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Linearized gravity about a brane
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We use the Israel condition to treat carefully the weak-field perturbations due to the presence of matter on
a 3-brane embedded between two regions of anti—-de $A®S) space with different curvature lengths. A
four-dimensional Newton’s Law only emerges at distances that are large compared to the AdS lengths. When
a scalar curvature is included in the brane action, however, it is possible to generate a four-dimensional theory
of gravity even when one or both of the AdS lengths is large compared to distances along the brane. In
particular, we provide an example in which the AdS lengths can be larger than the millimeter experimental
bound.

PACS numbes): 04.50:+h, 04.25—-g, 11.10.Kk

I. INTRODUCTION boundary conditions at the brane. In the previous analyses of
linearized gravity in a brane background, the energy-

One of the more intriguing ideas that has reemerged in thenomentum contribution from the brane to the full bulk Ein-
past year has been the suggestion that the physical universtein equation was incorporated usingsdunction source
could be embedded as a hypersurface in a higher dimenerm. However, some of the functions that multiply tléis
sional bulk space-time where the extra dimensions are norfunction become ill-defined when the bulk space-time no
compact. The fact that the standard model has been comenger has the standard orbifold symmetry. Fortunately, the
firmed to scales approaching the electroweak scale igpproach introduced by Israg8] relates the discontinuities
accounted for in these models by assuming that these fieldsf functions evaluated on opposite sides of the brane to func-
are confined to this hypersurface, or “3-brane.” Yet sincetions that are well-defined on the brane.
gravity describes the dynamics of space-time itself, some We have also considered the effect of adding a scalar
additional feature is needed to produce an effectively fourcurvature term to the brane action. For our purpose, we shall
dimensional theory of gravity, at least on lengths greater thagimply regard this curvature term as the next natural term in
the millimeter scale probed. In the scenario proposed bwn effective theory expansion in powers of derivatives. Such
Randall and Sundrunil], the bulk is five-dimensional a term can arise in some quantum field theofies9] from
anti—de Sitter (Ad§ space-time whose curvature length radiative corrections to gravity that involve fields confined to
provides the threshold above which the effective theory othe brane circulating in the loop&0]. Scalar curvature terms
gravity is approximately Einstein’s theory in four dimen- also occur extensively in the study of the AdS conformal
sions. At distances shorter than the AdS curvature length, thigeld theory (CFT) correspondence where they are used to
extra dimension is revealed. regularize the bulk actiopll]. Moreover, the brane curva-

In studying extensions of the original Randall-Sundrumture term is required for the emergence of 4D gravity in
proposal, it is important to have a method for describing thetheories in which the brane is embedded in a flat bulk space-
effective theory of gravity seen by an inhabitant of thetime[10].
3-brane. A natural approad] is to study the perturbations The presence of a curvature term in the brane action leads
to the background metric produced when matter is placed oto a particularly intriguing possibility. Since an effectively
the brane. The problem is not as straightforward as it migh#tD theory of gravity from the bulk arises at distances along
seem since the presence of brane matter can alter the positi¢iie brane greater than the AdS lengths, by adding a curvature
of the brane in some bulk coordinate systems[3hit was  term on the brane which has the dominant contribution to
shown that this “brane-bending” must be included to cancelgravity at or below these scales, we can obtain a standard 4D
the appearance of a spurious scalar gravity term in the effe@Einstein theory of gravity valid at all testable scales. With
tive Einstein equation in the original Randall-Sundrum scethese ingredients, we can find a realistic scenario in which
nario. A better method was recently introduced #); build-  the AdS lengths can be above the millimeter scale and the
ing upon their earlier work5], in which the gauge is chosen bulk Planck scale is in the TeV range at the cost of mildly
so that the brane remains flat, even when matter is placed dine-tuning the coefficient of the brane curvature term.
the brane. As it is presented jd], this method works best The next section contains a detailed derivation of the
when the model has an orbifold symmetry. In this article, weweak-field perturbation to the background metric due to
shall extend the formalism to permit the study of linearizedfields placed on the brane. Although some of this material
gravity in asymmetric bulk space-time backgrounds. builds on the elegant formalism p4], we have included the

Central to our discussion is a careful treatment of thederivation of the bulk equations along with the new material

describing the behavior at the boundary for completeness.
After a short aside on the gauge invariance of our results, in
*Email address: hael@physics.utoronto.ca Sec. IV we use our results to study the effective theory of
"Email address: bob.holdom@utoronto.ca gravity along the brane for a universe consisting of a 3-brane
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separating two regions of AgSvith different curvatures. In  position in the bulk space so that it no longer lieyat0. In

Sec. V we introduce a scalar curvature term into the actiofgeometries without the usual orbifold symmetry, this “brane
and show that it can provide a source for four dimensionabending” leads to subtleties in correctly imposing boundary
gravity even in theories that do not have a 4D Newton’s Lawconditions at the position of the brane. As a consequence, it
without it [10]. Section VI concludes with some comments iS convenient to relax these gauge conditions and instead to
on size of the 5D Planck mass. work in a gauge where the position of the brane remains
fixed aty=0.

