
PHYSICAL REVIEW D, VOLUME 62, 124008
Linearized gravity about a brane

Hael Collins* and Bob Holdom†

Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7
~Received 28 June 2000; published 17 November 2000!

We use the Israel condition to treat carefully the weak-field perturbations due to the presence of matter on
a 3-brane embedded between two regions of anti–de Sitter~AdS! space with different curvature lengths. A
four-dimensional Newton’s Law only emerges at distances that are large compared to the AdS lengths. When
a scalar curvature is included in the brane action, however, it is possible to generate a four-dimensional theory
of gravity even when one or both of the AdS lengths is large compared to distances along the brane. In
particular, we provide an example in which the AdS lengths can be larger than the millimeter experimental
bound.

PACS number~s!: 04.50.1h, 04.25.2g, 11.10.Kk
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I. INTRODUCTION

One of the more intriguing ideas that has reemerged in
past year has been the suggestion that the physical univ
could be embedded as a hypersurface in a higher dim
sional bulk space-time where the extra dimensions are n
compact. The fact that the standard model has been
firmed to scales approaching the electroweak scale
accounted for in these models by assuming that these fi
are confined to this hypersurface, or ‘‘3-brane.’’ Yet sin
gravity describes the dynamics of space-time itself, so
additional feature is needed to produce an effectively fo
dimensional theory of gravity, at least on lengths greater t
the millimeter scale probed. In the scenario proposed
Randall and Sundrum@1#, the bulk is five-dimensiona
anti–de Sitter (AdS5) space-time whose curvature leng
provides the threshold above which the effective theory
gravity is approximately Einstein’s theory in four dime
sions. At distances shorter than the AdS curvature length
extra dimension is revealed.

In studying extensions of the original Randall-Sundru
proposal, it is important to have a method for describing
effective theory of gravity seen by an inhabitant of t
3-brane. A natural approach@2# is to study the perturbation
to the background metric produced when matter is placed
the brane. The problem is not as straightforward as it mi
seem since the presence of brane matter can alter the po
of the brane in some bulk coordinate systems. In@3# it was
shown that this ‘‘brane-bending’’ must be included to can
the appearance of a spurious scalar gravity term in the ef
tive Einstein equation in the original Randall-Sundrum s
nario. A better method was recently introduced by@4#, build-
ing upon their earlier work@5#, in which the gauge is chose
so that the brane remains flat, even when matter is place
the brane. As it is presented in@4#, this method works bes
when the model has an orbifold symmetry. In this article,
shall extend the formalism to permit the study of lineariz
gravity in asymmetric bulk space-time backgrounds.

Central to our discussion is a careful treatment of
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boundary conditions at the brane. In the previous analyse
linearized gravity in a brane background, the energ
momentum contribution from the brane to the full bulk Ei
stein equation was incorporated using ad-function source
term. However, some of the functions that multiply thisd
function become ill-defined when the bulk space-time
longer has the standard orbifold symmetry. Fortunately,
approach introduced by Israel@6# relates the discontinuities
of functions evaluated on opposite sides of the brane to fu
tions that are well-defined on the brane.

We have also considered the effect of adding a sc
curvature term to the brane action. For our purpose, we s
simply regard this curvature term as the next natural term
an effective theory expansion in powers of derivatives. Su
a term can arise in some quantum field theories@7–9# from
radiative corrections to gravity that involve fields confined
the brane circulating in the loops@10#. Scalar curvature terms
also occur extensively in the study of the AdS conform
field theory ~CFT! correspondence where they are used
regularize the bulk action@11#. Moreover, the brane curva
ture term is required for the emergence of 4D gravity
theories in which the brane is embedded in a flat bulk spa
time @10#.

The presence of a curvature term in the brane action le
to a particularly intriguing possibility. Since an effective
4D theory of gravity from the bulk arises at distances alo
the brane greater than the AdS lengths, by adding a curva
term on the brane which has the dominant contribution
gravity at or below these scales, we can obtain a standard
Einstein theory of gravity valid at all testable scales. W
these ingredients, we can find a realistic scenario in wh
the AdS lengths can be above the millimeter scale and
bulk Planck scale is in the TeV range at the cost of mild
fine-tuning the coefficient of the brane curvature term.

The next section contains a detailed derivation of
weak-field perturbation to the background metric due
fields placed on the brane. Although some of this mate
builds on the elegant formalism of@4#, we have included the
derivation of the bulk equations along with the new mater
describing the behavior at the boundary for completene
After a short aside on the gauge invariance of our results
Sec. IV we use our results to study the effective theory
gravity along the brane for a universe consisting of a 3-br
©2000 The American Physical Society08-1
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HAEL COLLINS AND BOB HOLDOM PHYSICAL REVIEW D 62 124008
separating two regions of AdS5 with different curvatures. In
Sec. V we introduce a scalar curvature term into the ac
and show that it can provide a source for four dimensio
gravity even in theories that do not have a 4D Newton’s L
without it @10#. Section VI concludes with some commen
on size of the 5D Planck mass.

