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S; and the L =1 baryons in the quark model and the chiral quark model
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The S; symmetry corresponding to permuting the positions of the quarks within a baryon allows us to study
the 70-plet ofL=1 baryons without an explicit choice for the spatial part of the quark wave func-
tions: given a set of operators with definite transformation properties under the spin-flavor group
SU(3)X SU(2) and under thi$;, the masses of the baryons can be expressed in terms of a small number of
unknown parameters which are fit to the obseriiedl baryon mass spectrum. This approach is applied to
study both the quark model and chiral constituent quark model. The latter theory leads to a set of mass
perturbations which more satisfactorily fits the obsertedl baryon mass spectruthough we can say
nothing, within our approach, about the physical reasonableness of the parameters inRhediittions for the
mixing angles and the unobserved baryon masses are given for both models as well as a discussion of specific
baryons[S0556-282(99)01907-4

PACS numbss): 12.40.Yx, 11.30.Ly, 12.39.Jh

[. INTRODUCTION symmetry corresponds to the fact that the confining potential
should treat the light quarks equivalently and should be in-
The nonrelativistic quark model has been used extenvariant under permutations of the positions of the three
sively to study theL =1 baryons[1,2]. In this model, the quarks. It allows us to circumvent choosing a definite form
observed mass spectrum of the baryons is generated by a tf@ the quarks’ spatial wave functions using group theory
body Coulombic potentigB], produced by a gluon exchange t0 keep track of our ignorance of this spatial behavior.
between two quarks. The quark model leads to a definitdVhat distinguishes one model from another is the
form for the SU(3)X SU(2) spin-flavor breaking interac- SY(3)XSU(2) spin-flavor ands; transformation properties
tions but not for the ground state quark wave functions. Wha' the operators that p_roduce the mass spllttmgs_among _the
is typically done is to use harmonic oscillator wave functions- = 1 Paryons. We begin therefore with a description of this

for the spatial wave functions. The picture that then emergegymmetry, how the baryons transform under it and how it fits

for the baryon masses is surprisingly good given the simplicy\”th the standard U(3) x SU(2) spin-flavor structure of the

: . . , aryons and then proceed to determine how the standard
ity of the model; nevertheless, it has several serious short- - .

X ; R X . mass splitting operators transform und&rin each of the
comings, most notoriously its inability to explain the light-

ness of theA(1405. Extensions of the quark model, such asmOdeIS'

he inclusi f relativistic eff thouah leadi Our approach has a potential disadvantage, in addition to
the inclusion of relativistic effectp4] although leading to a ji5 ohyious advantages. Because we have not made dynami-

better agreement with the e|_’1tire spectrum of light mesong, assumptions about the wave functions, but only used
and baryons, do not seem to improve much upon quark modsymmetry, we cannot say within our approach whether the
el's description of the.=1 baryons. parameters of the fits we obtain are physically reasonable.
Another model has recently emerged to explain the obThys our results should not be interpreted, by themselves, as
served baryon spectrufb]. Its assumption is that the correct evidence in favor of the chiral quark model picture over the
effective theory within a baryon is not that of constituent nonrelativistic quark model. However, we believe it is worth
quarks exchanging gluons but rather that of the quasipartinoting that difficulties for the nonrelativistic quark model
cles, constituent quarks and Goldstone bosons, appropriaggrsist even in this very general approach.
for energies below the scale of chiral symmetry breaking.
The low energy quark potential in this theory, which we refer
to as the chiral quark model, is also a two body Coulombic
potential with an important difference—the inclusion of fla- The L =1 negative parity baryons form a seventy dimen-
vor matrices at the quark-Goldstone boson vertices. We shadional representation of the spin-flavor gro8hJ(6). This
here check the claim that the different flavor structure of the70-plet breaks into the representatiot; 28,210,%1 under
chiral quark model leads to a better fit with the obserized separate spin and flavor transformations; here the notation
=1 spectrum. 25*1F indicates a multiplet that forms @hdimensional rep-
The new ingredient in our study of the=1 bosons is the resentation of th&sU(3) flavor group with spinS. Among
use of the permutation group; to organize the spatial be- the interactions that we shall consider are spin-orbit cou-
havior of the quarks and their interactions. Physically, thisplings between quarks so that the baryonic states will be
written, and are measured, in terms of the total angular mo-
mentum,J=L+S. The baryonic states are then represented
*Email address: hael@feynman.harvard.edu by linear superpositions of spatial, flavor, spin, and orbital
TEmail address: georgi@physics.harvard.edu angular momentum wave functions for the three contituent

II. S3 AND THE L=1 BARYONS
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quarks. The construction of these states for the TABLE I. Character table fofs;.
SU(3)XSU(2) spin-flavor part is straightforward in the

nonrelativistic limit, but the spatial wave functions requires a € r ¢
specific dynamical model. Some of the earlier studies of the S 1 1 1
L=1 baryons used harmonic oscillator wave functions for A 1 1 1
the spatial wave functions in terms of the relative positions M 5 0 _1

of the quarkg[1] and[2]). One of the disadvantages of this
approach is that if a poor agreement is found for a model
with the observed baryon spectrum, it is not immediatelyian for understanding th®, transformation properties of the
cIearl \_/vhethgr that failure .Iles in the quel itself or in the tarms on each side of this equation.
specific choice of the spatial wave functions.

