
ity.

The old idea that the universe might contain more than the We show that a general five-dimensional gravitational ac-
observed four space-time dimensions has reemerged recentign including all terms up to fourth order in derivatives
in novel attempts to explain the weakness of gravity comwhen supplemented by a compact scalar field permits met-
pared to the other forcdd] and the hierarchy problefi], rics that are periodic in the fifth coordinate and preserve
but it was realized earlidB] that such theories might be able Poincareinvariance in the other four dimensions. This result
to address the cosmological constant probldin The hope ~d0€s not require any fine-tuning at the level of the param-
is that with extra dimensions, the metric might be ab|eyeters in the action—including _the cosmolqglcal constant—
through a nontrivial dependence on the extra coordinate§fther thgn th?:]they ShIOl:.ld satisfy some tmh'ld bgunds.t More—
both to accommodate an arbitrary value for the cosmologica?.ver’ since these solulions are smooth and contain no
constant and to maintain Poinédreariance in 3- 1 of the singularities, either in the metric or in the scalar field, the

oo L scenario does not require any 3-branes with an accompany-
directions. In their original treatment, Rubakov and Shaposh- o . :
nikov [3] found that %his idea could be realized with Ft)wo Ing requisite fine-tuning between the brane tension and bulk

di . but that the bulk . ined a si cosmological constant. The only requirement is that the com-
extra dimensions but that the bulk metric contained a Singuy cification radius should be sufficiently small so as not to
larity. Moreover, their system was shown to be unstable b3broduce any discrepancies with current experiments.

Ref. [5]. The more recent scenari¢g] involving 3-branes In the next section, we review the solution to Einstein’s
reintroduce the cosmological constant problem in the form ogquaﬂons in a five-dimension&D) theory with a cosmo-
a fine-tuning between the bulk cosmological constant and thpygical constant and a free scalar field. Section 11l derives the
brane tension. The attempts by Ré¢®J. and[7] to avoid this  field equations from a general action that includes quadratic
fine-tuning, using a model with naked singularities in theterms in the curvature. In Sec. IV, we present several exact
bulk, also contained unsatisfactory features, described bgolutions of these field equations and further show that with
Refs.[8] and[9]. the Gauss-Bonnet term alone the metric does not have peri-
We pursue the original idea of Rubakov and odic, smooth, nonsingular solutions with 4D Poincineari-
Shaposhnikov—that a nonfactorizable metric that dependance. The fifth section shows the requirements that a general
on an extra dimension could account for the presence of B® action should satisfy to admit periodic, smooth, nonsin-
cosmological constant. In particular, we seek metrics that argular metrics and discusses a few representative cases found
periodic in this extra dimension so that it can be made natunumerically. Section VI examines a few general properties of
rally compact when the period of the metric is identified with including higher order terms in the effective action and dis-
the compactification radius. cusses theories with more than one extra dimension. Section
The standard Einstein equation for a theory without anyVIl concludes.
3-branes but with a cosmological constant does not permit
metrics that simultaneously satisfy both requirements—that II. BACKGROUND
the metric is periodic and free of singularities. We therefore ) ) o
consider the effect of including higher order terms in the In order to show the importance of higher derivative
gravitational action which contain two powers of the curva-t€rms in the action, we first examine the solutions for a five-
ture tensof10], such as a Gauss-Bonnet tefri—13. Such dlmensmnal theory with pnly the standard Einstein-Hilbert
terms can be regarded as the next natural terms in an effe@ction and a free scalar fietd:
tive theory of the gravitational action such as might arise in

10ur convention for the signature of the metric(is,+,+,+,+)
*Email address: hael@physics.utoronto.ca while the Riemann curvature tensor is defined-bR? ;=345
"Email address: bob.holdom@utoronto.ca — 0 TR+ Ta e —TeI .
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whereR™ is the curvature associated wigff’) . By integrat-
j d*x dyV—g(2A+R) ing out the extra dimension,

jd“x dyv—g(V,V2e). 2.1 f d*x dyJ—_gMER(X”,ny d*x\ =g MER W (x#)