The problem of finding such a gauge in order to study
linearized gravity was addressed [i4]. There, the metric
tensor is written using the time-slicing formalidih2] as

The action for a 3-brane embedded in a five dimensional
bulk space-time can be divided into bulk and brane compo- Ouv n, ab. L gr” —§**n,
nents. For the bulk, we use an Einstein-Hilbert action while9ab= n n2+n,nt)’ g Y —§"n, 1 ,
on the brane we initially consider a minimal action contain- ’

II. LINEARIZED GRAVITY IN AN ASYMMETRIC
BACKGROUND

ing a surface tension term plus a term for fields confined to 2.3
the brane: where
9,=f + . 2.4
S: Mgf d4xdy /_g(ZAsgr(y)+ R) g,uv (y)(ﬂ;u/ YMV) ( )
nandn, are respectively called the lapse function and the
3 4 w shift vector. Here we have written a more general warp fac-
+2M5fbraned Xy—haK tor, f(y), to allow configurations in which the brane sepa-

) rates two regions of AdSwith different cosmological con-
3 4 12 1 stants. In the limit in which the perturbations about the
+M5fb d*xy=h ( Tt M_gﬁfie'ds)' (2. background are small, we considey,, n, and ¢=n’—1
all to be small quantities of roughly the same size.

Jab is the metric for the bulk space-time ahgy, is the in- The advantage of this metric is that it admits a foliation of
duced metric along the 3-brand is the bulk Planck mass. the bulk space by hypersurfaces wherés constant. The
We shall denote the coordinates along the branexty normal vector to any of these hypersurfaces can be written as
whereu,v, ...=0,1,2,3; the fifth coordinatg is chosen so
that the brane lies at=0 anda,b,c, .=0,1,2,3y. Notice _ N,=(0,0,0,0-n), Na=l(©’”ny,—1) (2.5
that we have allowed the cosmological constant to have dif- n
ferent values to either side of the brane, represented by the ] . o
sgng) dependence, which leads to different metrics in thend the induced metric along the surface is given by
two bulk regions. When the metric changes between regions A
of the bulk, it is necessary to include a term in the boundary hap=dap— NoN :(g;w n, )
action that depends on the trace of the extrinsic curvature, ab—Yab Al o g
K=h?3"K,,,, defined below. Since the boundary for the two
bulk regions is provided by the brane itself, we include a ap L Q’”—g‘“g”ﬂnknp 0
term in the brane action for the difference in h n? 0 ol
the extrinsic curvature for the two regionsAK,,
=Kaply-0- —Kaply=0+ . For comparison, in the standard |n addition to the curvature induced by this metric along a
Randall-Sundrum univers¢1l] A=6/? when the bulk hypersurface, the bulk space also produces an extrinsic cur-
metric is ds?=e 2Yy, dx*dx,+dy? for Lieas=0. 7,,  vature structure defined by the symmetric tehsor
=diag(—1,1,1,1) is the four dimensional Minkowski metric.

The approach that we shall use to extract the theory of Kapb=—h5V Ny, (2.7
gravity for an observer on the 3-brane is to study gravity in
the weak field limit, expanding in a small perturbation aboutwhere the covariant derivative is with respect to the bulk
the classical background. The treatment of linearized gravitynetric. To leading order in the perturbations, the extrinsic
was first presented if2], and then more fully ii3]. In both ~ curvature is then
these papers the gauge was chosen so that the bulk metric
assumed the form

rane

(2.6

1
Kﬂy=ﬁ[aygw—(9#ny—ﬁvnﬂ]+---, (2.8

e—2|y\/| 7],u,v+ ’Y,U.V o
Gap= 0 nE (2.2 with Kuy=1/2(f"/f)n, andK,,=0.