Fortunately, the spatial interactions of the quarks possess S
a symmetry that allows us to escape the choice of a specific 3
dynamical model for the spatial wave functions. The quark Since the permutation grouf plays an important role in
interactions should be invariant under any permutation of thé¢his analysis of the.=1 baryons, we review its basic prop-
positions of the quarks. This symmetry then implies that theerties at the same time establishing our notation. The group
spatial wave functions should form a representation of thdnas three irreducible representations: the trivial representa-
group S;. We shall find that theS; group theory is suffi- tion S which corresponds to the completely symmetric
ciently powerful to reduce our ignorance of the spatial be-Young tableauT1] a one dimensional representatiérthat
havior to a small set of constants. The baryonic matrix elemaps reflections te-1 and corresponds to the tablegland
ments will be linear combinations of thes® constants
whose coefficients depend upon the spin-flavor assignmentg€e two dimensional representatibthcorresponding ¢ .
of the quark interactions and are completely determined by he character table for the conjugacy classesSgf-the
the SU(3)x SU(2) group theory. One of the advantages ofldentity e, the three reflections and the two cyclic permu-
this approach is that it treats different models on the saméationsc—is presented in Table I. From this table we can
footing. derive the following rules for the tensor products of the irre-

The baryonic wave functions that we used are those useducible representations:
in [6] in which each of the three-quark states has only one of _ _ _
the quarks in an orbitally excited_& 1) state,|1,m). For S®S=S, S®A=A, SaM=M,

example, thdA™";3;3,3)(|]A**;S;J,M;)) state would thus

be A®A=S, AM=M,
M@M=SeAdM. (2.2
++. 1. 33 V2 12 7 2 .
AT5i5i5) =T FUUU{¢11(T1,fz,r3)(|TiT>+|TTl> Any three objects that may be permuted among each other

form a three dimensional, defining representatio®.of The

=2\ )+ E(Fr.Fa,F)(|1T1) positions of the three quark&;,,r,,f3}, for example, form
3 . . a 3 of S;. This representation is not irreducible and can be

HLTT)=2[TLT) + ¢1u(T1,F2,T3) separated into the center of mass coordinate,

XALTTY+ITLD=2[11 N} (2.9) 1
R= 7(r1+ Fo+Fs3),
The notationyf,(F1,F,,F3) represents a three-quark spatial 3

wave function for which theth quark is in thel,m) orbit-  and a pair of coordinates for the internal motion,
ally excited state and the other two lie in the ground state.

Note that this spatial wave function could also have been

written solely in terms of the relative coordinate;-r. . i(f)l'f' Fo—2r3)
The three positions of the quarks have been included to em- (r+) _ V6

phasize that this function depends upon the center of mass r 1 . .
coordinate. We shall assume that this dependence cancels — (1)

when the terms are summed so that the final baryonic state v2

only depends on the quarks’ relative coordinatdis as-
sumption is certainly true for a wide class of quark potential
models including those dfL—5]. This observation is impor-

This basis explicitly realizes the decompositi@x Se M.

The three-quark wave functions in E®.1) transform as
3=S®&M since they depend on all three positions. The
=1 baryons, however, transform as a two-dimensidval
representation, both under ti83 which corresponds to the

Yn [1] and [2] these coordinates are usually writtei= (F; spin-flavor groupSU(6) as well as thes; referring to the
—F,)IV2 and X=(F,+T,—2F3)/\/6. [; is the position of theth ~ spatial wave functions. This representation for the 1
quark. baryons, combined with those for the mass splitting opera-
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tors introduced in the next section, are the only information
we require of the spatial behavior of the quarks. The
group theory is sufficiently restrictive to allow all the baryon
matrix elements of mass operators to be reduced to expres-
sions involving a small number of undetermined constants.

Ill. MASS OPERATORS

FIG. 1. The constituent quark-Goldstone boson vertex of the

The definitions of the ground state baryon wave l‘unctlonsChlral quark model\? is a Gell-Mann flavor matrix

are essentially the same for any nonrelativistic quark model
Only in the spatial wave functions might one model dI1Lferdences of these potentials. The only important feature of

from another—but. what is im_portant for our aPproaCh is onlly hese operators is their spin, orbital angular momentum, and
the S; transformation properties, not the details of the Spatlatlavor structure. Therefore, our analysis applies equally well

dependence. The lowest order differences among models ags 5y set of hyperfine and spin—orbit interactions of the form
pear in the perturbations to the ground state functions. The

two theories we compare here—the quark model and the
chiral quark model—have a similar set of operators which
differ in the appearance of flavor matrices in the interactions
of the latter theory.

Our problem is to solve for the masses of the 1 bary-
ons in the nonrelativistic limitH|¥)=E|¥). The Hamil-
tonian,H=Hy+V, is assumed to be the sum of &tJ(6)
symmetric confining ternid which does not distinguish the
masses of the 70-plet and a perturbative potenfiathat
depends on the model being studied. The first model that we
study, both as an illustration of the method and a benchmark
against which to compare other models, is the constituent
quark model([3] and [1]). In this model the perturbative