Here A andM; are, respectively, the cosmological constant Xf dy e+ 2.7
and the five-dimensional Planck constagy, is the metric

for the space-time. We denote the coordinates that corrgye determine the effective Planck’s constai measured
spond to the usual space-time dimensionsxy where py 3 four-dimensional observer in terms of the 5D Planck’s
msv,...=0,1,2,3, ‘and the fifth coordinate by, with  constantvg throughMZ=MZfdye*™). As long as this in-
a,b,c,...=0,1,2,3y. Ignoring the scalar field, wheA>0  eqrq) is finite we can define a four dimensional effective

the universe is an anti-de SittekdS) space-time while\ oy of gravity. This argument fails at the next order since
<0 corresponds to a de Sitt¢dS space-time. We shall

often work in units in whichM5=1.
When the metric has the form f d*x dyv _QRZZJ d*xv _9(4)(R(4>)ZJ dyl+---,
(2.9
d?=g,pdx?dx’=erY y,, dx“ dx"+dy?, (2.2
so that in an effective theory, this term receives a correction
the uu andyy components of the Einstein equation for Eq. proportional to the volume of the extra dimension. The prob-

(2.1) are lem only worsens at higher orders where i1 terms
receive an enhancement plye?~ WAV One way[15] to
—3(A)2-3A"=-A+1(¢")? L e . -
2 2 4 evade this difficulty occurs when the term induced in the 4D
effective theory is purely topological, as is the case for the
—3(A)P=—A-3(¢")? (2.3 i i -
2 4 4D Gauss-Bonnet term. In this paper we instead consider a

scenario with compact extra dimensions along with a general

while the equation for the scalar field is R? action; a Gauss-Bonnet term alone is insufficient for our

@' +2A" ' =0, (2.4 picture, as we show below.
A solution to Egs(2.3),(2.4) is given by IIl. GRAVITY FROM A GENERALIZED ACTION
A generic action with up to four derivatives of metric can
Rocos’ 2V —5A(y—Yo)] be written as

¢'(y)=2V—Ase¢2V—-5A(y—Yyo)l, (2.9 s=s¢+|v|§f d*x dyy—g(2A + R+aR?+bR,,R?®

whereA, andy, are constants of integration, in addition to +CRyp RS+ 4). (3.)

the trivial ¢’ (y) =0 solution. Whem\ <0 (dS), we are able abe

to obtain periodic solutions. However, the scalar field peri-The additional terms can be interpreted as a squared Weyl
odically becomes singular and the metric becomes imagitensor

nary. In order to remove this unacceptable behavior from the

space-time, we require 3-branes to cutoff the manifold in

extra dimension before the ill-behaved region is encountered. Cabcdcade:g R?— 3 RapR?P+ Rapc R (3.2
When A>0 (AdS), only the ¢'(y)=0 solution is real and

the theory can only be compact if we return to the originaly Gauss-Bonnet term

Randall-Sundrum scenarj@]. Thus for either sign of\, the

scenario must contain some 3-branes which necessitates a E=R?-4R,,R?+ R,,.R2"°Y (3.3
fine-tuning of the brane tension with the value of the cosmo-
logical constant. and a third possible independent term

In the following, we shall see how the addition of a gen-
eral R? action can lead to an acceptable dependence of the
warp functionA(y) on an extra compact dimension. Note
that such an action encounters a difficulty when the extra
dimension is not compag¢ti4], as noted in Ref{15]. If we  The Weyl term vanishes when the metric is conformally flat,

1
T= > R?—3R,,R2%+ R, R4 (3.4

consider variations about a flat 4D metm;wﬂg(“)(x*), as is the case for E¢2.2), so we are free to add some
we can relate the five-dimensional curvature for EZqZ) to  multiple of the Weyl term to Eq(3.4) without affecting the
the four-dimensional curvature through field equations. Later we shall uge and A to denote the
coefficients of the third ternt3.4) and Gauss-Bonnet term,
R(x*,y)=e AVRM(x#)+--- (2.6)  respectively,
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u=16a+5b+4c, 3\x=10a+2b+c. (3.5 region of the{A,\,u} parameter space in which we have
found such solutions numerically. One of these surfaces re-
We include the effect of a scalar field, initially through quires both the. and\ terms in the field equations. Among
the action for a free field this class of solutions is a metric which falls off exponen-
tially asy— =, as in Ref.[14] but without the need of a
3-brane. A second of the surfacess 0, represents a theory
S«ff d’x dy\/—_g(— 2koVadV?9), 36 with only a Gauss-Bonnet term at tf# order. Note that a
third boundary lies along the surface=0 where we can
although later we shall add a terfv {¢V?234)? which is of  trivially satisfy the field equation$3.9), (3.10, and (2.4
the same order as tHe? terms. Note that we have included with constant solution&\(y)=A, and ¢(y) = ¢,. We have

a coefficientk, in Eq. (3.6). found nontrivial periodic solutions only whef<0 and
Upon varying the action with respect to the metric we <O.
obtain[16]