II. LINEARIZED GRAVITY IN AN ASYMMETRIC
BACKGROUND

The action for a 3-brane embedded in a five dimensio
bulk space-time can be divided into bulk and brane com
nents. For the bulk, we use an Einstein-Hilbert action wh
on the brane we initially consider a minimal action conta
ing a surface tension term plus a term for fields confined
the brane:

S5M5
3E d4xdyA2g~2Lsgn~y!1R!

12M5
3E

brane
d4xA2hDK

1M5
3E

brane
d4xA2h S 2

12

l
1

1

M5
3 LfieldsD . ~2.1!

gab is the metric for the bulk space-time andhab is the in-
duced metric along the 3-brane.M5 is the bulk Planck mass
We shall denote the coordinates along the brane byxm,
wherem,n, . . . 50,1,2,3; the fifth coordinatey is chosen so
that the brane lies aty50 anda,b,c, . . . 50,1,2,3,y. Notice
that we have allowed the cosmological constant to have
ferent values to either side of the brane, represented by
sgn(y) dependence, which leads to different metrics in
two bulk regions. When the metric changes between reg
of the bulk, it is necessary to include a term in the bound
action that depends on the trace of the extrinsic curvat
K5habKab , defined below. Since the boundary for the tw
bulk regions is provided by the brane itself, we include
term in the brane action for the difference
the extrinsic curvature for the two regions,DKab
[Kabuy5022Kabuy501 . For comparison, in the standar
Randall-Sundrum universe@1# L56/l 2 when the bulk
metric is ds25e22uyu/ lhmndxmdxn1dy2 for Lfields50. hmn

5diag(21,1,1,1) is the four dimensional Minkowski metri
The approach that we shall use to extract the theory

gravity for an observer on the 3-brane is to study gravity
the weak field limit, expanding in a small perturbation abo
the classical background. The treatment of linearized gra
was first presented in@2#, and then more fully in@3#. In both
these papers the gauge was chosen so that the bulk m
assumed the form

gab5S e22uyu/ lhmn1gmn 0

0 1D , ~2.2!

wheregmn is regarded as a small perturbation. The rema
ing gauge freedom is used to choose]mgmn50. In these
coordinates the presence of matter on the brane distort
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position in the bulk space so that it no longer lies aty50. In
geometries without the usual orbifold symmetry, this ‘‘bra
bending’’ leads to subtleties in correctly imposing bounda
conditions at the position of the brane. As a consequenc
is convenient to relax these gauge conditions and instea
work in a gauge where the position of the brane rema
fixed aty50.

The problem of finding such a gauge in order to stu
linearized gravity was addressed in@4#. There, the metric
tensor is written using the time-slicing formalism@12# as

gab5S ĝmn nm

nn n21nlnlD , gab5
1

n2 S ĝmn 2ĝmlnl

2ĝnlnl 1 D ,

~2.3!

where

ĝmn5 f ~y!~hmn1gmn!. ~2.4!

n and nm are respectively called the lapse function and
shift vector. Here we have written a more general warp f
tor, f (y), to allow configurations in which the brane sep
rates two regions of AdS5 with different cosmological con-
stants. In the limit in which the perturbations about t
background are small, we considergmn , nm and f[n221
all to be small quantities of roughly the same size.

The advantage of this metric is that it admits a foliation
the bulk space by hypersurfaces wherey is constant. The
normal vector to any of these hypersurfaces can be writte

Na5~0,0,0,0,2n!, Na5
1

n
~ ĝmnnn ,21! ~2.5!

and the induced metric along the surface is given by

hab5gab2NaNb5S ĝmn nm

nn nlnlD ,

hab5
1

n2 S ĝmn2ĝmlĝnrnlnr 0

0 0D . ~2.6!

In addition to the curvature induced by this metric along
hypersurface, the bulk space also produces an extrinsic
vature structure defined by the symmetric tensor1

Kab52ha
c¹cNb , ~2.7!

where the covariant derivative is with respect to the b
metric. To leading order in the perturbations, the extrin
curvature is then

Kmn5
1

2n
@]yĝmn2]mnn2]nnm#1¯ , ~2.8!

with Kmy51/2(f 8/ f )nm andKyy50.

1Note that we have chosen our sign to agree with that used in@4#
which is the opposite of that used in@13#.
8-2
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LINEARIZED GRAVITY ABOUT A BRANE PHYSICAL REVIEW D 62 124008
One of the new features in a bulk space-time without
orbifold symmetry is that some quantities become ill-defin
on the brane. For example, when the cosmological cons
differs on the opposite sides of the brane, it changes disc
tinuously aty50. One solution to this problem is to allow
the brane to have some finite thickness, so that the trans
from one region to another proceeds smoothly. Alternative
we can use the Israel junction equations which relate chan
in bulk quantities to the brane tension and the ener
momentum tensor for fields confined to the brane. This
proach avoids evaluating potentially ill-defined functions
the brane.

