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Abstract 

We discuss the group theory relevant to the ground-state baryons in large NC QCD. For very large representation, the 
group generators become classical variables. We find the form of the classical generators for the completely symmetric N 
index repr&entation of SU( m) as N + 00 and derive an integral formula for the matrix elements of an arbitrary polynomial 
in the group generators between low-spin baryon states in the large N limit. 

The idea of replacing the SU(3) gauge symmetry of QCD with an SU(N) symmetry and studying the 
N -+ 00 limit, as articulated by ‘t Hooft in [ 11, has led to an important qualitative understanding of some 
of the properties of QCD, such as Zweig’s rule and the narrowness of resonances. Witten [2] later provided 
a conceptual framework to include baryons in the theory. In Witten’s picture, a baryon is described by a 

Hartree-Fock equation with each quark moving in the mean potential generated by all the other quarks in the 
baryon. Using this description for the baryons, [ 3-51 (see also [ 61) one can show that to leading order in N, 
the low-spin baryons have a spin-flavor symmetry which we will denote as SU(m), e.g. for an Nf-flavor theory 
m = 2Nf. In this letter, we study the group theory associated with the large representations of this SU( m) . In 
doing so, we develop an elegant integral formula for matrix elements of SU(m) generators between low-spin 
baryon states. This formula provides an insight into the nature of the large N enhancement of these matrix 
elements. 

An N quark baryon lives in the completely antisymmetric representation of the color SU(N). An s-wave 
ground state, to satisfy fermi statistics, must then be completely symmetric under the W(m) symmetry. 

Therefore, the representation of W(m) relevant to large N baryons is the completely symmetric combination 
of N defining representations. We will examine the matrix elements of the group generators in this representation, 
which we will denote by T$, to leading order in N, and will discover that many properties of the generators 
can be obtained rather simply in this limit. 

Our primary tool will be the fact that for large N, the commutator of two group generators is lower order in N 
than the product. The product is order N2, while the commutator is order N (times the structure constants, which 
depend on m but not on N). Thus to leading order in N, the generators can be simultaneously diagonalized - 
they become essentially classical variables [ 6,3,7]. 
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Explicitly calculating the traces in the representation space of products of generators and taking the N -+ 03 
limit leads to the following form for the generators: ’ 

T; Iu) =7;(u) Iu), q(u) = N (uaiip - $3;) 
where u is an m component complex unit vector and i$ z u p*. Notice that this form for the generators has a 
single non-degenerate eigenvalue ( (m - 1) / m ) and (m - 1) degenerate eigenalues ( -1 for the eigenvectors 
orthogonal to u) and that moreover the overall phase of u does not matter. The generators in the large N limit 
belong to the classical coset space, 

SU(m)/[SU(m - 1) X U(l)] g CPm-’ (2) 

but ( 1) is stronger than (2), because the normalization is also fixed. For an SU(2) symmetry, this limit 
reproduces the familiar statement that angular momentum becomes a classical vector when the spin grows very 

large, since then SU( 2) /U( 1) is a two-sphere that labels the direction of the classical angular momentum. 
We show in the following section how the form for the generators, ( 1) , naturally arises in the m dimensional 

harmonic oscillator. The harmonic oscillator energy eigenstate live in precisely the same representation of 
W(m) as do the ground state baryons in large N QCD. In Section 2, we find the eigenstates of the group 
generators, and in Section 3, we use these eigenstates to find an integral formula for the leading contribution 
to matrix elements of an arbitrary polynomial in the generators between low-spin states. 

1. m dimensional harmonic oscillator 

We begin by analyzing the large N limit of the m-dimensional harmonic oscillator. In addition to providing a 
familiar system which has a well-known classical limit, this example will prove useful later when we attempt to 

construct the low-spin baryons. In the large N limit of QCD, the important behavior of the quarks comprising a 
baryon can be represented by colorless, bosonic creation and annihilation operators, as has been applied in the 
“quark representation” of [ 31 and in the analysis of [ 51. We will use the energy eigenstates of the harmonic 
oscillator as an intermediate step bridging between the baryon states and the SU(m) generator eigenstates. 