WA+ L 0usR— 0. AR+ bR, R+ Rede, A. An exact solution
B T2 T2 a C . - . .
% Rav™ 200%™ 20 e Feae We can discover an interesting set of exact solutions by

+2aRRy,— 4cR, R+ 2CR, R, 2(b+20) R%Rcqp noting that the linear combination of field equations that
eliminates the scalar fiel(B3.9) does not depend oA(y)

+3(4a+b)gapV°R—(2a+b+20)V,V,R except through its derivatives and does not contain the fifth
+(b+ 25 _ ' coordinate explicitly. Together these properties allow Eq.
(b+40)V Rap=Tap, 3.7 (3.9 to be recast as a second order differential equation
where T,, represents the energy-momentum tensor for the 1 d?P 1 /dp\? p
scalar field w| =P2—+ —P(— +3zP— +P2+4PZ
2 dZ 2 \dz dz
TabE %ko[va¢vb¢_ % gabvc¢vc¢]- (3-8) 3 3
. _ + —\[PZ+2%]-322— —P=—-2A, (4.1)
For a nonfactorizable metric of the form of E(R.2), the 2 2
sum of theuu and theyy components of Eq3.7) yields an _ )
equation in which the free scalar field does not appear,  through the introduction of
dA dz
N N ”m2 " "2
u[3A"+3A'A"+(A")*+4A"(A")7] 7= and P(Z)Ed—. (4.2
y y

+IN[A(A)2+(A)*]=3(A")?— A= —2A,
(3.9 A simple set of solutions in the fuflA,\,u} parameter space
' is found by substituting

so that the difference of these components can be used to

determine its behavior, P(z)=aZ’+b (4.3

Ko(b')2= u[ A"+ 2A A"+ 4(A”")2] + 3NA"(A)2— 3A”. into Eq. (4.1) which imposes the constraints

(3.10 3 b a3ata 31 1

A= — Cu=——— . (44
bar2’ ““2parz 4

The scalar field equation appears in E&4), but it is not A 4a+2’
independent being a consequence of E§L) and (3.10.
WhenA(y) is a periodic function ofy, then Eq.(3.10 im-  The resulting warp functiom\(y) is periodic provided that
plies that¢' (y) should also be periodic. Since this equationab>0:
is nonlinear inA(y), the integral of¢’(y) over one period is

in general finite and nonzero sp must itself be compact. erY) =eho{cog \/E(y—yo)]}*l’a. (4.5
Any additional dependence of the action ¢yrather than on _ _ _ _
its derivatives, must be through periodic functions. Note that this solution foA(y), when substituted into Eq.

(3.10, implies that the scalar field is constagt,(y)=0.
In general, this solution is not satisfactory since it con-
tains singularities whea>0 and becomes complex for ge-
The full fourth-order set of differential equations for a neric values oa<0. Whena= —3n, wheren is a positive
theory with a free scalar field and a set Rf terms with  integer, the behavior improves so treft) is everywhere
arbitrary coefficients does not admit a simple analytic solu+eal and nonsingular wheh<0, although for this case*®)
tion except for special cases. In this section, we study twaanishes at regular intervals. We shall find in the next section
such examples of exact solutions. Although these solutionthat the set of solutions in E¢4.5 forms a boundary in the
do not produce warp function&(y) that are smooth, non- {A,\,u} parameter space beyond which periodic, nonvanish-
singular and periodic, they provide partial boundaries for thang solutions exist wherk <0 and u<0.

IV. ANALYTICAL SOLUTIONS

084020-3
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We can also use Ed4.5) to generate a variant of the differential equation. Its solution determinagy) implicitly:
usual Randall-Sundrum scenafib4], but without including

a 3-brane. For example, wher>0 andA <0, we find that \/K 1+x
+(y—Yyp) = ——=——=41arctan
1 X0+ 1

erY=elosecl(\ —fa(a+2)A(y—yo)*. (4.6 Pt

N 1+x
Although this solution requires fine-tuning the parameters in — —\/— arctar( ) ., (4.10
the action, as given in Eq4.4), it achieves a metric whose 2\x—1 Xo— 1

zero mode is centered about y, and which falls off expo-
nentially asy— *+ . Unlike previous examplegl7] which ~ where
used a thick brane to obtain this behavior, Ef6) does not
require any scalar field. Since this theory has an infinite extra  x= \/x(2)+ INAe 4AY A and xo=V1—2\A.
dimension, some method of trapping the standard model (4.1
fields neary=yj is further required.