The behavior of gravity in the bulk is governed by th
usual Einstein equation

Rab2
1

2
Rgab5gabLsgn~y! . ~2.9!

At the brane, the change in the extrinsic curvature is de
mined by the Israel condition@13#,

DKab58pFTab2
1

3
habTG . ~2.10!

Tab includes both the brane tension as well as fields living
the brane. Although we shall use the Israel condition to
the behavior of the metric perturbations at the brane, i
nevertheless useful to write Eq.~2.9! in the Gauss-Codacc
form by decomposing it into the transverse and orthogo
components with respect to an arbitraryy5const hypersur-
face,

R̂1Kn
mKm

n 2K2522Lsgn~y! ,

]mK2¹̂nKm
n 50,

Rmn5
2

3
ĝmnLsgn~y! . ~2.11!

Here R̂ is the scalar curvature associated withĝmn and is
calculated in the Appendix. Away from the brane,yÞ0, the
zeroth order terms from Eq.~2.11! determine the warp facto
which appears in the unperturbed metric,2

f 82

f 2 5
2

3
Lsgn~y! ,

f 9

f
5

2

3
Lsgn~y! . ~2.12!

In this more general picture,Lsgn(y) can have different value
for y.0 and y,0 so that f 82 becomes ill-defined on the
brane.

The terms linear in the perturbations for the first tw
Gauss-Codacci equations~2.11! impose constraints on th
metric:

2Since we are writing only the equations for the bulk, we have
included the usuald-function source term for the brane in thef 9
equation.
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f F]m]ngmn2hg13
f 8

f
]lnlG523f

f 82

f 2 1
3

2

f 8

f
]yg,

1

f
@hnm2]m]nnn#5

3

2

f8

f
]mf1]y@]

ngmn2]mg#.

~2.13!

The important feature of these expressions is the appear
of the f 21 factors on their left sides. For regions of anti–d
Sitter space,f 21 typically grows exponentially as we mov
farther into the bulk so that at some distance away from
brane, the assumption thatgmn andf are small breaks down
unless we use gauge freedom to set the right sides of
expressions to zero. Therefore, in the bulk we choose, s
larly to @4#

f5
1

2

f

f 8
]mg, ]mg̃mn50, ~2.14!

where asg̃mn denotes the traceless part ofgmn :

g̃mn[gmn2
1

4
hmng. ~2.15!

For these equations, Eq.~2.13! constrains the shift vector to
be of the following form:

nm5
1

4

f

f 8
]mg1Am . ~2.16!

Here Am is a free vector field (hAm50) with vanishing
4-divergence (]mAm50). Later we shall use the gauge fre
dom to chooseAm50.

For simplicity, we assume that all the matter is confin
to the brane. On the brane, the energy-momentum te
receives contributions from both the brane tension, which
write as26/l, as well as a termtmn for the fields confined to
the 3-brane,

Tmn52
3

4p

1

l
ĝmn1tmn~x!. ~2.17!

The energy-momentumtmn determines the behavior ofgmn

so it should also be treated as a small quantity. The sur
tension of the brane is related to the discontinuity in t
slope of the warp factor at the brane. Explicitly, the unp
turbed piece of the Israel condition requires the usual fi
tuning of the brane tension,

f 8uy5022 f 8uy501[D@ f 8#5
4

l
f . ~2.18!

The behavior ofgmn in the bulk is found using the trans
verse components of the Einstein equation~2.11!,

t

8-3
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R̂mn1
1

2

f 8

f
@]mnn1]nnm1hmn]lnl#

2
1

2
f 8F2]ygmn1

1

2
hmn]yg2

1

2
hmn]yfG2

1

2
]m]nf

1
1

2 F f 91
f 82

f Ghmnf2
1

2
f ]y

2gmn

1
1

2
]y@]mnn1]nnm#50, ~2.19!

where we have substituted the equations determining
warp factor~2.12!. The transverse components of the Isra
condition specify the boundary conditions at the brane,

DF2
1

2
f 8fhmn1 f ]ygmn2]mnn2]nnmG

516pF tmn2
1

3
hmnt G , ~2.20!

where we have imposed the zeroth order constraint~2.18!. In
both these expressions we have retained only the linear te
in the metric perturbation. Bothf andnm can be eliminated
from these equations through Eqs.~2.14! and ~2.16! so that

]y~ f ]yg̃mn!1 f 8]yg̃mn1hg̃mn2
f 8

f
@]mAn1]nAm#

2]y@]mAn1]nAm#50 ~2.21!

for yÞ0 and

DF f ]yg̃mn2
1

2

f

f 8
]m]ng2]mAn2]nAmG

516pF tmn2
1

3
hmnt G ~2.22!