Vss_; O(ru) S| S

1
so 2 fl(ru)[ Z(rljxp) S|__

m{

2
X (X Pj)- S+ —mimj (Fij X Pi) - S

2
- m(fuxpl) §

potential arises from the first-order term in the expansion of Vq= E fa(rip) o [3(ru S)(Fij-$) —(Si-§)],
a two-body Coulombic interaction between pairs of quarks: (3.5
V=VgstVgotVg. (3. ) . .
where thef ,(r;;) are arbitrary functions of the distances be-
Traditionally [3], these interactions are of the form tween the interacting quarks. Note that we have included a
16ma. 1 factor of two in the Ih;m, terms of_ th_e spin-orbit potgntial,
V= 2, S ——5-§8(Fy), (3.20  Vso, to match the non-relativistic limit for the potential. We
i<i 9 im; have retained this factor hefand later in Eq.(3.6)] since
) o ) whenSU(3) breaking effects, such as a heavier constituent
a spin-spin interaction, mass for the strange quark, are included/ipy, the fits de-
1 pend upon the choice of this factor. In the limit that the
E 3 2(f.1 XPi)-Si— Z(Fij XPj)-§+ spin-dependent interactions are taken to  be
<] M v SU(3)-symmetric, this dependence disappears and the fac-
tors of two can be replaced by an arbitrary coefficient with-
X(FijXPi)-§§— —— mm (Fi;>P;)-Si | (3.3 out affecting our results.
The second model we study is motivated by a recent pro-
a spin-orbit coupling, and posal by G_Iozman and his collaborat¢fg. T.he. idea is that .
as the typical momentum of a quarks within a baryon is
VoS 2% 205 1 |3 S (P8 8)— (5 §) below the scale of chiral symmetry breaking, the correct dy-
9 3r mm r UGN B e namical degrees of freedom are those of the constituent
(3.4 quarks which couple to Goldstone boson fields of the broken

a quadrupole(or tensoy interaction. Herefj;=rf;—f; and

symmetry groupSU(3), X SU(3)g—SU(3)y. This model,
the chiral quark model, modifies the low-energy Coulombic

rijE|Fij| wherer;, f;, §, andm; are the position, momen- potential since the constituent quark-Goldstone boson verti-
tum, spin, and mass of théh quark. As with the quark wave ces carry additionabU(3) flavor matrices\? (see Fig. L
functions, our treatment is independent of the radial depen- This vertex produces perturbative potentials of the same
form as in the quark model except for the inclusion of a
flavor factor,X;- X;=28_ A2\ %:
2Sometimeg[1] and[4]) the spin-spin and the quadrupole opera-
tor are grouped together and called the hyperfine interactigy,

3.6
=VgstVy. i<j 39
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S; transformation properties of the mass operators

The fact that the states and the potentials in E8$) and
(3.6) transform as definite representationsSgfallows us to

B i NN (Fi X )& constrain greatly the number of unknown parameters in the
mj?’ i AT < By) -, theory. We therefore first present a method for counting the
number of independent constants before writing them in a
2 o oL more concrete form: as matrix elements of specific operators
+ m')\i')\l (Fij X Pi) - §; between three-quark states. Both pieces of the hyperfine in-
! teraction, the spin-spin and the quadrupole operators, trans-

2 o o . form as three dimensional representationsSef both are

- ij')‘l A (FijXP)) -S|, manifestly symmetric under exchanging the interacting
quarks. In terms of the irreducible representation§nfwe
1 - R saw that the3 could be decomposed as

VqZE gZ(rij) m1)\| )\] [3(r|] S) 3=SoM, 3.7)

X (Fij-§)—(5-§)1, that is, both the spin-spin operator and the quadrupole opera-

tor have a piece transforming as the trivial representation and
where we have written the arbitrary functions@gr;;) to  a piece transforming as the two-dimensional representation.
emphasize that they need not be the same as those in tiide matrix element$7QVs{70) or (70V,|70), which pro-
guark model. The anticommutators ensure that the operatotiice the perturbations to the baryon mass spectrum, contain
are Hermitian. the following tensor product o3 representations:

MSeM)RQ M = 3.8
RSBHM)Q® SOSOADADMOMPME M. (3.8

trivial

The trivial representation appears twice in the matrix element. From the Wigner-Eckart theorem, we can conclude that the
matrix elements oiVgs and V, are each completely determined up to two unknown constants. In specific models, these
constants correspond physically to spatial integrals.

The spin-orbit termV/,,, is slightly more complicated. It transforms as a six dimensional fundamental representaion of
The decomposition of thé into its irreducible components is

6=SCAOMOM. (3.9

Counting the number of unknown constants, we learn that the matrix eleme¥its bétween70 states,

8 copies
—_— N
(TO| Vo |T0) > M R6OM=SOSBSOSOPADAPADABGMD--- B M, a1
e
trivial ( ' @
|
depend upon four undetermined constants since the trivial 1. 2 . 2 .
representation appears four times. Vso= IZ Wﬁ” S+ o Lin Sit o L
It is helpful to have a specific form for these independent PL v v
integrals which can be calculated for a particular model for 1.
the quark wave functions. The spin-orbit operator being the + ﬁﬁii “Sj|» 31D
most complicated, we begin with it. It can be written in the )
form®
where
Liy=F1(riplLi—(Fxp)], (3.12

SWhen the masses of the quarks are equaldp, the factors of L; being thg ‘?”?'ta_' apgular momentum of thh quark. In
two for the 1fn;m; terms can be replaced by an arbitrary coefficientthe nonrelativistic limit, the spin and the flavor structures are

without altering the results that follow. The expression in the chiralCOMPpletely calculable—what is relevant for t8& group
quark model is analogous. theory is the spatially dependent operaffyr. In the matrix
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TABLE Il. Best-fit values of theS; constants for the quark 2100
model and chiral quark modek) All of the parameters are in units
of MeV exceptém which is dimensionless. 2000
Perturbation Quark Chiral 1000 -
(MeV)* model quark model 800 B a H o =
D, 196.9 —87.78 1700 D D
D_ ~19.50 -52.11 =l = R
SO, 30.85 -1.106 1600
S0, 47.99 15.93 o B _ — Fit Macscs
803 —90.50 17.40 === Predicted Masses
[o}} 12.63 -14.10 oo -
Q, 7.762 —15.38
om 0.269 0.286 1300
Mo 1613 1477 2R 25 NS T ST S S S S R SN S SN S
X 123.6 24.76 N a s A = = 0