The endpoints of the set of solutions in H4.6), shown  The signs on the right side of E¢4.10 cannot be chosen
in Fig. 1, have interesting properties. Takiag-» (u=0,  Separately; however, the minus sign should be used to obtain
AMA=—12), so that the region in which the first derivative of A’(y)=0 at some point. In the limit — 0, Eq.(4.10 repro-
the warp function smoothly changes sign has a vanishingluces Eq(2.5).
thickness, the solutiori4.6) approaches the warp function  In the interesting\ <0 region, from the expressida.10

studied by Randall and Sundrurh4], we observe that no acceptable solutions exist for any value
of . For example, wheRh <0, A(y) becomes singular in Eq.
eAY) = gPog—2V— A3y -yl 4.7 (4.10 at a finite distance frorgy. ForA>0, the warp func-

tion also contains a singularity, but this time it appears in its
At the other end pointa—0 (A\=0, uA=3), the warp second derivative. Solving E€3.9) for A”(y), we note that

function produces a Gaussian metric it becomes singular wheneve¥ (y)= +x~*2, which again
occurs at a finite value of. Appendix A contains a fuller
eA(y):ere4A/3(y—yo)2, (4.9 discussion of the properties of the solutich10 and the

location of its singularities.
which for A<O decreases more rapidly away fronsy,
than the standard Randall-Sundrum metric. V. AN ANALYSIS OF THE FULL RZ2 ACTION

Before describing our approach for finding numerical so-
lutions and presenting several representative examples, we
A theory with only a Gauss-Bonnet contribution to R&¢  summarize with a sketch of the parameter space in Fig. 1.
action has the advantage of producing a set of differentialhe unshaded area of the figure, which lies in Ahe 0 and
equations with no more than second derivatives of the warg.<0 region of the{A \,u} parameter space, shows where
function A(y). Unfortunately, for our purpose restricting to smooth, non-singular, periodic warp functions exist. We can
such a theory too greatly constrains the form of the solutionsdescribe another boundary by solving foms a function of
Without theu terms, Eq(3.9) implies that all the extrema of 4 in Eq. (4.4),
A(y), if they exist, are all local maxima or all local minima g 9
depending upon the sign of since at the points where
A’(y)=0, A"(y)=2%A. However, the surfacg=0 is still M =— 5,uAt4 N2pA - Z;
important as it provides a partial boundary to the region in
the full {A,\,u} parameter space in which satisfactory, peri-we immediately observe that the shape of the curve of solu-
odic solutions do exist. _ tions (4.5 is the same for all values of the cosmological
When the metric has the fori2.2), any warp function  constant,A <0, if the A and » axes are appropriately re-
A(y) that has an extremum will encounter a singularity onlyscaled. This feature corresponds to a rescaling invariance of
a finite distance away from it. Integrating the scalar fieldihe field equation(3.9) undery—oy, pu—ou, N— o2\
equation(2.4), ¢'(y)=+—4Ae 2A¥ Al 2 and substitut-  and A o 2A, whereo is a real constant. Therefore, we
ing this result into the linear combination of Eq8.9) and  can express our results in terms of two dimensionless param-
(3.10 that eliminatesA”(y) when =0 yields a first order eters{AA, uAL.
A periodic solution for a generic set of values/df\, and
wu is found by numerically integrating the differential equa-

2With ¢'(y) =0, the only possible solutions are those of the form tion (3.9). The coordinatey does not explicitly appear in Eq.
(3.9 which moreover only depends on the warp function

Y—Yo through its derivatives. Thus, we can always translate/ by
Aly)=*[1+\1-3AATY2—==+A,, 4.9 ' . .
== M N “49 —y—yo and A(y)—A(y)+A, to obtain another solution.
where any of the four possible sign choices is allowed. The case ofherefore we can choog§0)=A’(0)=0 without any loss
a scalar field in a\ =0 theory was solved in Ref12]. of generality. We also chos&” (0)=0 which limits our so-

B. Insufficiency of a Gauss-Bonnet term alone

(5.7
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Aly)

0.5 1.0

FIG. 2. A periodic warp functiorA(y) for A=—1,x=0 and
p=—0.01. The initial condition isA”(0)=21.460889. The value
of ko(¢')? oscillates about-4, also with a small period and am-
plitude.