at the brane,y50. Finally by making a gauge transformatio
to eliminateAm and noting that since the metric must b
continuous at the brane, so that bothf andgmn are continu-
ous there, we have the following equations for the behav
of gmn :

]y~ f ]yg̃mn!1 f 8]yg̃mn1hg̃mn50 ~2.23!

in the bulk and

f D@]yg̃mn#2
1

2
DF f

f 8G]m]ng516pF tmn2
1

3
hmnt G ~2.24!

on the brane.
As in @4#, we can eliminate theg from Eq. ~2.24! by

taking the trace of this expression

DF f

f 8Ghg5
32p

3
t ~2.25!
12400
e
l

ms

r

and inverting the operatorh to write formally

f ]yg̃mnuy5012 f ]yg̃mnuy502

5216pF tmn2
1

3 S hmn2
]m]n

h
D t G ~2.26!

As for the case of the orbifold, taking the 4-divergence
this expression shows that the energy-momentum tenso
the brane fields is conserved,]mtmn50.

III. GAUGE INVARIANCE

Before considering the weak field behavior for some s
cific geometries, we should show that both the bulk equat
for g̃mn ~2.21! as well as the boundary condition~2.22! are
left invariant under changes of coordinates that still prese
the position of the brane. Under a small change of coo
nates,

x8m5xm2jm~x,y!, y85y2j5~x,y!; ~3.1!

the statement that the position of the brane is left invarian
that j5(x,0)50. The components of the metric change a
cording to

gmn5gmn8 2
f 8

f
hmnj52]mjn2]njm ,

nm5nm8 2 f ]yjm2]mj5, ~3.2!

f5f822]yj
5.

The trace and the traceless part ofgmn transform as

g5g824
f 8

f
j522]mjm ,

~3.3!

g̃mn5g̃mn8 2]mjn2]njm1
1

2
hmn]ljl .

If we maintain the same gauge conditions~2.14! before and
after the coordinate transformation, we have further that

]y]
ljl522j5]yS f 8

f D ,

~3.4!

hjm1
1

2
]m]njn50.

Lastly, we note that the vector fieldAm transforms as fol-
lows:

Am5Am8 2 f ]yjm1
1

2

f

f 8
]m]njn . ~3.5!

We have used this residual gauge freedom to setAm50.
The bulk equation~2.21! is invariant provided that
8-4
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LINEARIZED GRAVITY ABOUT A BRANE PHYSICAL REVIEW D 62 124008
F]m]n]ljl12 f 8j5hmn22
f

f 8
]m]nj5G]yS f 8

f D
1 f hmn]yFj5]yS f 8

f D G50. ~3.6!

Equation ~2.12! implies that f 8/ f 5constant foryÞ0, so
~3.6! is satisfied.

Under a coordinate transformation, we also find that
left side of the Israel condition~2.22! is invariant when

D@]m]nj5#22 f hmnDFj5]yS f 8

f D G50. ~3.7!

These quantities are evaluated in the bulk on either sid
the brane so as we have seen the second term vani
]m]nj5 also vanishes sincej5(x,y)→0 asy→0, under our
constraint that the position of the brane remains fixed. T
gauge invariance of the Israel condition demonstrates
g(x,0) is a gauge-invariant quantity determined only by t
physical fields placed on the brane through Eq.~2.25!. This
result is important since, as we shall see in the next sec
g(x,0) enters the expression for the effective Einstein eq
tions on the brane.

Before concluding this aside on the gauge invariance
Eqs. ~2.21!,~2.22!, we should mention how the fixed-bran
gauge is related to the bent-brane gauges of@2# and@3#. The
appearance of the termD@]m]nj5# in the gauge transforme
Israel condition shows that if the position of the brane is
kept fixed, then gauge-dependent terms will appear in
expression forg. Since these terms need to be subtrac
from the final expression for the effective theory, it is co
venient to work in a gauge in which they are absent. M
importantly for a universe without an orbifold symmetry, th
bending upon either side of the brane might not be equa
that extra care must be made to properly describe the bo
ary conditions at the brane.3 Again, this complication is
avoided when the brane’s position is fixed.
d
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IV. AN EXAMPLE: A BRANE BETWEEN TWO REGIONS
OF AdS5

As an application, we examine in depth the behavior o
universe in which a brane with tension26/l separates two
regions of AdS5 with different curvatures,

L5H 6/l 1
2 for y.0,

6/l 2
2 for y,0,

~4.1!

for which the corresponding warp factor isf (y)5e22y/ l 1 for
y.0 and f (y)5e2y/ l 2 for y,0. The fine-tuning condition
for the brane tension~2.18! is

1

l
5

1

2 F 1

l 1
1

1

l 2
G . ~4.2!