FIG. 3. Masses of the =1 baryons in the chiral quark model;
Xx2=24.7568 N¢j;=18.

element(70 V. 70) appear sums of matrix elements of this
operator betweeh =1 three-quark states, SO= M1+ MZ2— MP2— M2,

R . SOZEMll_MZZ_M13+M23_M31+M32,
(Pim(F1,72,73)| L1 ll/?m,(l?l,Fz,F3)>=/\/lab(1,m|L|1,m’>,
(3.13 SO3= M+ MP4 4 MB+ M2+ ML

_2M13_ 2M23_ 2M31_ 2M32
whereL is the total orbital angular momentum of the three-
quark state. The matrix elements for other choicesaridj SO, = (M2 MY — (M- M3

for Eij are similarly defined but are simply a permutation of 23 3

the entries of the elements ¢§12°. The matrix M3 is a (M= M),
3X 3 Hermitian matrix of spatial integrals differing only as
to which of initial or final the quarks is excited. We know
from the Wigner-Eckart theorem that the matrix elements of1ary or zero.

the 70-plet baryons cannot depend separately upon all of the Time rel/ersal provi'des an additional constraint which im-
elements of the matri®\, but only upon four linear combi- posesSO,=0. Under time reversal, we assume that the three

nations: these combinations are quark wave functions transform in the usual way: that

The matrix M being Hermitian SO, must be purely imagi-

O Y (F1,F2,F3)=(—1)! "Myl (71,7, 73), (3.19

2200

2100 where ® represents the time reversal operator, and fhat

transforms as@fij‘1= —lfij . It follows that AM?3°
2000 = MP2 is a symmetric matrix. Sincé13°=(MP3)*  A3P
1900 U is therefore a real symmetric matrix and the linear combina-
' tion SO, must vanish. Thus, for both the quark model and
B .= . the chiral quark model, the spin-orbit matrix elements of the
barons are completely determined by only three constants
I SO, SO, and SO3, which can be calculated in a specific
- model.
We describe the hyperfine interactions more briefly. As
H= - = Fit Masses we know in advance from th8; group theory that there are
=== Predicted Masses only two independent constants in either case, we shall de-
fine fewer three quark matrix elements than was done for the
spin-orbit operator. Let us define the spatial integrals

S

1600

1500

fl

1400

1300

2 % 2 2 2 2 % 2 2 % 2 3 % 2 2 2 3 2 1 - - N 1 . - N
N A s A z =) Q (im(F1,F2,F3) [ To(T 12| (F1,72,F3)) = Ay S

FIG. 2. Masses of thé =1 baryons in the quark modek? 1 o o > L
=123.6432N;;;=18. (1m(F1.F2,F3) [ To(r 1) |7 (F1.72,F3)) = Ao S »
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TABLE IIl. Masses and mixing angles of tHe=1 baryons in the quark modef* indicates a baryon
which has not been observed in experiments, whiladicates that mixing with this spin-flavor representa-
tion is forbidden.

Mass Mass
Baryon (Expt) (Fit) 48 28 210 21
N J=3 153522 1529  —0.3537 —0.9354 * *
165033 1631  —0.9354 0.3537 * *
N J=3 1520%0 1520  —0.3283 —0.9446
170023 1752 —0.9446 0.3283
N J=3 1675'%° 1674 1.0000 * * *
A J=3 1620" 2 1884 * * 1.0000 *
A J=3 1700" %3 1757 * * 1.0000 *
b J=3 175039 1715 —0.1874 —-0.9773 0.0988 *
i 1840 0.9819  —0.1892  —0.0094 *
o 1983 0.0279 0.0952 0.9951 *
3 J=3 1670'%° 1704 0.3113 0.9480 —0.0658 *
ok 1876 0.0803 0.0428 0.9959 *
1940' 39 1908 0.9469  —0.3153  —0.0628 *
J=3 177572 1781 1.0000 * * *
A J=3 1407°; 1418 0.01780 0.0082 * —0.9998
1670° 19 1649 0.6359 0.7716 * 0.01767
1800' 33 1717 0.7716  —0.6361 * 0.0085
A J=3 1519.5] 1519 0.0503 0.2395 * —0.9696
16902 1666 0.3513 0.9045 * 0.2416
b 1836 0.9349  —0.3528 * —0.0386
A J=3 18309, 1834 1.0000 * * *
=} J=3 i 1806 0.7132 0.7010 * *
b 1860  —0.7010 0.7132 * *
=} J=3 182372 1819  —0.3514 —0.9362 * *
b 1955  —0.9362 0.3514 * *
=} J=3 b 1967 1.0000 * * *
E* J=1 wx 2076 * * 1.0000 *
=k J=3 o 1995 * * 1.0000 *
Q J=3 o 2172 * * 1.0000 *
Q J=3 o 2113 * * 1.0000 *
<¢im(f’l’f’2,ﬁs)|fo(r12)|¢i (F1,F,F3)) = A36mm A sufficient basis of spatial integrals for writing all of the
m (3.15 baryon matrix elements of the quadrupole operator is pro-
vided simply by
for the spin-spin operator. Then only the following linear <¢im(rl,r2,r*3)|Qaﬁ|lpim,(rl,rz,rs;))

combinations appear in the matrix elements for the baryons:
=Q(1m|LoLA— § 5%FL2|1m"),
D+:A1+.A2+2./43, o . TN
<¢im(r1,r2,r3)|Q“B|zpim,(rl,rz,rg))
D_=A,—A,. (3.16 =Q,(1m|LoLA—  5%FL2|1m"), (3.17
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TABLE IV. Masses and mixing angles of the=1 baryons in the chiral quark model.