wherevy,,, is regarded as a small perturbation. The remain-
ing gauge freedom is used to choogey,,=0. In these INote that we have chosen our sign to agree with that usédl]in
coordinates the presence of matter on the brane distorts itghich is the opposite of that used [ih3].
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One of the new features in a bulk space-time without am ! f'2 3§’
orbifold symmetry is that some quantities become ill-defined | 99"y, ~Hy+ 3T,9Nn>\ =3¢ t5 77
on the brane. For example, when the cosmological constant
differs on the opposite sides of the brane, it changes discon- L ap
tinuously aty=0. One solution to this problem is to allow b a4 Y
the brane to have some finite thickness, so that the transition FLIN ™ 0w M= 57 Ou bt 40— 0]
from one region to another proceeds smoothly. Alternatively, (2.13
we can use the Israel junction equations which relate changes

in bulk quantities to the brane tension and the energyThe important feature of these expressions is the appearance
momentum tensor for fields confined to the brane. This aPof thef71 factors on their left sides. For regions of anti—-de

proach avoids evaluating potentially ill-defined functions onsitter spacef ~* typically grows exponentially as we move

the brane. _ o _ farther into the bulk so that at some distance away from the
The behavior of gravity in the bulk is governed by the prane, the assumption thay,, and ¢ are small breaks down,
usual Einstein equation unless we use gauge freedom to set the right sides of both
1 expressions to zero. Therefore, in the bulk we choose, simi-
R..— —RO.,+=0.1 A (2.9 larly to [4]
ab 2 Gab= Yab sgny) - .
At the brane, the change in the extrinsic curvature is deter- b= 111(9 y, %,,=0, (2.14
mined by the Israel conditiofi 3], 2f 4 w
1 < .
AKp= 87| Top— §habT . (2.10 where asy,,, denotes the traceless partf,
) ) : . 1
Tap includes both the brane tension as well as fields living on Yur=Yur— 2 Tuv?- (2.15

the brane. Although we shall use the Israel condition to fix
the behavior of the metric perturbations at the brane, it is
nevertheless useful to write E(R.9) in the Gauss-Codacci For these equations, E(R.13 constrains the shift vector to
form by decomposing it into the transverse and orthogonape of the following form:

components with respect to an arbitrary const hypersur-
face,

| =

F3,7HA,. (2.16

S
I
=

R+ KEKY —K2==2Ag4qy)

- Here A, is a free vector field [JA,=0) with vanishing
d,K=V K/=0, 4-divergence ¢*A,=0). Later we shall use the gauge free-
dom to chooseé\ ,=0.
. For simplicity, we assume that all the matter is confined
Ruvzgguv/\sgr(y)- (21D {0 the brane. On the brane, the energy-momentum tensor
receives contributions from both the brane tension, which we
write as—6/l, as well as a term,,, for the fields confined to

Here R is the scalar curvature associated with, and is
the 3-brane,

calculated in the Appendix. Away from the brarye# 0, the
zeroth order terms from E¢2.11 determine the warp factor

which appears in the unperturbed mefric, 31
TMV:_ETgMV_FtI“/(X)' (2.17
f/2 2 f// 2
T2 =300ty T30y (2.12

The energy-momenturty,, determines the behavior of,,

so it should also be treated as a small quantity. The surface
tension of the brane is related to the discontinuity in the

slope of the warp factor at the brane. Explicitly, the unper-

turbed piece of the Israel condition requires the usual fine-
tuning of the brane tension,

In this more general pictureAS,ZW) can have different values
for y>0 andy<O0 so thatf’< becomes ill-defined on the
brane.

The terms linear in the perturbations for the first two
Gauss-Codacci equatiori2.11) impose constraints on the

metric: 4
f,|y=07_f,|y=0+EA[f’]=|_f- (2.18
2Since we are writing only the equations for the bulk, we have not ) ) ) _
included the usuab-function source term for the brane in tié The behavior ofy,,, in the bulk is found using the trans-
equation. verse components of the Einstein equatigril),
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N 1f' N and inverting the operatdr! to write formally
R+ > T[ﬁﬂnﬁ— 3N, + 1,00, ]

f‘?y'?,uv|y:0+ - f(yy’:}’/,u,v|y207

1 1 1 1 1 9,0,
12
+ o, Efaz,y As for the case of the orbifold, taking the 4-divergence of
2 L A A this expression shows that the energy-momentum tensor for
1 the brane fields is conservedt, ,=0.
+ E&y[éﬂn,ﬁ- d,n,]=0, (2.19