which, to leading order, requiras®~ —3/u so that the pe-

FIG. 1. A plot of the parameter spak,u}. For convenience, . L,
P P pack i} riod of the compact dimension is

we have choserh = —1 in generating this figure. The shaded re-
gion does not appear to contain periodic solutionsA@y) while in \/—
the unshaded region, we have found periodic solutions numerically Ye=2mN—pul3.

for arbitrarily chosen points. The curve depicts the surface of solu- P . . . .
tions of Eq.(4.5); the darker line shows the location of the solutions The O(e%) terms, which arise from the following terms in

(5.9

in Eq. (4.6). Eqg. (3.9,
) o 1 ////+ ! //I+ AV N2 __ 3 AN — + 3
lutions to those that are even about the origin, although wez'uA SUAATH (A= 3(AT) T 2A 2A O((E5)5',)

did not find any periodic solutions that are odd when we
relaxed this constraint. The subsequent evolution of the wargetermine the value of in terms of the cosmological con-
function away fromy=0 then depended solely upon the ini- stant
tial value of the second derivativ&’(0).

An arbitrary value folA”(0), given some set of values for 5 4 A
{\A,uA}, does not lead to a periodic solution. Generically, e~- 3 02 (5.6
the warp function tended to reach a singularity at a finite
distance or to approach asymptotically a solution of the formng the coefficient of th€(€?) term in the warp function
A'(y)=const asy—. Between these two extremes, pre- o,= —1 Thus, for the linear terms to dominate requires that
cisely chosen values #”(0) produce periodic solutions for A , ~9¢2<1. Note that since tha terms in the field equa-
arbitrarily chosen values ofA and uA within the unshaded  tions contain at least three powers of the warp function, to

region of Fig. 1. This result demonstrates the existence ofyis ordern can be arbitrary provided it does not alter the
periodic solutions which naturally select a compactificationgxpansionA A % 1.

radius without the need to add a 3-brane to the theory or to Thjs semianalytic estimate is confirmed when we plot the
fine-tune the parameters in the actihl), as long as they numerical solution to Eq@3.9 for A=—1, =0, andu=
lie within the allowed region of parameter space. —0.01 shown in Fig. 2. Holding. = — 1 and\ =0 fixed and

. When the scalar field enters’tr;e_action o_nIy through a fre‘?/arying «, we have checked that the period and amplitude of
kinetic term, the value oko(¢')” is negative for all the the numerical solutions is better and better approximated by
periodic solutions that we found numerically. Although this Egs. (5.4 and (5.6) as we letu—0.
result implies that the kinetic energy term has the wrong \we can find numerical solutions arbitrarily close to the

sign, it appears to be an artifact of truncating the scalar aCurfacen=0, for \<2 and A =—1, and to the surface de-

tion; this unphysical feature disappears when higher ordefcyineq by Eq.(5.1), provided u>— £L. Apparently, an-

terms appear in the scalar action. An example of such giner boundary exists for solutions with< — £% which ex-

solution is placed at the end of this section._ _ tends approximately along the ling~32x. We have
One region of parameter space that admits a semianalytic

approximation of the solution is wher& u~e?<1 with A(y)

AN 1. In this region we can try an oscillating solution for

the warp function of the form 6+
4 +£

A(y)=Aotecog w(y—Yo)]
2 P
+Aze” co§2w(y—Yo) ]+ O(€) (5.2 y

S S

for a small amplitudes. When substituted into Eq3.9), the 1

only terms that ar&(e) are those linear iA(y): FIG. 3. A periodic warp functiod\(y) for A=N=pu=—1. The

initial condition is A”(0)=5367.89. Despite their cusped appear-
TuA" —2A"=0(€?) (5.3 ance, the minima are smooth.
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FIG. 4. An example of a periodic warp function that lies be-

tween the extremes represented by Figs. 2 and 3. For this sketch we

usedA=—1,A=-3, andu=—2. The initial condition isA”(0)
=42.2832125.

indicated this boundary in Fig. 1 by extending the shaded

region beyond the curvés.l). As A and u approach this

PHYSICAL REVIEW D 63 084020

3 T AY ’ :
21 - “ & ()
! A(y)
Yy
0 t {
1 2 3

FIG. 5. A periodic warp functiorA(y) (solid line) and ¢’ (y)
(dashed lingfor A=—1,A=0, u=—0.1,ky=1, andk,=—0.25.
The initial condition isA”(0)=23.77364592.