Mass Mass
Baryon (Expt) (Fit) ‘8 28 210 21

N J=3 1535722 1536  —0.4849  —0.8746 * *
1650"35 1658  —0.8746 0.4849 * *

N J=3 1520" ¢ 1512 0.4915  —0.8709 * *
1700" 2 1535 —-0.8709  —0.4915 * *

N J=3 1675°%° 1692 1.0000 * * *

A J=3 1620" 1643 * * 1.0000 *

A J=% 1700°53 1776 * * 1.0000 *

3 J=3 (1620 1648  —0.5882  —0.7248  —0.3588 *
o 1743 0.7688  —0.3636  —0.5260 *
1750" 39 1779 —0.2508 0.5853  —0.7711 *

by J=3 (1580 1621 0.9320 -0.3575 0.0604 *
1670%5 1672 -0.3625  —0.9192 0.1538 *
1940739 1865  —0.0005 0.1652 0.9863 *

b J=3 177572 1772 1.0000 * * *

A J=13 140775 1408  —0.0395  —0.2071 * -0.9775
1670°19 1671 0.3384 0.9177 * —0.2081
180033 1784 0.9402  —0.3391 * 0.0339

A J=% 1519.5 1519 0.0243 0.4288 * —0.9031
o 1655  —0.0240 0.9033 * 0.4283
16902 1693 0.9994 0.0113 * 0.0322

A J=3 18309, 1811 1.0000 * * *

=] J=3 o 1788  -0.2884  —0.9575 * *
b 1891  —0.9575 0.2884 * *

E J=% o 1763  —0.0477  —0.9989 * *
18232 1824  —0.9989 0.0477 * *

E J=3 o 1911 1.0000 * * *

=k J=3 b 1861 * * 1.0000 *

E* J=3 o 1944 * * 1.0000 *

Q J=3 b 1971 * * 1.0000 *

Q J=% b 2028 * * 1.0000 *

where (T0Ho|700=M,. We further shall explicitly brealsU(3),
while keeping isospin symmetry, by giving the strange quark
B= papB _ saB ’
QP =fa(r1) (31 f 1o~ 6%). (318 3 larger massn,>m,=m,. These masses correspond to the

. . . . constituent masses so that the strange-up mass difference can
Neither of these cases is further constrained by tlme—revers%oe assumed to be small,

symmetry other than to say that the above constants are a
real.

It is now possible to express the masses ofithel bary- om=
ons in terms of the seven unknown spatial integrals
(D+,80; 53,915 and the common 70-plet zero-order massSince SU(3) is only weakly broken, we shall work only to

ms—my

<1. (3.19

u
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TABLE V. A comparison of the compositions of the baryons obtained from3ki6)w model fit to
70—56+--- decayq12] with those obtained in our fits for both the quark mo¢gh) and the chiral quark

model (yqm).

Quark model Chiral quark model
decayéNJ: %‘ Nj- %)qm: —0.98 decayé Nj- %| Nj- %>qu: —1.00
decayéNJ: %\ Nj= g>qm: —-0.87 decayéNJ: §| Nj- %)Xq m=—0.94
decayéA(1405)|A(1405)>qm: —0.84 decayéA(1405)|A(1405)>qu: —0.94
decayéA(1670)|A(167O)>qm: —0.63 decayéA(1670)|A(1670)>qu: —0.42
decayéA(1800)| )\(1800)>qm= —0.70 decayéA(1800)| A(lBOO)}qu= —0.48

first order in 5m~0.27-0.29. The mass factors appear ex-sible assignments of elements of these sets to the measured
plicitly in the 1/m; coefficients of the perturbative potentials. masses were sampled; those which produced the best fit to
We should here pause to remark on the power ofShe the mass spectrum are displayed in this section. The values
argument. The group theory allows us to calculate the perfor the parameters for the two pictures of the low energy
turbations to a model with a specific spin, orbital angularphysics within a baryon are shown in Table II, with té
momentum and flavor structure but with other details leftfor each of the fits.
arbitrary. This feature allows us to test the plausibility of a These values produce the mass spectra displayed in Fig. 2
model’s ability to explain the observdd=1 baryon spec- for the quark model and in Fig. 3 for the chiral quark model.
trum by adjusting the independent constants to fit thesén these figures, the baryons used to fit the experimentally
masses. If the model fails to fit the data to a reasonablebserved masses are shown in unbroken lines while the re-
confidence level, then regardless of the dynamical model fomaining baryons masses, shown in dashed lines, represent
the quark wave functions used, it will still fail adequately to predictions. The composition of the baryons in terms of spin-
generate the observdd=1 mass splittings. The converse, flavor multiplets is summarized in Tables Il and IV.
however, is not true. Even should a model fit the data well, The eighteen baryons chosen for the fits are those listed in
realistic choices for the quark wave functions may notthe Baryon Summary Table ¢¥]; we should mention that
achieve the best fit attainable in the full parameter space. the existence two othér=1 states, th& ;_1(1620) and the
AsS an examp|e, the mass perturbation to ’the%’\]:%> 23:%(1580), has been'faWIy well establlShEd. As we shall
states in the quark model is see, the quark model is unable to fit the baryon spectrum
with a satisfactoryy? even with the omission of these two
1 9 baryons. But as the chiral quark model successfully fit the
Amy gp=Mo+ 5Dy~ 5D +50,+80;,  (3.20  baryons listed in the Baryon Summary Table, we have in-
cluded these two in Table IV. Although they were not in-
while for the chiral quark model, the perturbation becomes cluded in the fitting routine, each baryon has a “predicted”
state within 20—-40 MeV so that we do not expect that our
2 4 4 conclusions, nor the? of the fit, would alter greatly had
Amy gz=Mo+ 3D1= 6D+ 350,+ 38503, (3.2)  they been included in the fitting procedure.