The m-dimensional harmonic oscillator corresponds to the Hamiltonian (setting the spring constant and the 

mass to 1) 

(3) 

where &t and up represent the raising and lowering operators 

(4) 

Besides the energy, H, the classical harmonic oscillator has two additional conserved quanities: the angular 

momentum, 

Map = Xa pP _ xP pff (5) 

and the traceless symmetric tensor 

1 We will present a detailed proof for this result in a future article. The same result also emerges in the geometric quantization of SU( n) . 

ts1 
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These conserved tensors correspond, respectively to the antisymmetric and the symmetric parts of the SU(m) 

generators, 

The raising operators are tensor operators transforming under SU(m) like the defining m dimensional repre- 
sentation. The quantum states are constructed by acting on the ground state with a product of raising operators. 
Since the raising operators commute, a state with N raising operators transforms as the completely symmetric 
SU(m) tensor with N indices - the same representation in which arose for the large N baryons. We would 
expect that for large N, the conserved quantities would approach their classical values. Let us show that this 

happens. 
The most general classical motion of the m dimensional harmonic oscillator is 

x(t) = vt cos(t) + v2 sin(t), p(t) =-VI sin(t) fv2 cos(t). (8) 

The real vectors vt and 172 satisfy 

vt2+v:!2=x2+p 2=2E. (9) 

In the state with principle quantum number N, the energy is N + m/2, or approximately N for N large. Thus, 
in the large N limit, 

V12fV2 2=2N. (10) 

The traceless tensor Sap becomes 

vpu~+u;u2 - P ;snp (v’2+v22) 

while the angular momentum tensor becomes 

Ly P 
Ul u2 

Ly P - v2 Vl . 

Now introduce the complex vector 

firc=vr +iv2 

so that 

u+u= 1. 

In terms of this complex vector U, we discover that 

2. The eigenstates of the generators 

(11) 

(12) 

(13) 

(14) 

(15) 

Our ultimate goal is to describe the leading N behavior of matrix elements of the W(m) generators between 
low spin baryon external states. The simplest states, however, with which to describe the action of the generators 
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are the eigenstates introduced in Eq. ( 1) since on these eigenstates the group generators act diagonally. To 
connect these two pictures, we must learn how to express the baryons in terms of these generators. Since 
the set of eigenstates is complete, it should be possible to write any state, such as that for a baryon or for 
a harmonic oscillator energy eigenstate, as some distribution over the space labeling the eigenstates of the 
generators. Conceptually, it is simplest to proceed in two steps - first to express the harmonic oscillator energy 
eigenstates in terms of the 1~)‘s and then to write baryons in terms of these energy eigenstates. 

To begin, we choose a system of coordinates to describe an eigenstate of the XI(m) generators. Up to an 
overall phase, to each generator corresponds a unique unit vector, u; we shall use this arbitrariness of phase to 
set the m* component of u to be purely real. The remaining components of u can be expressed in terms of 
(m - 1) positive numbers W, and corresponding phases 0,. Thus the vector u(w, 0) becomes 

u,=e”-& [a= l,...,m- 11, z.&.= 1 -c W,. 

d 

(16) 
Ly 

Since these coordinates are continuous, the eigenstates require a continuum normahzation, 

m-1 

(u(w’,tq~u(w,0)) = n WV& -w,) SW:, - e,> (17) 
a=1 

which has the correct 6( w’ - w) dependence to ensure that the measure is SU( m) invariant. 
Having chosen this coordinate system, we next establish the connection between the harmonic oscillator 

energy eigenstates and the u(w, 0) eigenstates. The oscillator has correctly normalized eigenstates of the form 

(18) 

where N = C, na goes to infinity. Since the eigenstates are complete, we can generally write Irz) as some 
distribution over the space of eigenstates lu( w, 0) ), specified by a “spectral function” C (n, w, 0) : 
in) =J dwdeC(n,w,8)~u(w,e>)+o(l/N>. (19) 

Acting upon both sides of this expansion with the group generators the group generators, TF, determines the 
behavior of the function C (it , w, 0) : 

( 8+ up- 
1 
,+$a rtay) in> =~Jdwd~ (uaEp-- ks) c(n,w,e) I~(~.o))+~(I/N). 

For example, for a diagonal element T,* (with a fixed (Y 6 m - 1)) this equation gives 

(no/N- l/m)In> =Jdwlte 

which in turn implies 

(w,-nn,/N)C(n,w,8)z0 

(wcl - l/m> C(n,w,W lu(w,W) +0(1/N) (21) 

(22) 

suggesting that the function C( n, w, 0) peaks sharply near w, = n,/N. 
Looking at the action of off-diagonal elements of the generators further constrains C(n, w, 0) to be of the 

form 

c(n,w,e) M fP’“h(w - n/N). (23) 
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Here, h(w - a/N) describes a function narrowly peaked at the origin and which satisfies the condition, 

jdwlh(w-n/N)/*= (g’ (24) 

to be consistent with the normalization of the harmonic oscillator states. The detailed form of the function h 

will not matter. Note that the vectors IL, w, and 8 are all (m - 1) dimensional. 
Having determined the form of the function C( n, w, 0) in Eq. (23)) we can compute the matrix element 

between two harmonic oscillator energy eigenstates of any finite degree polynomial of the generators, F(T) 

using 

(n*,~2.~..I~(T)Inl+mi,n2+m2,. , .) = (&)-I / dBei0’“F(7(w,8)) (25) 

where the n, + 0;) with the m, and w, = na/N fixed. Roughly speaking, the magnitudes, wn, record the gross 

pattern of the no’s, but because the na’s get divided by N to give w,, this information is not precise enough 
enough to distinguish n, from n, + 1 or n, + 2, etc. Those distinctions are produced by the 8, dependence, 
which records the fine details of the states in a kind of holographic fashion. 