Ill. GAUGE INVARIANCE

where we have substituted the equations determining the Before considering the weak field behavior for some spe-
warp factor(2.12. The transverse components of the Israelcific geometries, we should show that both the bulk equation
condition specify the boundary conditions at the brane,  for %, (2.21) as well as the boundary conditid@.22) are

left invariant under changes of coordinates that still preserve
the position of the brane. Under a small change of coordi-
nates,

1
A[ - Ef o1t toyy—a,n,—d,n,

— 167 —%nwt (2.20 X/ F=xE—gh(xY), Y =y—E(XY); (3.9

t.,

the statement that the position of the brane is left invariant is
where we have imposed the zeroth order const(&irig). In that £5(x,0)=0. The components of the metric change ac-
both these expressions we have retained only the linear terng®rding to
in the metric perturbation. Botth andn,, can be eliminated
from these equations through Eq2.14) and(2.16 so that , s
Yur=Yur™ T mwf - a,u,gv_ avfp, ’

f/
Aty + 1 0yY,+ 0%, — = [0,A+3,A,]
v v v f wy v\ o
n,=n,—foé,—a,&, (3.2
~,[0,A,+3,A,]1=0 (2.21) b 20,65
— &5,

The trace and the traceless part)gf, transform as

for y#0 and

’

’ f 5
Y=y —4F E-20,,
(2.22 ) @3
’:}'//.LV:’:)'/;LV_ a,u,gv_ &V§M+ E 77#1)[?)\5)\ .

R
A fﬁy’yM,,—Ef—,&MﬁV’y—&MAV—ﬁyA

o

=167

t,uu 3 n,uvt

at the braney=0. Finally by making a gauge transformation

to eI_iminateA# and noting that since the metric mgst be |t we maintain the same gauge conditia®s14) before and
continuous at the brane, so that bétand y,,, are continu-  afier the coordinate transformation, we have further that
ous there, we have the following equations for the behavior
of y,,: £
: &ya)\g)\: _255&)/(?)’
Ay(foyy,,)+1dyy,,+0%,,=0 (2.23 3.4

in the bulk and 1
D§M+ 5‘9“& &,=0.

1 |f
FALdy Y] = EA[f_' 9udyy=16m 1, = 3 7t (2.249 Lastly, we note that the vector field, transforms as fol-
lows:
on the brane.
As in [4], we can eliminate they from Eq. (2.24 by , 1 ,
taking the trace of this expression A=A, =Ty 5 570,0"E, . 3.9
A i [Jy= 32_7",[ (2.25 We have used this residual gauge freedom toAsget 0.
-7 73 ' The bulk equation(2.2]) is invariant provided that
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f ! IV. AN EXAMPLE: A BRANE BETWEEN TWO REGIONS
(9,(1,‘911(9)\5)\4_2 f,gsn,uv_zf_r(guﬁvgs} ﬁy(T) OF AdS;

£ As an application, we examine in depth the behavior of a
5| —|1=0 (3.9  universe in which a brane with tension6/ separates two
&0y f : :

+f 70y . . .
regions of Adg with different curvatures,

Equation (2.12 implies that f'/f=constant fory#0, so 2

(3.6) is satisfied. _ |6 for y=0,
Under a coordinate transformation, we also find that the 615 for y<O,

left side of the Israel conditiof2.22) is invariant when

f/
fsﬁv(?)

These quantities are evaluated in the bulk on either side of

the brane so as we have seen the second term vanishes.

d,d,&s also vanishes sincé’(x,y)—0 asy—0, under our

constraint that the position of the brane remains fixed. The

gauge invariance of the Israel condition demonstrates thasince 4-derivatives appear in the equation determifipg,

¥(x,0) is a gauge-invariant quantity determined only by theit is convenient to Fourier transform in the directions along

physical fields placed on the brane through E425. This  the brane so that in the regign>0, ¥, satisfies

result is important since, as we shall see in the next section,

v(x,0) enters the expression for the effective Einstein equa- 2

tions on the brane. o ae oy, ,)— I—efzy”laﬁfw—pzifﬂﬁo, (4.3
Before concluding this aside on the gauge invariance of 1

Egs. (2.21),(2.22, we should mention how the fixed-brane

gauge is related to the bent-brane gauge@péind[3]. The  Wwith an analogous expression fgr<0 involving I,. For

appearance of the term[a’uaygS] in the gauge transformed p2> 0, the solution to this differential equation is in terms of

Israel condition shows that if the position of the brane is notBessel functions,

kept fixed, then gauge-dependent terms will appear in the

(4.1)

for which the corresponding warp factorfisy) =e~ /"1 for
—0. (3.7 y>0 andf(y)=e®"2 for y<0. The fine-tuning condition