The calculation of these matrix elements, as well as those for A. The quark model
the rest of the baryons was accomplished with the Maple
symbolic manipulation program. The mass splitting opera- ,
tors will in general mix baryons which have equivalent total
angular momentum, isospin and strangeness.

The standard quark model fares rather poorly with a best
value of 123.6 for only eighteen fit parameters. The
masses of the (1405) J= 1] and theA (1520) J= 2] bary-

ons have been been measured to withih MeV and =1
MeV, respectively, and tend to drive the fit parameters to
produce a precise fit for these states—at the expense of oth-

Among the baryons observed to date, eighteen have bediiS- An accurate fit of tha’s tends to produce a poor fit for
reliably identified with theL =1 baryons[7]. Our program the decuplet states, most glaringly, giving a predicted mass
then is to obtain the best possible fit with the nine unknowrPf 1884 MeV for theA(1620. More generally, the quark
quantities—the seven spatial integrals for the interactions, B10del predicts higher masses for decuplet states with lower
parameter for theSU(3) breaking, and zero-order baryon total angular momen';um m_contrast with the general trend
mass—to the masses of these eighteen baryons. Fits wei@ thel=1 baryons, in particular the observed reversed or-
made for each of the two models. The actual fitting routinedering of theJ=3 andJ=(3)A masses. The original study
applied a Levenberg-Marquardt algoritHi®] which chose of the 70-plet baryons by Isgur and Kdd] succeeded in
its initial conditions randomly within this nine-dimensional obtaining a better fit for the decuplet states but only at the
parameter space. For those baryons within an incompletelgxpense of a predicted mass of 1490 MeV for @405
measured set with the sardgl, and strangeness, specifically and a consequently poorgf. It seems difficult for the con-
theEJ:g, theEJ:%, theA;_¢, and theEng, all the pos-  stituent quark model to account for both the lightness of the

IV. THE COMPARISON WITH EXPERIMENT
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2200 N(1700) allows a “good” fit to be achieved but it may be
difficult to accommodate the actual splitting as more precise

2100 data are obtained.

2000 As mentioned, the quark model analysis of Isgur and Karl
[1] found that, aside from larg&(1520-A(1405 mass split-
1900 ___,D ting, the splitting among the baryon multiplets required an
- o = extremely small spin-orbit contribution to the masses. The
1800 _ B = Q - difficulty in justifying this small spin-orbit coupling has been
1700 D H _ _ called the “spin-orbit puzzle.” In the chiral quark model,
gu= 0 Boa while the spin-spin interactions dominate with a strength
1600{ __ roughly five times that of the other terms, the spin-orbit in-
s _ i Masses teractions are comparable to the quadrupole interactions,
1500y = . with only two of the three independent integrals responsible
=== Predicted Masses . . . . .
_ for essentially all of the spin-orbit contribution. Thus the
1o spin-orbit puzzle does not seem to occur in the chiral quark
1300 model.
N a R A = z o C. The A(1405

The low mass of thé\(1409 has marked it as something
of a conundrum among tHe=1 baryons. At one extreme, it

would seem reasonable to regard it akh bound state

s . since its mass lies 30 MeV below t&N threshold. Alter-

A states and the decuplet mass spectrum. This failure is often_, S
. , ; . . .~ hatively, the nonrelativistic quark model treats thé1405
described in terms of the size of the spin-orbit coupling: a

. : o s an ordinaryL =1 baryon composed of some mixture of
weak coupling is needed to fit the majority of the baryons bug ; "
a strong coupling is required to generate the observe U(3) singlet and octet states. Traditionally, the quark

L model[1] predicts that theA(1405 mainly is composed of
A(1520-A(1409 mass splittind 9], the singlet state with a small admixture of the octet states and
such a behavior is seen in the best-fit results for the quark
model (gluon exchange

The chiral quark model is able to reconcile successfully

these two features and produce an acceptable fit for the de-  A(14054,= —0.999821; 3 ; ) +0.0082%8; 3 ; 3)
tected baryon spectrum:)& of only 24.76. Its worst failure
among the observed baryons is that the model does not gen- +0.0178%8; 3 ; 7). (4.1
erate a sufficient splitting in théd=(3)N states, only about _ )
20 MeV compared with an experimental splitting of almost 1€ chiral quark mode(Goldstone boson exchanggives a

200 MeV. At present, the large experimental error in theSimilar result for the composition of th&(1409 except that
the spin3 octet contribution is slightly enhanced:

FIG. 4. Masses of th& =1 baryons in the quark model with
SU(3) symmetric interactionsy?=79.2456,N;;,=18.

