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We study mechanism design when agents have a non-zero but infinitesimally small interest in the utilities

of each other. We show that in such cases, a mechanism is robust against strategic manipulation if and

only if it is not only incentive-compatible, but also nonbossy — a well-studied property in the context

of matching and allocation mechanisms. We give complete characterizations of incentive-compatible and

nonbossy mechanisms in various settings, including auctions with single-parameter agents and public decision

settings where all agents share a common outcome. In particular, we show that in the single-item setting,

a mechanism is incentive-compatible, individually rational, and nonbossy if and only if it is a sequential

posted-price mechanism. In contrast, we show that in more general single-parameter environments, there exist

mechanisms satisfying our characterization that significantly outperform sequential posted-price mechanisms

in terms of revenue or efficiency (sometimes by an exponential factor).
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1 INTRODUCTION
Incentive-compatibility is the canonical notion of robustness against strategic behavior in mecha-

nism design. Incentive-compatible mechanisms guarantee that self-interested agents cannot benefit
from misreporting their private information. However, such mechanisms may still be prone to

manipulation by agents who care about each other. For example, two rival companies competing

for an item at an auction may not care solely about the utility they gain from winning the item, but

may also care about the utility their rival loses from having to pay a higher price. In other settings,

altruistic agents may not care solely about their own utility but also care some amount for the

well-being of others. Such “externalities” complicate the standard picture of mechanism design.

Interestingly, many common incentive-compatible mechanisms are no longer robust against

strategic behavior in the presence of these externalities, even when these externalities are infinitesi-
mally small. For example, consider two weakly cooperating agents participating in a second price

auction, where a single item is being sold. These agents behave in the following way: their primary

goal is to maximize their own utility, which is their private value minus the payment if they win

the item, and 0 otherwise; in the case where they cannot (rationally) win the item, they instead try

to achieve their secondary goal, which is to maximize the other agent’s utility. Then, assuming both

agents know each other’s value, one dominant bidding strategy for both agents is the following: the

agent with the higher value should bid their true value, and the agent with the lower value should

bid 0. As a result, the agent with the higher value still wins the item, but their payment is always 0.

On the other hand, there do exist some incentive-compatible mechanisms which remain robust

in the presence of vanishingly small (but non-zero) externalities. One reason why sequential posted-

price mechanisms — where an auctioneer iterates through the agents in order, offering each agent

a take-it-or-leave-it price — are appealing in practice is this type of robustness. In particular, in a

posted-price mechanism, an agent cannot change the utility of other agents without changing their

own outcome (winning or losing the item), and thus cannot optimize for their secondary objective

without costing themselves utility. Note that posted-price mechanisms are further agnostic to

the specific types of externalities of the agents: they are robust regardless of whether the agents’

externalities are altruistic or malicious (or completely arbitrary), and do not require the agents to

report their externalities up front.

The above examples illustrate the setting that we call “almost-vanishing externalities”, where

externalities are present and unreported to the mechanism designer, but are less important than

an agent’s primary goal of maximizing their own utility. Many rational agents in the real world

naturally behave this way: such agents act carefully to optimize for their main interest, except
when it does not really matter — if multiple actions are equally good as far as their main interest is

concerned, then they turn to further optimizing for their interest in other agents, be it sympathy,

envy, or any other consideration deemed rationally irrelevant.

In this paper, we study the problem of mechanism design in the setting of almost-vanishing

externalities. Our main goal is to answer the following questions:

What mechanisms are robust against strategic behavior when agents exhibit almost-
vanishing interest in each other’s utilities? What are the power and limitations of these
mechanisms?

1.1 Our Results
Alternate interpretation: nonbossy mechanisms. We begin by giving another interpretation of

robustness in the presence of almost-vanishing externalities: such robustness requires, in addition

to the classical notion of incentive-compatibility, that no agent can change the outcomes that other

agents receive, or the amounts that other agents pay, without changing their own outcome or
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payment. We call mechanisms that satisfy this guarantee nonbossy mechanisms (in accordance with

the existing notion of nonbossiness in the economics literature; see Section 1.2 for an overview).

Moreover, incentive-compatibility and nonbossiness together are also sufficient for robustness in the

presence of almost-vanishing externalities. This interpretation of externality-robust mechanisms as

nonbossy mechanisms is more amenable to analysis and enables all subsequent results of the paper.