and substitute the result into EG.8) to obtain a differential

boundary from above, the numerical solutions grow mc)ree_quation forA(y). This equation still admits periodic solu-

cusped as in the more extreme example depicted in Fig.

where the warp function has broad maxima and sharp, deeﬁo’ M
minima. The amplitude is also significantly larger so that"Us 0

#ons such as the example sketched in Fig. 5o —1,
=-0.1,ko=1, andk; 0.25 and choosing the mi-
otin Eq.(5.9. The value oky(¢')? is positive so we

eA¥) changes by several orders of magnitude. Although thobtain the standard normalization for the scalar kinetic en-

figure appears to have cusps at the minima, the functioff"9Y:
A(y) is actually smooth at these points and has no disconti-

nuities in the slope.

Most solutions within the unshaded region of Fig. 1 tend
to lie between the extremes depicted in Figs. 2 and 3 as in
the example provided by Fig. 4. More examples are pre-

sented in Appendix B.

VI. DISCUSSION

A. Higher order terms in the effective action

The gravitational action that we have considered should
be regarded as only the first few terms of a possibly infinite

Finally, we must address whether the kinetic energy terneffective action arranged in powers of derivatives. Therefore,

in the scalar action can have the correct sikgy 1, when
A(y) is periodic. If we include the additional tefm

—1ki(Va9V?9)?

then the field equation.7) require

(5.7

,LL[%A””"‘ZA,AW‘F%(A”)2+2A”(A,)2]
T EN[2AT(A) 2+ (A= §(A) = 3A"
A+3ko(@p" )2+ 5ke(")*

M[A!AH/_ %(AH)Z‘f' 2AI/(AI)2]+ %)\(A/)A_ g(AI)Z
=—A—zko(¢p')?—§ky(")". (5.8

Since these expressions are only quadraticdn(y)]?, we
can solve for

k k
(¢ (=] ~12{1-245
3k, kg
1
X| A+ A’A’”—E(A”)2+2A”(A’)Z

172
(5.9

3 , 3
+=N(A) = (A
2 (A7) 2( )

30ther terms of the same order are possible, sud,g82¢pV°e,
but the squared kinetic term is the simplest to analyze.

we might worry whether higher order terms will spoil the
periodic behavior seen in the last section. Here we briefly
motivate why the existence of smooth, periodic, nonsingular
solutions might be a generic feature of this scenario.

The smallA region of the generalized parameter space,
formed by the coefficients of the terms in the effective ac-
tion, still should admit warp functions that approximate si-
nusoids as in Eq(5.2),

A(y)=Ao+ € cod w(y—Yo) ]+ O(€?). (6.1)

For this approximate solution, the amplitude of the oscilla-
tions is assumed to be sméM €), so terms in the equations
of motion with fewer powers oA(y) tend to dominate the
shape of the warp function. For an action with a general set
of R¥ terms included, the leading behavior in th&1 limit

is

3d2A 1 d*A da

_—— et —p—+
2dy? 2" dy

23 Z Mok, dy2k

=0(€?),
(6.2

where theu, ; are some linear combinations of the coeffi-
cients of theR¥ terms. When the warp function is of the form
(6.1), these linear terms have solutions as long as the coeffi-
cientsuy ; are such that the equation

“The choice of the plus root gives a periodic solution that again
requiresky<O0.
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3 1 % A" 4 . A™ A/)Z_C A AI)4:0, (65)
S et S S (—)fumge? =0 (6.3 AR
2 2 k=3 i which has periodic solutions for some subregion of the space
. c;,C,>0. This behavior also suggests that it is plausible that
?;ztg dr?gltgzogn?pslitzzfgrgglt:;ﬁg;?::?ﬁ;&';‘;?:ﬁﬂst g?n b eriodic solutions should exist_in some region of the en-

: . . larged parameter space when higher order terms are included
the field equations of the full Lagrangian. Thus, when thein the aravitational action
cosmological constant is smal,~ O(€?), then the full pa- 9 '
rameter space contains a region in which the warp function
is, up to O(€?) corrections, given by a sinusoi@.1). As
with the parametek in the R? action, the other parameters  Although for clarity we have concentrated on a scenario
which appear in the full equations of motion, which we de-in which the universe containst31 infinite dimensions and
note by, ;, only appear in terms that are at least cubic inone extra compact dimension, the picture can be generalized
powers of the warp function and so only need to satisfy theo higher dimensions with many of the features found above
weaker requirement that they do not ruin thexpansion, intact. The most trivial modification of the metri2.2)