Since 4-derivatives appear in the equation determiningg̃mn ,
it is convenient to Fourier transform in the directions alo
the brane so that in the regiony.0, g̃mn satisfies

]y~e22y/ l 1]yg̃mn!2
2

l 1
e22y/ l 1]yg̃mn2p2g̃mn50, ~4.3!

with an analogous expression fory,0 involving l 2 . For
p2.0, the solution to this differential equation is in terms
Bessel functions,

g̃mn~p,y.0!5cmn
1 ~p!e2y/ l 1@K2~ey/ l 1l 1upu!

1AI2~ey/ l 1l 1 /upu!#. ~4.4!

Since I 2(ey/ l 1upu l 1) diverges asy→`, we setA50. From
Eq. ~2.26! and imposing continuity of the metric across th
brane, we discover the following behavior for weak fluctu
tions about the background solution:
g̃mn~p,y!5
16p

upu
Ftmn2

1

3 Fhmn2
pmpn

p2 G tG e2y/ l 1K2~ l 2upu!K2~ l 1upuey/ l 1!

K1~ l 1upu!K2~ l 2upu!1K1~ l 2upu!K2~ l 1upu!
. ~4.5!

for y.0 and

g̃mn~p,y!5
16p

upu
Ftmn2

1

3 Fhmn2
pmpn

p2 G tG e22y/ l 2K2~ l 1upu!K2~ l 2upue2y/ l 2!

K1~ l 1upu!K2~ l 2upu!1K1~ l 2upu!K2~ l 1upu!
. ~4.6!
f

our
gy
for y,0. The value of the traceg at the brane is determine
by the Israel condition~2.25! to be

3This point is stressed in the note accompanying Eq.~3.11! of @3#.
g~p,0!52
32p

3p2

2

l 11 l 2
t, ~4.7!

and along withg̃mn is needed to find the effective theory o
gravity seen by an observer confined to the brane.

A possible source for a discrepancy between a purely f
dimensional theory of gravity and the effective low ener
8-5
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HAEL COLLINS AND BOB HOLDOM PHYSICAL REVIEW D 62 124008
theory of gravity for an inhabitant of the 3-brane is in t
appearance of deviations from the Einstein equation.
intrinsic Einstein tensor is given by@4#

R̂mn2
1

2
hmnR̂52

1

2
hg̃mn2

1

4
~]m]ng2hmnhg!. ~4.8!

As a first case, we look in the limit in which both of th
lengths associated with the bulkAdS5 regions are smal
compared to the typical length scale probed on the bra
l 1upu,l 2upu!1. Using K2(z)52z221¯ and K1(z)5z21

1¯ for small z, we have

g̃mn~p,0!5
16p

p2 Ftmn2
1

3 Fhmn2
pmpn

p2 G tG 2

l 11 l 2
1¯ ; ~4.9!

combining this with the trace~4.7!, we recover the standar
theory:

R̂mn2
1

2
hmnR̂5

16p

l 11 l 2
tmn1¯ . ~4.10!

Later we shall discuss theories that deviate from this s
dard behavior.

We also examine whether a stationary point massM on
the brane produces a 1/r Newtonian potential@4#. For a point
source at rest on the brane, the energy-momentum tenso
only one nonvanishing component:

t00~x!5
M

M5
3 d3~xW ! or t00~p!52p

M

M5
3 d~p0!,

~4.11!

where M5 is the five dimensional Planck mass. When t
velocity of a test mass is small, the gravitational field
stationary and weakly perturbed away from the backgro
metric, we can extract the Newtonian potential by followi
the motion of a test mass along a geodesic. The leading p
of the geodesic equation in this Newtonian limit is

2
d2xi

dt2
5Ĝ00

i 52
1

2
] ig0052

1

2
] i S g̃002

1

4
g D ,

~4.12!

from which we can extract the ordinary Newtonian potent

2
d2xi

dt2
5] iV. ~4.13!

Typically in brane-world scenarios the standard model fie
are confined to the brane by some unspecified mechanis
that a test mass is not free to move along an arbitrary g
desic, but one constrained to lie within the brane. Thus in
geodesic equation, we have used the Christoffel symbols
the inducedmetric.

Returning to the limit wherel 1upu,l 2upu!1, we note that
the presence of a point mass on the brane produces a pe
bation of
12400
e

e,

n-
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d
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l,

s
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e
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tur-

g̃00~p,0!'
32p

3p2

2

l 11 l 2
t00, ~4.14!

while the traceg is fixed by Eq.~4.7!. Thus when both the
curvatures of the AdS regions are small compared to typ
lengths probed on the brane, we recover a standard attra
1/r potential,4

V~r !52
1

2 E d4p

~2p!4 e2 ip•xg0052
M

M5
3

2

l 11 l 2

1

r
.

~4.15!