Characterizing nonbossy mechanisms. We then turn to the structure of nonbossy mechanisms in

various concrete classes of environments that are commonly considered in the context of mechanism

design. We first prove a general characterization of the payment rules of nonbossy mechanisms.

Specifically, we show that as long as the environment is “expressive” enough (contains a wide

enough range of valuation functions) the payment rule of any incentive-compatible and nonbossy

mechanism is a function of the outcomes only — if two valuation profiles lead to the same outcomes

for all agents, then the amounts that all agents pay must also be the same. Almost all commonly

studied environments are expressive enough for this characterization to hold
1
.

Based on the payment characterization, we further investigate two prominent settings in mecha-

nism design, and provide complete characterizations of nonbossy mechanisms. First, we consider

the abstract setting where the mechanism selects a single outcome (corresponding to a public

decision, such as the location of a hospital) that is shared by all agents, and each agent may value

each potential outcome arbitrarily. For this setting, we show that quite surprisingly, any mechanism

that is incentive-compatible and nonbossy must either be dictatorial or always choose between

only 2 outcomes. In other words, when choosing a common outcome, only trivial mechanisms can

be robust against strategic behavior if agents care (even infinitesimally) about each other. This is

reminiscent of the celebrated Gibbard-Satterthwaite theorem [Gibbard, 1973, Satterthwaite, 1975],

and indeed the proof works by reducing to that theorem.

We then investigate the single-parameter setting where identical items are allocated, and each

agent is interested in at most one item. For this setting, we show that nonbossy (and incentive-

compatible and individually rational) mechanisms generalize sequential posted-price mechanisms,

which approach all agents one by one and make take-it-or-leave-it offers. In particular, if there is a

single item being sold, then the two classes of mechanisms are exactly the same. This provides an

interesting semantic interpretation of sequential posted-price mechanisms in the single-item setting:

the only mechanisms in the single-item setting that are robust in the presence of almost-vanishing

externalities are sequential posted-price mechanisms. To the best of our knowledge, this is the first

characterization of this kind for sequential posted-price mechanisms.

When there are multiple items (or even richer feasibility constraints), nonbossy, incentive-

compatible and individually rational mechanisms are strictly richer than sequential posted-price

mechanisms: in particular, they allow for posting a vector of prices to all agents simultaneously,

which is accepted if and only if each agent accepts their personal component of the price vector.

More generally, nonbossy, incentive-compatible and individually rational mechanisms correspond

to decision lists with exceptions: a mechanism can be implemented using a sequence of price vectors,

each associated with a distinct vector of outcomes and an exception list, consisting of a subset

of other price vectors. The mechanism checks these price vectors one by one, and chooses the

outcomes associated with the first vector satisfying: (1) all agents accept the price vector, and (2)

there does not exist another price vector that is also accepted in the exception list of this price

vector. In fact, we show that if the exception lists are chosen appropriately, then the order in which

these price vectors are considered does not matter. The proof explicitly constructs a decision list

given a mechanism, by first showing that any nonbossy and incentive-compatible mechanism must

1
We also show this property is necessary for this characterization, in the sense that there exist environments without this

property in which the payment characterization fails.
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“break ties consistently”, i.e., if the mechanism chooses one outcome vector when another outcome

vector is also satisfied, then it can never choose the latter vector whenever the former is satisfied.

Given this, one can construct a decision tree from a mechanism, which can then be turned into a

decision list by merging nodes corresponding to the same outcome vector.

Separating nonbossy and sequential posted-price mechanisms. Our characterization shows that in

single-parameter environments, nonbossy mechanisms generally have richer forms than sequential

posted-pricemechanisms. However, it is not immediately clear howmuch additional power nonbossy
mechanisms have. To this end, we further establish strict separations in terms of revenue and

efficiency between mechanisms that are nonbossy, incentive-compatible and individually rational,

and sequential posted-price mechanisms in single-parameter environments. In particular, we

identify two sources of separation: rich feasibility constraints and correlation between agents. With

arbitrary downward-closed feasibility constraints, we show that nonbossy, incentive-compatible

and individually rational mechanisms can guarantee an Ω(1/log 𝑟 ) fraction of the optimal welfare

(or revenue), where 𝑟 is the maximum number of agents who can simultaneously receive an item. In

contrast, it is known that no sequential posted-price mechanism can achieve an approximation ratio

better than 𝑂 (1/𝑟 ) [Babaioff et al., 2007]. When agents’ valuations can be correlated, we provide

examples with only 2 agents where nonbossy, incentive-compatible and individually rational

mechanisms can extract the full optimal welfare as revenue, whereas sequential posted-price

mechanisms can only partially extract the optimal welfare. These results shed further light on

the potential of nonbossy mechanisms, and show how they can provide more desirable tradeoffs

between robustness against strategic behavior and revenue/efficiency compared to other simple

mechanisms. In particular, nonbossy mechanisms are more powerful than sequential posted-price

mechanisms (the archetypal “simplemechanisms”), and at the same time provide stronger robustness

compared to generic incentive-compatible mechanisms.