3. Low spin states 

The states that interest us for the application to large N, baryons are the low spin states. For the remainder 
of this letter, we restrict to an SU(4) spin-flavor symmetry appropriate for baryons built only from u and d 
quarks. As described in [ 31 and [5], since the baryons always have exactly the same antisymmetric behavior 
in color, we can equivalently examine a baryonic state as though built from bosonic, colorless quarks which 
have the have W(m) group theoretical properties. 

We specify our representation for the quarks as follows: 

LZ~ creates a u quark with spin up, ai creates a u quark with spin down, 

al creates a d quark with spin up, af; creates a d quark with spin down. (26) 

This assignment has the structure of a tensor product of the two dimensional flavor space and the two dimen- 
sional spin space, and we can take the spin and isospin generators to be half the usual Pauli matrices in the 

appropriate space. 
In a low-spin large N baryon, there are a few valence quarks, but most of the quarks are combined in 

spin-0 pairs. If there are only two quark flavors, these spin-0 pairs also have isospin 0 (this is what makes the 
two-flavor case so much simpler that three flavors). Thus up to a normalization, a low spin baryon corresponds 
to the following combination of bosonic creation operators: 

IN ka) m z tW--%)/2 a[h ap a;kj t4 
a4 10) (27) 

where the number of valence quarks, K = C, k,, is much smaller than N and finite as N --f 00, and the 

operator z t 

creates a spin and isospin zero pair. We would like to write IN, km) as a sum of harmonic oscillator eigenstates, 
since from the previous section, we learned how to express them in terms of the eigenstates of the SU(m) 
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generators. We therefore expand z t (N--h)/2 
, via the binomial theorem, and use Eq. ( 18) to express the expansion 

in oscillator eigenstates: [n = N - &I 

x [n/2-j+kl, j+kz, j+k3, n/2-j+kq). (29) 

In a typical term, both n/2 - j and j are some finite fraction of N - implicitly much larger than any of the 
ku’s for low spin baryons - so to leading order this expansion simplifies to 

[N,k,) cx (n/2)! c (-l)j(n/2 - j)(klfh)/2 j(kz+k3)/2 
j=O 

X ln/2-j+kl, j+k2, j+k3, n/2-j+kJ). (30) 

To obtain the matrix elements of the W(m) generators between low spin baryons, we can simplify the 
calculation by directly evaluating such a matrix element and then determining the normalization. The matrix 
element for a general polynomial F(T) of the group generators between two baryons specified by the valance 

numbers k; and k, is 

(N,kLlF(T)IN,k,) K c (_l).f-e (n/2 _ j)(kl+k4)/2 j(k2+k3)/2(n/2 _ e)(ki+ki)/2$k;+‘%)/2 

j,e=O 

x (5 -t+k;,t+k;,l+kj,,; - e+k;lF(I.)15-j+kl,j+kz,j+k3,5-j+k4) (31) 

In terms of the coordinates of the generators (using Eqs. (19) and (23) and neglecting the O( l/N) terms, 

this matrix element becomes 

(N,k&IF(T)IN,k,) = / dwde E (-1) - j P ,i(j-!)(82+83--81) ,ie.(k-k’) ,i&(i’-i)/2 

j&O 

x cn/2 _ j)(kl+k4)/‘j(kz+k3)/‘(n/2 _ e)(k;+k~)/2e(k;+k;)/2h(W, - l/2 + e/N, ~2 - C/N, ~3 - e/N)* 

x q’;rh@) h( w1 - l/2 + j/N, wz - j/N, w3 - j/N). (32) 

In the limit N -+ co, the sum will become an integral, Since the function h sharply peaks at the origin, it 

imposes that j/N w e/N, which we will call n/2 E j/N, as well as that 

Wl M W4 M (l-X)/& W:! =w3 =xX/2. (33) 

The two sums over j and C can then be reorganized into an integral over x (from 0 to 1) and a sum over j - e 

which becomes 

c (_ 1 )j-e,i(j-e)(sz+e3-sl) = C ei(H)(~2+03-e1-7d M ato2 + e3 _ o, _ aj. 
(34) 

j-! j-e 

Therefore, in the large N limit, the matrix element becomes 
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(N,k:,IF(T)IN,k,) =&z&t J de1de2de3 J &&@(k-k') ,@'-t)/+(e, + o3 _ & +rTT) 
0 

x (1 _ x) (kl+k4+k:+k~)/2,(kz+L+k:fk;)/2~(7(~, 0)) 

with 

(3.5) 

wl=wq=(l-x)/2, w~=ws=x/2. (36) 

The remaining normalization factor, & is fixed by evaluating the integral for F(T) = 1 to be 

Ak= $ (1 +L>! 