The preceding example represents only a slight modifi
tion of the standard Randall-Sundrum scenario which co
sponds to settingl 15 l 25 l . However, we can also study a
ternative limits such as a universe in which one of the A
lengths is small compared to the typical scales probed on
brane, l 1upu!1, but where the other is much larger,l 2upu
@1. This case can be taken as an approximation to a h
AdS, half-flat universe. In this limit, the leading contributio
to the tracless piece of the metric perturbation is

g̃~p,0!5
16p

upu
Ftmn2

1

3 Fhmn2
pmpn

p2 G tG
3

1

11
1

2
l 1upu2

3

2
~ l 2upu!21

1¯ , ~4.16!

where we have used

K1~ l 2upu!
K2~ l 2upu!

512
3

2

1

l 2upu
1OS 1

l 2
2p2D ~4.17!

and neglected higher order terms asl 2upu→`. Since the
leading behavior isupu21 and notp22, the leading contribu-
tion to the Newtonian potential has a 1/r 2 behavior:

V~r !52
8

3p

M

M5
3

1

r 22
4

3

M

M5
3

1

l 2

1

r
1

4

3p

M

M5
3

l 1
2

r 4 1¯ . ~4.18!

In the limit r ! l 2 , the second term is actually a subleadi
correction. This example confirms the expectation that wh
the brane borders a flat 5D region, it is revealed by a 1r 2

Newtonian potential.

V. A SCALAR CURVATURE TERM
IN THE BRANE ACTION

We have used so far a minimal action on the brane c
sisting of only a surface tension and a Lagrangian for
fields confined to the brane. Yet from an effective fie
theory approach to the brane action, higher order terms co

4If the test mass were allowed to move into the bulk we wou

have usedG00
i rather thanĜ00

i in Eq. ~4.12!, which has the effect of
removing the trace term, and the Newtonian potential would h
been enhanced by a factor of 4/3.
8-6
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be present, suppressed by powers of derivatives, that inv
powers of the scalar curvature associated with the indu
metric on the brane. We shall focus on the simplest s
term, a scalar curvature on the brane, whose presence
produce a 4D Newton’s Law even in theories in which t
brane borders a flat bulk region@10#.

The presence of a scalar curvature term in the brane
tion, which we write with an arbitrary dimensionless coef
cient b by extracting a factor of the length scale associa
with the brane tension,

Sbrane5M5
3E

brane
d4xA2hS 2

12

l
1

1

2
blR1

1

M5
3 LfieldsD ,

~5.1!

introduces a new term in the Israel condition@13#,

DKmn5
2

l
18pF tmn2

1

3
hmnt G2b

l

2 FRmn2
1

6
hmnRG .

~5.2!

Rab andR are the Ricci tensor and curvature scalar for
induced metrichab . To leading order in the perturbation
these curvatures are given byRmn5R̂mn and R5R̂; their
components are evaluated in the Appendix. The new bou
ary condition imposed aty50 is then

f D@]yg̃mn#2
1

2
DF f

f 8G]m]ng516pF tmn2
1

3
hmnt G

1
1

2
blFhg̃mn1

1

2
]m]ngG .

~5.3!
ith
ity

el
to
t
b

12400
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As before, we can remove theg terms by taking the trace o
Eq. ~5.3!,

S DF f

f 8G1
1

2
bl Dhg5

32p

3
t, ~5.4!

which yields a condition on the traceless part of the me
perturbation similar to that in Eq.~2.26! except that an addi-
tional term with the 4-Laplacian ofg̃mn appears,

f ]yg̃mnuy5012 f ]yg̃mnuy502

5
1

2
blhg̃mn216pF tmn2

1

3 S hmn2
]m]n

h
D t G .

~5.5!

For a universe with two regions of AdS5 separated by a
3-brane aty50, the value of the Fourier transform of th
traceg at the brane is given by

g52
32p

3p2

2

l 11 l 21bl
t. ~5.6!

The solution to the bulk equation~2.23! that satisfies this
new boundary condition has the form
g̃mn~p,y!5
16p

upu
Ftmn2

1

3 Fhmn2
pmpn

p2 G tG e2y/ l 1K2~ l 2upu!K2~ l 1upuey/ l 1!

K1~ l 1upu!K2~ l 2upu!1K1~ l 2upu!K2~ l 1upu!1
1

2
blupuK2~ l 1upu!K2~ l 2upu!

.

~5.7!

for y.0 and

g̃mn~p,y!5
16p

upu
Ftmn2

1

3 Fhmn2
pmpn

p2 G tG e22y/ l 2K2~ l 1upu!K2~ l 2upue2y/ l 2!

K1~ l 1upu!K2~ l 2upu!1K1~ l 2upu!K2~ l 1upu!1
1

2
blupuK2~ l 1upu!K2~ l 2upu!

. ~5.8!
tive
r or

ll,
as
s
ote
for y,0.
We first summarize the results that we derive below w

a figure showing the appropriate effective theory of grav
seen at different scales for different relative choices forl 1 , l 2

andbl. For simplicity, the lengths are assumed to be wid
separated in scales in this figure so, for example, in the
plot we assumebl! l 1! l 2 . The results derived in the tex
are more general and often allow two of these lengths to
y
p

e

of the same order. Unless indicated otherwise, the effec
theories listed below are only valid at scales much large
much smaller than the bounding scalel 1 , l 2 or bl.