A[é’#alz§5]_2 fylp,vA . .
for the brane tensiof2.18 is

1 1
—+ —}. 4.2

ER P

1
I

1
2

expression fory. Since these terms need to be subtracted E/W(p,y>0)=c;V(p)ezy“l[Kz(ey”ll1|p|)
from the final expression for the effective theory, it is con- yi
venient to work in a gauge in which they are absent. More +Aly (el /|p])]. 4.9

importantly for a universe without an orbifold symmetry, the

bending upon either side of the brane might not be equal s8incel,(e"'1|p|l,) diverges asy—=, we setA=0. From
that extra care must be made to properly describe the bounéq. (2.26) and imposing continuity of the metric across the
ary conditions at the brarmeAgain, this complication is brane, we discover the following behavior for weak fluctua-
avoided when the brane’s position is fixed. tions about the background solution:

3 o)=L Puby } 1K (1]p) K (14| ple’) s
YA BYI Tl P 3| ™ o2 [P K (] pD Ko (1P + Ko (o P Ko (TP '
for y>0 and
F.,.,(p,y)= 16m t - 1 _ PuPy } e 12K,(14pl) Kol ple™"'2) .6
P BYI T P 3| ™ o2 P K (T D Kol pD) + Ko (T2 PN Ko (TP '
|
for y<0. The value of the trace at the brane is determined W7 2
by the Israel conditiori2.25 to be ¥(p,0)=— 3p2 mt, 4.7

and along withy,,, is needed to find the effective theory of
gravity seen by an observer confined to the brane.
A possible source for a discrepancy between a purely four
3This point is stressed in the note accompanying(Bd.1) of [3]. dimensional theory of gravity and the effective low energy
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theory of gravity for an inhabitant of the 3-brane is in the 27 2
appearance of deviations from the Einstein equation. The Yoo PO~ 37 77 Loos (4.14
intrinsic Einstein tensor is given k] S
while the tracey is fixed by Eq.(4.7). Thus when both the
g Lt & Lo 1o O ) (4.9 curvatures of the AdS regions are small compared to typical
ur™ p Muv 2 Ywr 4( wOvY = Nuv=7): ' lengths probed on the brane, we recover a standard attractive
1/r potential?
As a first case, we look in the limit in which both of the

lengths associated with the bukdS; regions are small ( ):_Ef d*p e ipx :_ﬂ 2 E
compared to the typical length scale probed on the brane, 2 ) (2m)* Yoom T MBT A , r
l1lpl.l5|p|<1. Using Ky(2)=2z"2+--+ and K (2)=2z"1 (4.15

+--- for smallz, we have . . -
The preceding example represents only a slight modifica-

tion of the standard Randall-Sundrum scenario which corre-
; (4.9  sponds to setting; =1,=I1. However, we can also study al-
ternative limits such as a universe in which one of the AdS
lengths is small compared to the typical scales probed on the
brane,l,|p|<1, but where the other is much larges/p|

1

PPy
t;w 3 My

o7 |!

77#1/_ —+ ..

_ 0)= 6m
YurlPO= "2 P

combining this with the tracé.7), we recover the standard

theory: >1. This case can be taken as an approximation to a half-

AdS, half-flat universe. In this limit, the leading contribution
R — E 7,.,R= ﬂt F (4.10 to the tracless piece of the metric perturbation is
A PR P ' '
- 16 1 PP,
Later we shall discuss theories that deviate from this stan- ¥(p,0)= W 9% % 3| Tuv™ ? t
dard behavior.
We also examine whether a stationary point milssn 1

the brane produces arlNewtonian potentidl4]. For a point e 1 3 teee, (410

source at rest on the brane, the energy-momentum tensor has 1+ EI 1lpl— E(I2|p|)‘1

only one nonvanishing component:
where we have used

M JEp B M
too(X)—M—g (X) or too(p)—ZWM—g5(po), Ka(lolp) 3 1 +O( 1 ) w1
(4.1 Ka(lopD) = 2150p[ 7\ 15p? '

where M5 is the five dimensional Planck mass. When theand neglected higher order terms lg$p|—. Since the
velocity of a test mass is small, the gravitational field isleading behavior i$p| ! and notp~2, the leading contribu-

stationary and weakly perturbed away from the backgroundion to the Newtonian potential has a 3/behavior:
metric, we can extract the Newtonian potential by following

the motion of a test mass along a geodesic. The leading piec\}e 8 M1 4M1 1+ 4 M If N 41
of the geodesic equation in this Newtonian limit is r= 37 M_g 2 3 M_SE r 3y M_g ) . (4.18
d _p 1(9_ _ Ea_ ~ 1 In the limit r<I,, the second term is actually a subleading
dt? 00 2 “iYoo 21| Yoo 2 V) correction. This example confirms the expectation that when