1.2 Related Work
Nonbossy allocation rules and social choice functions. Our results can be viewed as a monetary

version of previous results on nonbossy allocation rules and social choice functions. Satterthwaite

and Sonnenschein [1981] propose the notion of nonbossiness for allocation mechanisms without

money, and give several characterizations thereof. Since then, nonbossy allocation rules have

been studied extensively: see the survey by Thomson [2016] for a comprehensive exposition. The

vast majority of these results focus on environments without money (e.g., allocation of indivisible

items [Hatfield, 2009, Pápai, 2001, Svensson, 1999], matching [Bade, 2020, Kojima, 2010], etc.), which

make them incomparable with our results. Below we discuss several results that are particularly

related to ours.

Svensson and Larsson [2002] study nonbossy allocation mechanisms where, in addition to

indivisible items, there is a fixed amount of money being allocated. They show that the space of

strategyproof and nonbossy mechanisns is finite, and that this space can be further restricted with

additional properties enforced. This setting is different from ours, because the total “payment” (i.e.,

money being allocated) has to sum up to the fixed amount — indeed, the finiteness of the space of

mechanisms is too strong to be true with general payments that we consider.

Mishra and Quadir [2014] study single-item auctions with a property which Thomson [2016]

terms “non-monetary nonbossiness”: the property states that no agent should be able to change

other agents’ outcomes without changing their own outcome, but puts no restrictions on payments.

Mishra and Quadir [2014] show an allocation rule is implementable in dominant strategies and non-

monetary nonbossy if and only if it is strongly rationalizable. Nath and Sen [2015] study “allocation

nonbossy” social choice functions, which is the same as non-monetary nonbossiness. They show
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that given some richness assumptions, any social choice function that is onto, strategyproof and

non-monetary nonbossy must be an affine maximizer. Mukherjee [2015] studies “nonbossiness

in decision”, which is again equivalent to non-monetary nonbossiness. The author shows that in

the single-item setting, any anonymous, strategyproof, and non-monetary nonbossy allocation

rule must be that of a Vickrey auction with a reserve price. As noted by Thomson [2016], non-

monetary nonbossiness is incomparable to the notion of nobossiness that we study. Moreover,

it is not clear what semantic interpretations (e.g., robustness against a certain form of strategic

behavior) non-monetary nonbossiness has beyond its very definition.

Finally, perhaps most closely related to our results is the recent work by Pycia and Raghavan

[2021], who study the same notion of nonbossiness as ours in single-item auctions with general

payments. They show that (1) the first-price auction with no reserve is the essentially unique

mechanism that is nonbossy, individually rational, and efficient in equilibrium, and (2) the first-

price auction with the optimal reserve price is the essentially unique mechanism that is nonbossy,

individually rational, and revenue maximizing. These results are not directly comparable to ours:

aiming to capture robustness against strategic behavior with almost-vanishing externalities, we

focus on nonbossy mechanisms that are also incentive-compatible, which first-price auctions

clearly are not. In fact, both the results by Pycia and Raghavan [2021] and our results imply that

no incentive-compatible and nonbossy mechanism can be efficient (i.e., welfare-maximizing) or

revenue-maximizing in the single-item setting.

Stronger notions of robustness. Conceptually, our results are along the line of research on stronger

notions of robustness against strategic behavior in mechanism design. Perhaps the closest notion

of robustness to ours is obvious strategyproofness by Li [2017] (as well as variants thereof, such as

strong obvious strategyproofness [Pycia and Troyan, 2018]), which, roughly speaking, requires that

the worst thing that may happen to an agent (over other agents’ actions) under truthful reporting

must be at least as good as the best thing that may happen (again, over other agents’ actions)

under any possible deviation. This is similar to our notion of nonbossiness at a high level, in the

sense that both notions put limitations on how an agent may influence the utility of other agents.