B. The chiral quark model

2200

A(1405 qm=—0.9775%1; 3 ; 3)—0.2071%8; 3 ; 3)
2100
—0.039%8; % ; 3). (4.2
2000
g Since the chiral quark model succeeds in fitting the observed
baryon masses well, it is instructive to probe the model fur-
1800 _ =2 = ther by comparing the consequences of this predicted com-
M E = position with some of the other phenomenological properties
1700 DE D = = of this baryon.
B= Q Nathan Isguf10] has recently proposed that th&¢1405
1600 can be studied in heavy quark effective theory limit. In this
H= - — Fit Masses picture, theA(1405 is a uds quark bound state where the
«ew Predicted Masses strange quark mass is taken to be heavy compared to the up
1400 - and the down quark masses. Singling out $frguark breaks
the SU(3) flavor symmetry and its spin and orbital angular
1300 momentum completely determine that of th€1405. The
Porgoad ud quarks form an iner8=0, L=0 pair. Such a state no
longer can be described in terms of p@&#(3) states; how-
FIG. 5. Masses of th& =1 baryons in the chiral quark model ever it does contain equal amounts of the singlet andjspin
with SU(3) symmetric interactionsy®= 33.2254,N;;,= 18. octet states. Such a composition contrasts with that emerging
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TABLE VI. Masses and mixing angles of the=1 baryons in the quark model witBU(3) symmetric

interactions.
Mass Mass
Baryon (Expt) (Fit) 48 28 210 21
N J=3 153522 1522 —0.2404  -0.9707 * *
1650739 1647  —0.9707 0.2404 * *
N J=3 1520" 1503 0.8903 0.4554 * *
1700723 1584  —0.4554 0.8903 * *
N J=3 1675°2° 1671 1.0000 * * *
A J=3 1620" 2 1761 * * 1.0000  *
A J=3 1700°53 1732 * * 1.0000  *
b J=3 b 1639  —0.2404  —0.9707 0.0000 *
175033 1764  —0.9707 0.2404 0.0000 *
b 1878 0.0000 0.0000 1.0000 *
b J=3 o 1620 0.8903 0.4554 0.0000 *
1670°%° 1701  —0.4554 0.8903 0.9959 *
194039 1849 0.0000 0.0000 1.0000 *
b J=3 17752 1788 1.0000 * * *
A J=3 14075 1414 0.0000 0.0000 * 1.0000
167019 1639  —0.2404  —09707 * 0.0000
180033 1763  —0.9707 0.2404 * 0.0000
A J=3 1519.51 1519 0.0000 0.0000 * 1.0000
b 1620 0.8903 0.4554 * 0.0000
16902 1701  —0.4554 0.8903 * 0.0000
A J=3 18309, 1788 1.0000 * * *
=} J=3 b 1756 ~ —0.2404  —0.9707  * *
b 1880  —0.9707 0.2404 * *
g J=3 b 1736 0.8903 0.4554 * *
182372 1818  —0.4554 0.8903 * *
=] J=3 o 1904 1.0000 * * *
B* J=3 o 1995 * * 1.0000 *
E* J=2 o 1966 * * 1.0000 *
Q J=13 *x 2112 * * 1.0000 *
Q J=3 o 2083 * * 1.0000 *
in either the quark model or the chiral quark model. In bothcompared to an overlap of
cases, theA(14095 remains essentially a singlet state al-
though the chiral quark model does match the heavy quark
theory’s predictions marginally better: (A (14094 A (1409 qeT) = 0.5089 (4.9

(A(1405 ,qml A (1405 oe1) =0.6079 (4.3  for the quark model.
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TABLE VII. Masses and mixing angles of the=1 baryons in the chiral quark model witBU(3)
symmetric interactions.

Mass Mass
Baryon (Expt) (Fit) 48 8 210 21
N J=3 1535722 1540 0.6313 —0.7755 * *
1650733 1660 —0.7755 —0.6313 * *
N J=3 1520°2° 1521  —0.1808 —0.9835 * *
1700" 2 1564  —0.9835 0.1808 * *
N J=3 1675 2° 1661 1.0000 * * *
A J=3 1620°2° 1636 * * 1.0000 *
A J=3 1700°53 1783 * * 1.0000 *
3 J=3 (1620 1668 0.6313 —0.7755 0.0000 *
175033 1764 0.0000 0.0000 1.0000 *
** 1788 —0.7755 —0.6313 0.0000 *
P J=3 (1580 1648  —0.1808 —0.9835 0.0000 *
1670' & 1692  —0.9835 0.1808 0.0000 *
194033 1911 0.0000 0.0000 1.0000 *
b J=3 177572 1788 1.0000 * * *
A J=3 1407"; 1407 0.0000 0.0000 * 1.0000
1670" 15 1668 0.6313 —0.7755 * 0.0000
180033 1788 —0.7755 —0.6313 * 0.0000
A J=3 1519.5 1 1519 0.0000 0.0000 * 1.0000
o 1649  —0.1808 —0.9835 * 0.0000
16902 1692  —0.9835 0.1808 * 0.0000
A J=3 18309, 1788 1.0000 * * *
E J=3 o 1795 0.6313 —0.7755 * *
** 1915 —0.7755 —0.6313 * *
=} J=3 b 1776 ~ —0.1808 —0.9835 * *
18232 1819  —0.9835 0.1808 * *
=) J=3 i 1916 1.0000 * * *
=k J=1 * 1892 * * 1.0000 *
=k J=3 o 2038 * * 1.0000 *
Q J=3 o 2019 * * 1.0000 *
Q J=3 o 2166 * * 1.0000 *
D. Mixing angles from L =1 decays A(1800 in the chiral quark model is predominantly &