(kt +k4)!(kZ+k3)!’ 
(37) 

An important feature of the integral for the matrix element in Eq. (35) is how it depends on the external 
baryons and in particular on the “valance numbers” 
and in the (1 _ ~)(kl+k+k;+G)/2 

k, and k:. This dependence occurs in both the 8 terms 
. x(k2+k3+ki+k;)/2 factor which arose from the normalization of the harmonic 

oscillator states. Because of Bose-Einstein statistics, the large N states depend strongly on the few indices that 
are not combined into spin and isospin zero combinations. This is the essential physics of the order N matrix 
elements of T; between low spin states. 

Notice that upon setting 82 + 0s - 81 = r, as in (34), the linear combinations corresponding to the pure spin 
or the pure isospin generators vanish identically. This observation amounts to the familiar statement that the 
matrix elements of pure spin or isospin operators between low spin, large N baryons are only of order O( 1) , 
since the integral captures only the leading behavior in N. 

3.1. Some sample calculations 

The integral formula in Eq. (35) provides a simple means for extracting the leading N features for the low 
spin baryon matrix elements. We will show this simplicity with three examples. To begin, let us calculate the 
matrix element 

(P, 1/%-W-31Pv l/2). (38) 

The spin up proton corresponds to kl = 1 with k2 = k3 = k4 = 0 while the operator ~35-3 corresponds to the 

following linear combination 

T”+T44-T22_T33 (39) 

which becomes ( 1 - 2x), with no theta dependence. Thus 

1 

(P> l/2 I ff3373 I P, l/2) = 2 -& J dx(l-n) (1-2x) 
. . J de1de2de3 6(e2+e3 -el -7i-TT) = ~13. (40) 

0 

This result is correct, for the exact answer is 

(N +2)/3. (41) 

In fact, this factor is general - the exact large N result for any matrix element between spin l/2 states is 
simply the N = 1 result multiplied by (N + 2)/3. For N = 3, this gives the famous factor of S/3 for the 
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renormalization of the axial vector current. Eq. (41) (and (46) and (49) below) can be easily obtained by 
explicitly constucting the low spin states out of colorless commuting “quark” creation operators, using (27) 
and (28). One can then derive recursion relations relating the matrix elements for for different values of N, 
and solve them to obtain these exact results. But if we only need the leading contributions, the integral formula 

(35) captures them all in a much simpler way. 
The spin +3/2 A++ state corresponds to kr = 3, and the matrix (~17-1 corresponds to 

T’4+P+T3*+P1. (42) 

In the matrix element 

(A, 3/2 1~~7~ 1 P, l/2). (43) 

The phase from (35) is emiel, so only T14 (which has an e “I dependence) can contribute - the others are 

eliminated by the 0, integrations. Then the result is 

(A, 3/2lm~l IP, l/2) = dX (1 - X)*( 1 - X)/2 &d&d83 S(& + 03 - 81 - r) 

0 

= N/h. (44) 

The exact result is 

&N- l)(N+5)/8. (45) 

As with (41), this result can be easily generalized. The matrix element between any spin l/2 state and any 

spin 3/2 state is the N = 3 value multipled by 

J(N- l)(N+5)/4. (46) 

One more, for good measure - let us calculate 

1 

(A, 312 1~~7~ I A, 312) = $ & J &(1-X)3(1 -2X) 
. . J dt+$d@*d83 S(8* + 83 - 01 - 7T) 

0 

= 3N/5. (47) 

The exact result is 

3 x (N+ 2)/5. 

As before, the matrix element between any two spin 3/2 states is the N = 3 value multipled by 

(N+2)/5. 

(48) 

(49) 

4. Conclusions 

We believe that the integral formula, (35)) in addition to providing a simple calculational tool, yields some 
insight into the nature of the large N enhancement of matrix elements. The basic physics is Bose-Einstein 
statistics. The low spin large N states contain a large number of spin and isospin zero pairs in addition to the 
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“valence” quarks. In these pairs, because of Bose-Einstein statistics, the creation operators that duplicate those 
of the valence quarks dominate over those that do not appear in the valence sector. It is this asymmetry that 

produces the large N matrix element enhancement. 
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