However, as we show in Section B, these two notions of robustness are not directly comparable,

and in particular, neither notion subsumes the other. Another notion of robustness is credibility by

Akbarpour and Li [2020], which roughly says that the principal has no incentive to cheat in the

mechanism. In contrast, we assume full commitment power for the principal, and our notion of

robustness concerns agents’ incentives only.

Mechanisms with (non-vanishing) externalities. The concept of “externalities” is well established in
the economics literature, and there is a significant line of existing work on mechanism design with

externalities [Bartling and Netzer, 2016, Bernstein and Winter, 2012, Jehiel et al., 1996, 1999, Segal,

1999], in addition to closely related lines of work on mechanism design with altruistic [Fehr and

Schmidt, 2006, Levine, 1998] or spiteful agents [Brandt et al., 2005, Brandt and Weiß, 2001, Morgan

et al., 2003, Zhou and Lukose, 2007]. As far as we are aware, we are the first to specifically study

the setting of externalities that tend to zero in size (or mechanisms robust to small externalities),

and the techniques used for larger externalities are significantly different than the techniques we

employ.

Simple mechanisms and posted-price mechanisms. Another related topic is simple mechanisms,

and in particular, posted-price mechanisms. The study of simple mechanisms is driven by the fact

that in rich environments (e.g., with multiple items and possibly non-additive valuations), optimal

mechanisms in terms of revenue or welfare can be complex [Daskalakis et al., 2017, Hart and Reny,

2015, Manelli and Vincent, 2007, Thanassoulis, 2004] and/or hard to compute [Daskalakis et al., 2014,
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Mirrokni et al., 2008]. On the other hand, often there are relatively simple mechanisms, such as

posted-price mechanisms, that can achieve good (often constant) approximations to the respective

benchmarks. In terms of revenue, it is known that when agents are single-parameter or unit-demand,

sequential posted-price auctions achieve a constant fraction of the optimal revenue [Cai et al., 2019,

Chawla et al., 2007, 2010, Kleinberg and Weinberg, 2012]. Similar results have been established

for additive agents [Babaioff et al., 2014, Cai et al., 2019, Hart and Nisan, 2017, Li and Yao, 2013,

Yao, 2015] and even subadditive agents [Cai and Zhao, 2017, Rubinstein and Weinberg, 2018]

using slightly less simple mechanisms. As for welfare, it is known that anonymous item-pricing

mechanisms achieve an approximation factor of 2 for submodular/XOS agents [Dutting et al., 2020,

Feldman et al., 2014], and 𝑂 (log log𝑚) for subadditive agents [Dutting et al., 2020, Dütting et al.,
2020]. Our results are most closely related to prior work on posted-price mechanisms: restricted

to single-parameter settings, our results show that the class of mechanisms that are incentive-

compatible, individually rational and nonbossy generalize sequential posted-price mechanisms,

in that incentive-compatible, individually rational and nonbossy mechanisms (corresponding to

decision lists with exceptions) are slightly less simple, but strictly more powerful.

2 PRELIMINARIES
2.1 Valuation Spaces, Outcome Spaces, and Mechanisms.
We consider multiagent settings with 𝑛 agents. Each agent 𝑖 is associated with a valuation spaceV𝑖

and a personal outcome space O𝑖 . Each valuation 𝑣𝑖 ∈ V𝑖 maps every personal outcome 𝑜𝑖 ∈ O𝑖 to
a real number 𝑣𝑖 (𝑜𝑖 ). The joint valuation space V specifies all possible combinations of valuations,

and the joint outcome space O ⊆ ∏
𝑖 O𝑖 specifies all feasible combinations of personal outcomes.

Example 1. Consider a single-parameter auction setting, where there are 𝑘 < 𝑛 identical items

for sale, and each agent wants at most one of them. Each O𝑖 can be either {0, 1} (corresponding
to deterministic allocations) or [0, 1] (corresponding to randomized allocations). Each valuation

spaceV𝑖 is isomorphic to R+, since each valuation 𝑣𝑖 ∈ V𝑖 can be described by a nonnegative real

number, which is the value 𝑣𝑖 (1) of agent 𝑖 receiving an item. (Abusing notation, we represent each

𝑣𝑖 ∈ V𝑖 by 𝑣𝑖 (1) and simply sayV𝑖 = R+ in the rest of the paper.) Suppose we consider deterministic

mechanisms. Then the joint outcome space is defined to be

O = {𝑜 ∈ {0, 1}𝑛 | ∥𝑜 ∥1 ≤ 𝑘}.