=32 octet state whereas the fits to the decay amplitudes sug-
ogest it is principally arS= 3 octet state. While not conclu-

: o .sive, these disagreements suggest it may be a challenge for
SU(3)XSU(2) eigenstates. While fits to the decay ampli the chiral quark model to fit simultaneously the mass spec-

tude.s have bee_n performed for th.e.quark m@é]’ they do trum and the observed decay amplitudes.
not include estimates for the mixing angles; however, the
mixing angles have been extracted for 18&)(6),, model
[12], which has the same algebraic structure for the decays as
the standard quark mod8lU(6). A comparison of the com- In evaluating the matrix elements of the mass operators of
positions of the states fit t80 decayq 12] with those of the  Eqgs.(3.5 and(3.6), we explicitly broke flavor symmetry by
two models fit here to the mass spectrum are shown in Tablgiving the strange quark a heavier mass. We shall now ex-
V. In this table we have only included the states from mixedamine what happens to the fits wh&hJ(3) is preserved in
J-multiplets that have been completely observed—fiie these spin operators. The rationale for taking this limit is that
states and the threg;_1 states. if both the spin splitting and the flavor breaking effects are
Both models agree extremely well with the decay esti-small, terms that simultaneously bre&J(3) and SU(2)
mates for theN state compositions, but they begin to dis- can be regarded as higher order effects.
agree for theA states. The decays of tlhe=1 baryons sug- The results for the fits to the= 1 baryon spectrum due to
gest that the\ (1405 and theA (1520 are principally singlet an explicitSU(3) breaking term plus flavor-symmetric ver-
states, which is in accord with our fits. However, thesions of the operators in Eqé3.5 and (3.6) are shown in

The decays of th&0 states intdb6 states provide another
estimate of the observed baryons’ compositions in terms

E. SU(3) symmetric perturbations
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TABLE VIII. Best-fit values of theS; constants for the quark 10—-20 MeV. Most of the sizes of the fit parameters did not
model and chiral quark model wit§U(3) symmetric spin opera- differ much between the two fits with the exception of the
tors. (+) All of the parameters are in units of MeV exceph which  quadrupole interaction which is substantially smaller in the

is dimensionless. SU(3) symmetric limit.
Perturbation Quark Chiral
(MeVv)* model quark model V- CONCLUSION

D 123.9 _7973 The S5 permut.ation_ group provides a new tool fqr the

D+ _21'14 _5705 study of the physics within baryons. In addition to. freelng us
- : : from a specific choice for the quark-quark potential, this ap-

SO, —14.32 0.744 proach allows a comparison of theories differing in the flavor

SO, —717.90 16.24 structure of their interactions. When applied to the traditional

S04 68.34 20.38 quark model and the more recent chiral quark model, our

Q —18.20 2.699 approach places the two theories on an equal footing with a

Q. —-10.12 —0.982 one-to-one mapping of the unknov parameters between

om 0.221 0.265 the two theories. The results of this comparison were some-

Mo 1585 1445 what surprising—the chiral quark model shows a clearly bet-

X’ 79.24 33.23 ter fit with the observed. =1 baryon spectrum.

Since the chiral quark model provided a good fit and
seems to be able to avoid the spin-orbit problem, we should
mention some of the challenges that it still faces. As stated
earlier, the fitting routine ranged over the entire available

. o 2 parameter space and it remains to show that the best-fit set of
SU(3) breaking parametgrSurprisingly, thex” improves  parameters can be realized by a physical potential for the

for the quark model fit, from 123 to 79, although the generaly ark_quark interactions. It would also be interesting to see
pattern remains as before. Solme of ;he aSS|gn3ments of Rhether this superiority over the traditional quark model fit
states being fit, among the,_3, ;-2 and A,_3 states, persists when we attempt to fit simultaneously the0, the
have.changed. The ordering of the .multlplets of decuple_ egative and positive parity=1, and lowest excited states
remains unaltered. One feature that Fig. 4 does.not CONVeY |5 the N=2 band. This program was carried out by Capstick
that many other arrangements of the baryons in the incomsy |squr[4] for a relativized quark model with harmonic
pletely observed multiplets also lead to a better fit than thaggijator wave functions. Finally, if the model is to provide
of Fig. 2, the best fit obtained for th8U(3)-breaking spin 5 hejievable explanation of the low-energy physics within a

operators. , _ _ baryon it must not only describe the mass spectrum, but also
The value ofy“ for the chiral quark model predictably o--ommodate the excited state decays.
worsened wherSU(3) was imposed on the spin-splitting

operators. The pattern of masses otherwise did not change
significantly. Comparing the the masses in 8g(3) sym-
metric and theSU(3)-broken limits (Tables VII and I\ We would like to thank Nathan Isgur and Gabriel Karl for
provides an estimate for the theoretical errors associated witfmeir suggestions of useful references on the early work
our fits—most of the fit baryon masses agreed to withinabout the quark model and the baryon spectrum.

Figs. 4 and 5. The mixing angles are included in Tables VI
and VIl while Table VIII displays the best fit values of tBg
constants in units of Me\fexcept for the dimensionless
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