In the limit where both of the AdS lengths are sma
l 1upu,l 2upu!1, the addition of a brane scalar curvature h
the familiar @13# effect of rescaling the effective Newton’
constant in the low energy theory. To see this effect, we n
that when we substitute the leading behavior for Eq.~5.7!,
8-7
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g̃mn~p,0!5
16p

p2 Ftmn2
1

3 Fhmn2
pmpn

p2 G tG 2

l 11 l 21bl
1¯ ,

~5.9!

into the four dimensional Einstein tensor~4.8! and use the
trace in Eq.~5.6!, we obtain the correct form for four dimen
sional gravity,

R̂mn2
1

2
hmnR̂5

16p

l 11 l 21bl
tmn1¯ . ~5.10!

So for sufficiently large distances~the right side of Fig. 1!,
we always recover a standard theory of gravity.

The existence of a 4D curvature term in the action, ho
ever, allows us to consider new corners of thel 1 and l 2
parameter space which did not yield acceptable effec
theories in the last section. If we rewrite the expression
g̃mn on the brane as

g̃mn~p,0!5
16p

upu
Ftmn2

1

3 Fhmn2
pmpn

p2 G tG
3F1

2
blupu1

K1~ l 1upu!
K2~ l 1upu!

1
K1~ l 2upu!
K2~ l 2upu!G

21

, ~5.11!

we find that since 0<K1(z)/K2(z),1 for z>0, all that is
needed to recover a 1/r Newtonian potential is to have
blupu@1 so that

g̃mn~p,0!5
16p

p2 Ftmn2
1

3 Fhmn2
pmpn

p2 G tG 2

bl
1¯ . ~5.12!

In this limit, both g̃mn and g have a leading 1/p2 behavior
which automatically leads to a 1/r potential:

V~r !52
1

3

M

M5
3

2

bl F4~ l 11 l 2!13bl

l 11 l 21bl G 1

r
. ~5.13!

This equation is valid regardless of the scale ofl 1 and l 2 ,
compared with either the coefficient of the 4D curvature~bl!
or r. Yet when we use Eqs.~5.12! with ~5.6! to evaluate the
Einstein equation, we find that for arbitrary values ofl 1 and

FIG. 1. The effective classical theories of gravity for differe
regions of the (l 1 ,l 2 ,bl) parameter space.
12400
-

e
r

l 2 that a term involving the trace of the energy-momentu
tensor for the brane fields appears:

R̂mn2
1

2
hmnR̂5

16p

bl
tmn2

16p

3

1

bl F l 11 l 2

bl1 l 11 l 2
G

3Fhmn2
]m]n

h
G t1¯ . ~5.14!

If bl@ l 1 ,l 2 , then the extra term can be neglected and
leading behavior is that of a standard theory of four dime
sional gravity,

R̂mn2
1

2
hmnR̂5

16p

bl
tmn1¯ , ~5.15!

in agreement with Eq.~5.10!. Note we have implicitly as-
sumed that any higher order terms in the effective theory
gravity on the brane~5.1! can be neglected.

We can also study what happens when one or both of
AdS lengths becomes infinite, while keepingblupu@1. These
limits correspond respectively to universes in which t
brane is between a flat and an AdS region or is simply e
bedded in a flat bulk space-time. In either case, the effec
theory is

R̂mn2
1

2
hmnR̂5

16p

bl F tmn2
1

3 S hmn2
]m]n

h
D t G1¯ .

~5.16!

The case of a brane embedded in a flat bulk was also in
tigated in@10# where the effective theory on the brane w
shown to contain a scalar graviton. From Eq.~5.16! it would
appear that a scalar graviton is a generic feature of bra
embedded in~partially! flat space-times.

Thus far we have mapped the behavior of gravity wh
eitherl 1upu,l 2upu!1 or whenblupu@1 which covers most of
Fig. 1. What remains is the limit whereblupu<1. When
l 2upu@1@ l 1upu, then dominant contribution from Eq.~5.11!
is

g̃mn~p,0!5
16p

upu
Ftmn2

1

3 Fhmn2
pmpn

p2 G tG
3

1

11
1

2
~bl1 l 1!upu

1¯ , ~5.17!

while for l 2upu,l 1upu@1 we have

g̃mn~p,0!5
16p

upu
Ftmn2

1

3 Fhmn2
pmpn

p2 G tG
3

1

21
1

2
blupu

1¯ . ~5.18!

In either case, we know from our experience in the previo
section, Eq.~4.16!, that such a form forg̃mn leads to a 1/r 2,
or five dimensional, Newtonian potential.
8-8
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VI. CONCLUSIONS

We have mapped out the behavior of the theory for d
ferent relative scales of the AdS lengths in the bulk,l 1 and
l 2 , and the coefficient of the brane curvature,bl, compared
to experimentally testable lengths, represented by 1/upu.
When both the AdS lengths are both smaller than a millim
ter, then regardless of the size ofbl, the effective theory is
standard 4D gravity.