This captures the fact that no more than 𝑘 agents can receive an item.

A mechanism 𝑀 = (𝑓 , 𝑝) maps each combination of valuations 𝑣 = (𝑣1, . . . , 𝑣𝑛) ∈ V to a joint

outcome 𝑓 (𝑣) ∈ O, and charges payments 𝑝 (𝑣) ∈ R𝑛+. Let 𝑓𝑖 (𝑣) denote the personal outcome for

agent 𝑖 in 𝑓 (𝑣), and 𝑓−𝑖 (𝑣) all other personal outcomes. Similarly define 𝑝𝑖 , 𝑝−𝑖 . We also generally

use 𝑜 ∈ O and 𝑞 ∈ R𝑛+ to denote specific outcome/payment vectors, as opposed to the mappings

𝑓 : V → O and 𝑝 : V → R𝑛+. For each vector of valuations 𝑣 ∈ V and each agent 𝑖 , we use 𝑣−𝑖 to
denote the valuations of all agent except 𝑖 . We similarly define 𝑜−𝑖 , 𝑞−𝑖 ,V−𝑖 , etc.

2.2 Incentive-Compatibility and Individual Rationality
The classical notion of (dominant-strategy) individual rationality is captured by the following

definition in our model.

Definition 1 (Individual Rationality (IR)). A mechanism𝑀 = (𝑓 , 𝑝) is individually rational (IR) if

for all 𝑖 and 𝑣 ∈ V ,

𝑣𝑖 (𝑓𝑖 (𝑣)) − 𝑝𝑖 (𝑣) ≥ 0.
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Now we define incentive-compatiblity. For simplicity, we assume consistent tiebreaking among

personal outcomes for each agent 𝑖 , i.e., there is a strict total order ≺tb

𝑖 over O𝑖 such that whenever

two outcome-payment pairs induce the same utility, the agent always prefers the one with a

“smaller” outcome. We assume this tiebreaking rule is fixed and does not depend on 𝑖’s valuation.2

For example, an agent may always prefer receiving an item to not, whenever the two options lead

to the same utility (i.e., 0). Then, the classical notion of (dominant-strategy) incentive-compatibility

translates to the following definition.

Definition 2 (Incentive-Compatibility (IC)). A mechanism𝑀 = (𝑓 , 𝑝) is incentive-compatible (IC)

if for all 𝑖 ∈ [𝑛], 𝑣 = (𝑣𝑖 , 𝑣−𝑖 ) ∈ V , and 𝑣 ′𝑖 ∈ V𝑖 ,

𝑣𝑖 (𝑓𝑖 (𝑣𝑖 , 𝑣−𝑖 )) − 𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 ) > 𝑣𝑖 (𝑓𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 )) − 𝑝𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 ), or
𝑣𝑖 (𝑓𝑖 (𝑣𝑖 , 𝑣−𝑖 )) − 𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 ) = 𝑣𝑖 (𝑓𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 )) − 𝑝𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 ) and 𝑓𝑖 (𝑣𝑖 , 𝑣−𝑖 ) ⪯tb

𝑖 𝑓𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 ).

2.3 Incentives in the Presence of Almost-Vanishing Externalities
We now formally define agents’ incentives in the presence of almost-vanishing externalities. For

each agent 𝑖 , let ≺𝑖 be 𝑖’s preference over all possible combinations of outcomes and payments,

i.e., over O × R𝑛+. This preference is determined by 𝑣𝑖 ∈ V𝑖 and almost-vanishing externalities

together. We assume that ≺𝑖 can be decomposed into an internal component ≺int

𝑖 over O𝑖 × R+,
and an external component (capturing externalities) ≺ext

𝑖 over O−𝑖 ×R𝑛−1+ , i.e., ≺𝑖 = (≺int

𝑖 , ≺ext

𝑖 ). For
any two combinations of outcomes and payments (𝑜, 𝑞) and (𝑜 ′, 𝑞′) ∈ O × R𝑛+, (𝑜, 𝑞) ⪯𝑖 (𝑜 ′, 𝑞′)
iff: (𝑜𝑖 , 𝑞𝑖 ) ≺int

𝑖 (𝑜 ′𝑖 , 𝑞′𝑖 ), or (𝑜𝑖 , 𝑞𝑖 ) = (𝑜 ′𝑖 , 𝑞′𝑖 ) and (𝑜−𝑖 , 𝑞−𝑖 ) ⪯ext

𝑖 (𝑜 ′−𝑖 , 𝑞′−𝑖 ). That is, the internal

component decides the agent’s preference between two combinations, unless the internal outcome-

payment pairs are exactly the same, in which case the external component decides the preference.