A iAF 1. would be of the form
The problem of establishing the existence of more general

periodic solutions becomes only more difficult at higher or- A 5

ders. However, well-behaved periodic solutions do seem ge- ds?=erV)| 5, dx*dx’+ >, dZ|+dy?  (6.6)

nerically to exist for subsets of the terms of the general field =1

equations other than the linear terms. As an example, o

such subset of the terms in E@.9),

B. The scenario ind dimensions

d-5

Br a theory ind total space-time dimensions. Although the
warp functionA(y) must still be a periodic function of, the
TuA" 4+ 3N]A"(A)2=0, (6.4)  z directions can be trivially compactified with arbitrary com-
pactification radii. The generalized Einstein equati{87)
also has periodic solutions whexiu>—2. One subset of for this scenario produces the following two independent dif-
the terms in theR® action is ferential equations:

~ " - N - ” “D2 Anppr STAV(A! - ’ - - ’ - "
FLEA + S5 AVAT+ 390 (A7)24 907 AT(AT2]H RTAT(AT) 4+ S5 (AY) 4] — 182 (A7) 82 A
=—A+3ko(')?

SERLAAT (A2 9 AT(A) P+ SR (AT - R (AN 2= — A~ k(¢ 67

As before, only two of the three possible linear combinationg 2+ 1)-dimensional Poincar@variance,x must be moder-

of R? terms contributé, ately fine-tuned to lie within the intervat 55 < u<O0.
An interesting feature of this more general field equation
n=4(d—1)a+db+4c, is that the analytic solutions of E@4.5 are still solutions
whend>5. The generalization of Eq4.4) is then
X=T[d(d—1)a+(d—1)b+2c]. (6.9 (d—1)(d—2)°>_ b (d—1)(d—2)
A=s————A=-—7—"—"—
36 8 2a+d-1

As in thed=5 case, for a conformally flat metric such as Eq.

(6.6) the squared Weyl terr ,,.(C2°°® does not contribute _ 3. a(d-2)(3a+d-1)

to the equations of motiof6.7). X\ vanishes ford=4 since A= E)‘: - B 2a+d—1 ' 6.9
the Gauss-Bonnet term then corresponds to the Euler form

and is a topological density. Incidentally, for the solution to

be periodic in this unphysical case which only has Ti= 161 d-2

(d-1)2 b(2atd-1)

5Note that in Eq(3.5 we have defined = 2X|,_s to agree with  H€ré we have introduced a rescaled set of parameters
the conventional normalization for the Gauss-Bonnet term. {A,\,u} to emphasize that the shape of the curve shown in
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TABLE I. A brief list of some of the values of andu that give  selves provide satisfactory metrics, bound the region of pa-

periodic, smooth, nonsingular solutions whérs —1. rameter space in which exist the desired smooth, nonsingular
metrics that are periodic in the extra dimension. Moreover,
A M A"(0) period  Amax—Amin these exact solutions continue to exist for an arbitrary num-
i Y 8.38996422 1.2596 0.5174 ber of extra dimensions and can be expressed in a universal,
1 1 12.20618213 0.9608 0.4321 dimension-independent form.
0 T 8 56881784 2'4476 1.4186 We emphasize that resulting picture involves a compact
0 i 8'35597222 1'2264 0'4950 space with a warp function, but no brane. Therefore the ori-
X ) ' ’ gin of matter could be similar to that in the Kaluza-Klein
0 1000 64.61423 0.1148 0.0422 picture; the full higher-dimensional theory should contain
-10 -1 3.7145907 21898 0.6545 matter fields which give the effective four-dimensional mat-
-1 -1 5367.88 3.005 7.159 ter fields through dimensional reduction. The quantum cor-
-10 -10 34282 4.419 8.501

rections involving these matter fields could make a vacuum
—256  —256 10439 9.524 8.633 contribution to the energy-momentum tensor that differenti-
ates between the large and small dimensions, in addition to a
contribution that can be absorbed into The resulting equa-
tions can still be treated in the manner we have described to
find periodic solutions.
As in the original proposal by Rubakov and Shaposhnikov
8 9 [3] to address the cosmological constant problem using extra
NA=— —A+4\2uA— —. (6.10 dimensions, the existence of metrics with periodic warp
3 4 functions that are flat in the other+3l dimensions leaves
] ) ] ) o unanswered the question of whether they are preferred over
Note that while the location of this set of solutions is inde-siher possibilities. For example, we have also found a class
pendent ofd and A when plotted in the{]AA,uA} plane,  of metrics that, while still periodic in one dimension, corre-
individual points along this curve do not correspond to thespond to 3+ 1 de Sitter or anti—de Sitter spaces in the other
same solutions since both the period and the exponent in Egomponents. There is also the question of stability, and
(4.5 depend ord. whether these solutions can be reached from generic initial
conditions. The answers to these problems are central to the
VII. CONCLUSIONS search for a realistic cosmology, but the problems are dy-