(4.12  the brane borders a flat 5D region, it is revealed byr& 1/
Newtonian potential.
from which we can extract the ordinary Newtonian potential,
42 V. A SCALAR CURVATURE TERM
X
IN THE BRANE ACTION
— W =9,V (4.13
We have used so far a minimal action on the brane con-

Typically in brane-world scenarios the standard model field llslgng of ?nl):ja suLfacg tenS|o\r(1 ar;d a Lagrafr;g@n fofr_ tl?je
are confined to the brane by some unspecified mechanism iglds confined to the brane. 'et fom an e ective fie
that a test mass is not free to move along an arbitrary geot_heory approach to the brane action, higher order terms could
desic, but one constrained to lie within the brane. Thus in the
geodesic equation, we have used the Christoffel symbols for
the inducedmetric. 4If the test mass were allowed to move into the bulk we would

Returning to the limit wheré,|pl,I,|p[<1, we note that paye used, rather thari,, in Eq. (4.12, which has the effect of
the.presence of a point mass on the brane produces a pertyémoving the trace term, and the Newtonian potential would have
bation of been enhanced by a factor of 4/3.
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be present, suppressed by powers of derivatives, that involv&s before, we can remove theterms by taking the trace of

powers of the scalar curvature associated with the inducefq. (5.3),

metric on the brane. We shall focus on the simplest such

term, a scalar curvature on the brane, whose presence can

produce a 4D Newton’s Law even in theories in which the f

brane borders a flat bulk regi¢@0]. (A Fr
The presence of a scalar curvature term in the brane ac-

tion, which we write with an arbitrary dimensionless coeffi-

S\;ﬁﬁtt?]:%g:;ag Innsgi]oi factor of the length scale assouatethich yields a condition on the traceless part of the metric

perturbation similar to that in Eq2.26) except that an addi-

ooy 35, 54

3 4 12 1 1 tional term with the 4-Laplacian 6§, appears,
Sbrane:MSJ d X\/_h ——+ =bIR+ _3£fields ,
brane [ 2 Ms
(51) f&yﬁil,uv|y:0+_ fay:ilp,vlyZO’
introduces a new term in the Israel conditid8], 1 1 3.9
— x, — JE— — _M v
AK 2+8 t t bI R 1h R _2b|D7W 1677'[/” 3(77M H )t}
wr— 1 T L™ 3 M| =P uv g Hpp/v|-
I 3 2 6 (5.5
(5.2

Rap and R are the Ricci tensor and curvature scalar for the ) ) )

induced metrich,,. To leading order in the perturbations, For a universe with two regions of Adeparated by a

these curvatures are given By, =R, and R=R; their 3-brane aty=0, the value of the Fourier transform of the
mv v ’ . .

components are evaluated in the Appendix. The new bound@cey at the brane is given by

ary condition imposed at=0 is then

(Al 1A B 32w 2 oy
+ ! bl|O%y,,+ ! d,0
2 YurT R Ou Y The solution to the bulk equatiof®.23 that satisfies this
(5.3  hew boundary condition has the form
|
_ 167 1 PP, | e?"1K (15 p|)K (1] ple’'n)
yuv(piy): m t,uv_ § Nuv™— p2 t 1 '
K1(11lpDKa(l2lp) + K (12| phKo(14]p) + §b||p|K2(I1|p|)K2(I2|p|)
(5.7
for y>0 and
- 16m 1 PLP. e~ 212K, (11| p)Ka(15|ple™"2)
K1(11lpDKa(12lp)) + K (12| pHKo(14]p) + §b||p|K2(I1|p|)K2(I2|p|)
|
for y<O. of the same order. Unless indicated otherwise, the effective