With the scalar curvature term on the brane a new reg
exists, l 1 ,l 2!bl, in which a realistic classical theory o
gravity also emerges. Interestingly we do not need to imp
any further constraints—providedbl is sufficiently large,l 1
and l 2 do not need to be below the millimeter limit. At dis
tances of the order ofl 1 ,l 2 or less, the brane curvature ter
dominates while at large distances, both the brane curva
and the effective bulk theory contribute to a standard
theory of gravity. The largest phenomenologically accepta
AdS5 lengths depend in turn upon the largest plausible va
for bl. In terms ofM4 , the effective 4D Planck mass, we ca
estimatebl using Eq.~5.15!:

bl5
2M4

2

M5
3 . ~6.1!

For example, whenM551 TeV, thenbl is about 400 AU.
Thus the theory can accommodate AdS lengths much la
than the current millimeter bound and still lie safely in t
l 1 ,l 2!bl regime.

In this regime, ifb is not unnaturally large, then a clea
experimental signature for this universe would be the app
ance of a weak correction to the Einstein equation that
pends on the trace of the energy-momentum tensor~5.14!. In
terms of the parametrized post-Newtonian formalism@12#,
this extra term in the effective field equations leads to
perturbation in the parameterg which measures how the cu
vature of space depends on the presence of a rest mas
leading order,

g2152
2

3

l 11 l 2

bl
1¯ . ~6.2!

The current value ofug21u based on very long baselin
interferometry ~VLBI ! observations is less than 331024

@14#. Thus for a symmetric universe in whichl 15 l 25 l , this
limit constrainsb>4000. Alternatively ifM5'1 TeV, then
from Eq. ~6.1! the model can accommodate AdS lengths
large as 1010m.

We have here extended the approach of using a gaug
which the position of the brane remains fixed@4# to allow an
unambiguous statement of the boundary conditions in a
ting more general than the standard orbifold universes
correct understanding of these boundary conditions is cru
for determining the form of the effective theory of gravity o
the brane. Our results can be readily generalized. For
ample, the brane itself might be given some nontrivial glo
curvature as in@15# and @13# where the AdS bulk metric is
replaced with an AdS-Schwarzschild metric. It is al
straightforward to include more general actions on the bra
their existence would simply add extra terms to the right s
of the Israel equation~2.10!.
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APPENDIX A: CONVENTIONS AND COMPONENTS

The conventions that we have used throughout use a m
ric with signature~2, 1, . . . , 1! and a Riemann curvatur
tensor defined by

2Ra
bcd[]dGbc

a 2]cGbd
a 1Ged

a Gbc
e 2Gec

a Gbd
e . ~A1!

Ra
bcd and R̂r

mnl , the curvature tensors corresponding r
spectively to the induced metrichab or its transverse compo
nentsĝmn , use the same sign convention.

In extracting the terms in the Einstein equation and
Israel condition, which are linear in the perturbation abo
the background metric, we have used the following expr
sions for the Christoffel symbols for the induced metric:

Ĝmn
l 5

1

2
@]mgn

l1]ngm
l 2]lgmn#, ~A2!

while for the bulk metric we have

Gmn
l 5Ĝmn

l 1
1

2

f 8

f
nlhmn ,

Gmn
y 52

1

2

1

n2 f 8hmn2
1

2
@ f 8gmn1 f ]ygmn#

1
1

2
~]mnn1]nnm!,

Gmy
l 5

1

2

f 8

f
hm

l 1
1

2
]ygm

l 1
1

2

1

f
~]mnl2]lnm!,

~A3!

Gmy
y 52

1

2

f 8

f
nm1

1

2
]mf,

Gyy
l 5

1

2

1

f
@2]yn

l2]lf#,

Gyy
y 5

1

2
]yf.

The linear contributions to the transverse components
the Ricci tensor for the bulk and the induced metrics a
respectively,

Rmn5R̂mn2
1

2 F f 91
f 82

f GF 1

n2 hmn1gmnG2
1

2
]m]nf

2
1

2
f ]y

2gmn2
1

2
f 8F2]ygmn1

1

2
hmn]yg2

1

2
hmn]yfG

1
1

2

f 8

f
@]mnn1]nnm1hmn]lnl#

1
1

2
]y~]mnn1]nnm!,
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R̂mn5
1

2
@]m]lgln1]n]lgml2hgmn2]m]ng#. ~A4!

Finally, the linear terms in the extrinsic curvature are
ys

,
e

n

12400
Kn
m5

1

2n F f 8

f
hn

m1]ygn
m2

1

f
~]mnn1]nnm!G , ~A5!

where f (y) is the appropriate warp factor for either bu
region.
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