) ) ) . namical in nature and a fine turning of fundamental param-
A theory with an extra compact dimension and an actionsiers is now not obviously required.

with a set ofR? terms and a compact scalar field contains

sufficient freedom to permit a metric that maintains Poincare

invariance in 3+ 1 of the dimensions without any fine-tuning ACKNOWLEDGMENTS

of the terms in the action. Although the resulting field equa- ] ) ) ] )
tions are fourth order, the existence of these metrics can be H. C. has benefited from discussions with T. Chow. This
shown numerically. The examples that we have found ar&/0rk was supported in part by Natural Sciences and Engi-
smooth, periodic, and contain no singularities or zerod'€ering Research Council of Canada.

throughout space-time. As a check, we have confirmed that
when the numerical solutions for the warp function and sca-
lar field are substituted back into the action, the integral over
the extra dimensions gives zero, so that the effective four-
dimensional cosmological constant vanishes. We have also |n Sec. IV B, we mentioned that the warp functi¢h10
found several exact solutions which, while they do not themfor a Gauss-Bonnet action encounters singularities after only

Fig. 1, Eq.(5.]) is in fact universal—it is the same for arbi-
trary A<<0 and in arbitrary dimensiod>4 whenu and\
are appropriately rescaled:

APPENDIX A: SINGULARITIES IN THE SOLUTIONS
FOR A GAUSS-BONNET ACTION

TABLE Il. A list of values of the cosmological constantthat

give periodic, smooth, nonsingular solutions gives u=— 1—10 Aly)
A A"(0) period Anmax—Amin 67
-20 494520 0.7210 8.0777 41
-10 53680 0.9502 7.1593 ol e
—4 87404 1.9086 7.4489 ~y
—4 47.264364 1.4166 1.9249 0 =4
-2 14.5276037 1.262 0.7918 ! 2 3 4
-3 5.32842445 1.1708 0.3155 FIG. 6. A pair of periodic warp functio(y) for A=—4 and
—% 3.5543619 1.1586 0.2167 N=un=—0.1. The initial condition for the solid curve i&"(0)
-4 2.14671387 1.1517 0.1348 =87404 while that of the dashed curve A8'(0)=47.264364.

Again, both functions are smooth everywhere.
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a finite interval in the extra dimension when<<0. More- N 1
over, the character of these singularities depends upon the £(y—Yyo)=+13 arctanh———
sign of \. When\ <0, if we letA(y) — — in Eq.(4.10, we Xot1 VXo+1

discover that this divergence occurs at

A 1
-3/ 1 arctan—. (A2)
X —

0 Xo_ 1
77\/3 1 : " __ 4 H
vy ) — [1_4 1/2 Since A”(y)=3A wheny is an extremum, whem >0
=(y=Yo) 8 J-A [+ VI=50A) the warp function only contains minima. Thus we have the
possibility thatA(y)— -+ which, from Eq.(4.10, occurs as
+(1-V1-2A)12. (A1) Y—*o. However, forAA>3, A”(y) diverges at a finite

value fory.

APPENDIX B: SEVERAL MORE EXAMPLES

Note that the sum on the right side is always real, provided In Table I, we list the properties of several more examples

A<0 andA<0. _ _ _ _of periodic solutions.

For >0, anpther type of smgulgrlty occurs since then it |, Taple I, we hold\ and . fixed while varyingA. Note
becomes possible to hava’(y) diverge whenA’(y)=  that a periodic solution for a specific choice{df\,u} is not
+\ "2 Equations(3.9) and (3.10 imply that \NA'(y)=  necessarily unique; two different values faf(0) can lead
+1=xX, soinsertingk=0 into Eq.(4.10, we see that these to two different periodic solutions. An example of this phe-
singularities also occur at a finite value ypf nomenon is listed in Table Il and illustrated in Fig. 6.
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