Conceptually, the external component captures externalities, and the fact that it is only used for

tiebreaking captures its almost-vanishing nature.

The internal component of the preference ≺int

𝑖 = ≺int

𝑖 (𝑣𝑖 ) is induced by 𝑖’s valuation 𝑣𝑖 , together

with the tiebreaking rule ≺tb

𝑖 when two outcome-payment pairs induce the same utility. Formally,

(𝑜𝑖 , 𝑞𝑖 ) ≺int

𝑖 (𝑜 ′𝑖 , 𝑞′𝑖 ), iff 𝑣𝑖 (𝑜𝑖 ) − 𝑞𝑖 > 𝑣𝑖 (𝑜 ′𝑖 ) − 𝑞′𝑖 , or 𝑣𝑖 (𝑜𝑖 ) − 𝑞𝑖 = 𝑣𝑖 (𝑜 ′𝑖 ) − 𝑞′𝑖 and 𝑜𝑖 ≺tb

𝑖 𝑜 ′𝑖 .
3

We place no restrictions on the external component of the preference ≺ext

𝑖 : we allow each ≺ext

𝑖 to

be any ordering over the outcomes O × R𝑛+ of other agents. Moreover, for every possible ordering

≺ over O × R𝑛+, we assume it is possible that ≺ext

𝑖 =≺. That is, we wish to design mechanisms that

can handle any possible externality over other agents that an agent possesses.
4

We now describe the behavior of agents. Each agent 𝑖 , given 𝑖’s valuation 𝑣𝑖 (and therefore

the internal component of 𝑖’s preference ≺int

𝑖 ), all other agents’ valuations 𝑣−𝑖 , and the external

component of 𝑖’s preference ≺ext

𝑖 , reports a possibly nontruthful valuation 𝑣 ′𝑖 ∈ V𝑖 to the mechanism,

where the goal is to achieve a most preferable combination of outcomes and payments according to

≺𝑖 . As in environments without externalities, the exact behavior of agents also depends on what they

know about each other. In the rest of this paper, we focus on dominant-strategy robustness against

strategic behavior, which means an agent never gets more desirable combinations of outcomes and

payments by misreporting their private valuation, no matter what other agents do (in particular,

without loss of generality we can assume agents know the valuations and preferences of all other

agents). This is captured by the following definition.

2
This assumption is unnecessary for some of our results, but without it the proofs become much more tedious.

3
Note that given this definition, one can rephrase the definition of incentive-compatibility in the following way: a mechanism

𝑀 = (𝑓 , 𝑝) is incentive-compatible, if for all 𝑖 , 𝑣 and 𝑣′
𝑖
, (𝑓𝑖 (𝑣𝑖 , 𝑣−𝑖 ), 𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 )) ⪯int

𝑖
(𝑓𝑖 (𝑣′𝑖 , 𝑣−𝑖 ), 𝑝𝑖 (𝑣′𝑖 , 𝑣−𝑖 )) .

4
In Appendix A we show this assumption can in fact be significantly relaxed.
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Definition 3 (Robustness with Almost-Vanishing Externalities (RwAVE)). Amechanism𝑀 = (𝑓 , 𝑝)
is robust with almost-vanishing externalities, if for any agent 𝑖 , valuation vector 𝑣 ∈ V , public

component of 𝑖’s preference ≺ext

𝑖 , and possible deviation 𝑣 ′𝑖 ∈ V𝑖 ,

(𝑓 (𝑣𝑖 , 𝑣−𝑖 ), 𝑝 (𝑣𝑖 , 𝑣−𝑖 )) ⪯𝑖 (𝑓 (𝑣 ′𝑖 , 𝑣−𝑖 ), 𝑝 (𝑣 ′𝑖 , 𝑣−𝑖 )),
where ≺𝑖 = (≺int

𝑖 (𝑣𝑖 ), ≺ext

𝑖 ).

Note that RwAVE is a stronger notion of robustness than IC defined above, since for any two

combinations of outcomes and payments (𝑜, 𝑞) and (𝑜 ′, 𝑞′),
(𝑜, 𝑞) ⪯𝑖 (𝑜 ′, 𝑞′) =⇒ (𝑜𝑖 , 𝑞𝑖 ) ⪯int

𝑖 (𝑜 ′𝑖 , 𝑞′𝑖 ).