We first summarize the results that we derive below withtheories listed below are only valid at scales much larger or
a figure showing the appropriate effective theory of gravitymuch smaller than the bounding scéle I, or bl.
seen at different scales for different relative choiced fot , In the limit where both of the AdS lengths are small,
andbl. For simplicity, the lengths are assumed to be widelyl4|p|,l,|p|<1, the addition of a brane scalar curvature has
separated in scales in this figure so, for example, in the tothe familiar[13] effect of rescaling the effective Newton'’s
plot we assumédl|<<l,<<l,. The results derived in the text constantin the low energy theory. To see this effect, we note
are more general and often allow two of these lengths to béat when we substitute the leading behavior for &q7),
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4d gravity + : : : I, that a term involving the trace of the energy-momentum
scalar grar‘)’,imn >4 gravity . 5d gravity . >4 gravity ténsor for the brane figlds appears: ¥
,T, h k length o 1 o 16w 16w 1[ Iyt
w2 M T T T3l bl I+,
44 gravity + : :
'é”—"scalgr grat\)//iton"—”) 5d gravity 4d gravity 3,0,
: 7 : X| 7= = t+---. (5.19
h bI I length
If bI>14,l,, then the extra term can be neglected and the
4d gravity leading behavior is that of a standard theory of four dimen-
, , sional gravity,
h b ZII\[ length R 1 167

R t 4 (5.15

,u,V_En,uVR: bl y1a%
FIG. 1. The effective classical theories of gravity for different

regions of the [, |,,bl) parameter space. in agreement with Eq(5.10. Note we have implicitly as-

sumed that any higher order terms in the effective theory of
2 L. gravity on the brang5.1) can be neglected.
[1+1,+Dbl ' We can also study what happens when one or both of the
(5.9  AdS lengths becomes infinite, while keepinfp|> 1. These
. . ] ) . limits correspond respectively to universes in which the
into the four dimensional Einstein tens@t.8) and use the prane is between a flat and an AdS region or is simply em-

trace in Eq/(5.6), we obtain the correct form for four dimen- peqded in a flat bulk space-time. In either case, the effective
sional gravity, theory is

1

w3

PuPy

t
p2

~ 16m
Yur(P,0) = —

Nuv™—
p M

. 1 . 16
Rp.v_ E 77/.LVR= [

~ 1 ~
1+I2+b|tf”+”" (510 R 5 muR= 1

1 9,9,
t#,,_g 77/“,—? |+

So for sufficiently large distancesghe right side of Fig. }, ©-16

we always recover a standard theory of gravity. The case of a brane embedded in a flat bulk was also inves-
The existence of a 4D curvature term in the action, howtigated in[10] where the effective theory on the brane was

ever, allows us to consider new corners of fheand |,  shown to contain a scalar graviton. From Es1.16 it would

parameter space which did not yield acceptable effectiveippear that a scalar graviton is a generic feature of branes

theories in the last section. If we rewrite the expression foembedded ir(partially) flat space-times.

v On the brane as Thus far we have mapped the behavior of gravity when
eitherl{|p|,l,|p|<1 or whenbl|p|>1 which covers most of
- )= 16m 1 (S o Fig. 1. What remains is the limit wherel|p|<1. When
Vur(P,0) = Tl Cuw™ 3| Tur™ p2 t !2|p|>1>ll|p|, then dominant contribution from E¢5.11)
is
1 Ka(lalph)  Ka(llph]™t
*2PMP R meh T kotlen| 0 G . Lom| L[ PuPy
2\t 242 YMV(pao): W t,uv_ § Nuv— p2 t
we find that since &K;(2)/K,(z)<1 for z=0, all that is
needed to recover a rl/Newtonian potential is to have % 1 L. (5.17)
bl|p|>1 so that 1 ’ '
1+ §(b|+|1)|p|
_ _ 167 1 p.P.| |2
Vur(P,0)= ra Cur™ 3| v ™ e Upp T 512 yhile for I,|p|,11|p|>1 we have
In this limit, both7y,, and y have a leading p* behavior - 0= 16w — 1 _ Puby t}
which automatically leads to arlpotential: VPO = Ip| [# 3 Muv p?
1M 2[4(l,+1,)+3bl]1 1
S D M X+, 51
VIO==3wibl| hreol v O 1 .18

This equation is valid regardless of the scalel pand|,,

compared with either the coefficient of the 4D curvat(oh  In either case, we know from our experience in the previous
orr. Yet when we use Eqs$5.12 with (5.6) to evaluate the section, Eq(4.16), that such a form fofy,,, leads to a 1P,
Einstein equation, we find that for arbitrary valued pand  or five dimensional, Newtonian potential.
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I,, and the coefficient of the brane curvatubé, compared
to experimentally testable lengths, represented Hyp|.1/ APPENDIX A: CONVENTIONS AND COMPONENTS
When both the AdS lengths are both smaller than a millime-

ter, then regardless of the size lnff the effective theory is The conventions that we have used throughout use a met-

standard 4D gravity ric with signature(—, +, ..., +) and a Riemann curvature
With the scalar curvature term on the brane a new regim&nsor defined by
exists, I1,1,<<bl, in which a realistic classical theory of — Reyq=dgl 2.~ 93, + T3 e ~T2Te,.  (Al)

gravity also emerges. Interestingly we do not need to impose

any further constraints—providda is sufficiently large| R34 and ﬁp#w the curvature tensors corresponding re-

andl, dof ”r?t neéad tg ble beIFW theh mgllmeter limit. At dis- gpectively to the induced metrig, or its transverse compo-
tances of the order df ,|, or less, the brane curvature term nentsd,, . use the same sign convention,

dominates while at large distances, both the brane curvature : ; ; ; -
. ” In extracting the terms in the Einstein equation and the
and the effective bulk theory contribute to a standard 4DIsr 9 g

: . ael condition, which are linear in the perturbation about
theory of gravity. The largest phenomenologically acceptabl(?he background metric, we have used the following expres-

AdSs lengths depend in turn upon the largest plausible Valu%ions for the Christoffel symbols for the induced metric:
for bl. In terms ofM,, the effective 4D Planck mass, we can

estimatebl using Eq.(5.15: - 1
2 F/).\LV:E[aﬂ’YI))_F[?V’Y;\L_(?)\’Y}LV]I (AZ)
| 2My
b= ME ' 6.2 while for the bulk metric we have

!

For example, wheM ;=1 TeV, thenbl is about 400 AU. S L
Thus the theory can accommodate AdS lengths much Iargerruv_ wr ' o9 f N v
than the current millimeter bound and still lie safely in the

l,,1,<bl regime. y 11 1
In this regime, ifb is not unnaturally large, then a clear Lw=— 5 ﬁzf Nuv™ E[f Yurt 10yl
experimental signature for this universe would be the appear-
ance of a weak correction to the Einstein equation that de- n 1(0 n+an.)
pends on the trace of the energy-momentum te(&d#). In 2 v Ve

terms of the parametrized post-Newtonian formaligig],
this extra term in the effective field equations leads toa ,, 1f"  , 1

= — — — N_ 9\
perturbation in the parameterwhich measures how the cur- wy o f T 2 KYut 2 f (90" =3d"n,),
vature of space depends on the presence of a rest mass. To (A3)
leading order, v - 1f _— 10 é
Yy~ o f w9 %u®
2 1,+1, w22

y=1==3"pi (6.2

N 11 A A
) Fyy_ E?[Z&yn -\ d],
The current value of y—1| based on very long baseline
interferometry (VLBI) observations is less than>x3L0 4 1
[14]. Thus for a symmetric universe in whith=1,=1, this Y==d,¢.

limit constrainsb=4000. Alternatively ifMs~1 TeV, then w2

from Eq. (6.1) the model can accommodate AdS lengths as e |inear contributions to the transverse components of

large as 1&m. i the Ricci tensor for the bulk and the induced metrics are,
We have here extended the approach of using a gauge F&spectively

which the position of the brane remains fixe to allow an
unambiguous statement of the boundary conditions in a set- .

ting more general than the standard orbifold universes. ARu =Ry~ 2
correct understanding of these boundary conditions is crucial

for determining the form of the effective theory of gravity on 1 1, 1

the brane. Our results can be readily generalized. For ex- - Emﬂw_ Ef 20y Y vt 5 Muvdy Y™ E”Mﬁyfﬁ
ample, the brane itself might be given some nontrivial global
curvature as if15] and[13] where the AdS bulk metric is
replaced with an AdS-Schwarzschild metric. It is also
straightforward to include more general actions on the brane;
their existence would simply add extra terms to the right side
of the Israel equatiofi2.10).

£ —

1
i "2 %9

1
?77;1.1/4_ Yuv
!
+5 T[(9#ny+ a,n,+1,,0"n,]
1
+ an(aﬂn,,wL d,n,),
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~ 1 1(f 1
R,u,V:E[a#a}\’y}\v_Fav(g)\’}’p.)\_lj’y“v_(gyﬁv'y]- (A4) KI:JL:Z T’If*’ﬁy?’ﬁ_?(ﬁ”nv‘kf?vnﬂ) ) (AS)

where f(y) is the appropriate warp factor for either bulk

Finally, the linear terms in the extrinsic curvature are region.
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