Proposition 1. Any RwAVE mechanism𝑀 is also IC.

3 NONBOSSY MECHANISMS
In this section, we introduce the notion of nonbossy mechanisms, and show that it tightly charac-

terizes the class of mechanisms that are robust with almost-vanishing externalities.

Definition 4 (Nonbossiness (NB)). A mechanism 𝑀 = (𝑓 , 𝑝) is nonbossy (NB) if for all 𝑖 , 𝑣 =

(𝑣𝑖 , 𝑣−𝑖 ) ∈ V and 𝑣 ′𝑖 ∈ V𝑖 ,

if: 𝑓𝑖 (𝑣𝑖 , 𝑣−𝑖 ) = 𝑓𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 ) and 𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 ) = 𝑝𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 )
then: 𝑓 (𝑣𝑖 , 𝑣−𝑖 ) = 𝑓 (𝑣 ′𝑖 , 𝑣−𝑖 ) and 𝑝 (𝑣𝑖 , 𝑣−𝑖 ) = 𝑝 (𝑣 ′𝑖 , 𝑣−𝑖 ).

In words, the above definition says that a mechanism is nonbossy if no agent can change another

agent’s personal outcome or payment without changing their own personal outcome or payment.

Below we show that the semantics of nonbossiness extends well beyond the above definition — in

fact, restricted to IC mechanisms, the family of nonbossy mechanisms is precisely the family of

mechanisms that are robust with almost-vanishing externalities.

Theorem 1 (Semantics of Nonbossiness). A mechanism is IC and NB if and only if it is RwAVE.

Proof Sketch.
5
If a mechanism is nonbossy, it is impossible for an agent’s deviation to modify

the external component of their preference without also modifying the internal component of

their preference. Since in IC mechanisms it is impossible for an agent to deviate and improve their

internal preference, this means that nonbossy IC mechanisms are RwAVE.

On the other hand, if a mechanism is not nonbossy, then there is a non-truthful deviation for

some agent 𝑖 which modifies the outcomes of the other agents but not 𝑖 . Such a mechanism cannot

be RwAVE, since it is possible that agent 𝑖 prefers this deviation in the external component of their

preference. □

Deterministic vs. randomized mechanisms. We do not explicitly distinguish between deterministic

and randomized mechanisms, as randomization can be captured by extending the outcome space

to include all convex combinations of outcomes. Nevertheless, we remark that nonbossiness is

generally easy to achieve with randomization: for example, when eachV𝑖 = R+ and each O𝑖 = [0, 1]
(which correspond to single-parameter environments), a mechanism (𝑓 , 𝑝) is nonbossy as long as

each 𝑓𝑖 (𝑣𝑖 , 𝑣−𝑖 ) is strictly monotone in 𝑣𝑖 . On the other hand, recall that Myerson’s characterization

[Myerson, 1981] states that any IC mechanism in single-parameter environments must be weakly

monotone. Therefore, one can easily adapt any IC mechanism to be also nonbossy with negligible

loss in the following way: run the original IC mechanism with probability 1 − 𝜀, and any strictly

monotone IC mechanism with probability 𝜀, where 𝜀 > 0 is arbitrarily small. In light of this, we

5
For the sake of brevity, we defer most full proofs to Appendix C. Where instructive, we supply proof sketches in their place.
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focus on deterministic mechanisms in the rest of the paper: for example, we consider O𝑖 = {0, 1}
rather than [0, 1] in single parameter environments. [Renato: Is there a sentence or two we can

add saying why this is not a satisfactory way to achieve non-bossiness?] [Jon: The only reason I

can think of is the generic set of reasons why people dislike randomized mechanisms (tricky to

implement, need to trust source of randomness, etc.).]

4 PAYMENT CHARACTERIZATION FOR NONBOSSY MECHANISMS
In this section, we study the basic structure of nonbossy mechanisms. Specifically, whenever an

environment has an expressive enough class of valuation functions, we provide a strong character-

ization of the payment rules of nonbossy mechanisms in this environment. We mathematically

formalize this notion of expressivity via what we call the “upper semilattice property”, defined

below.

Definition 5 (Upper Semilattice Property). A pair (V𝑖 ,O𝑖 ) has the upper semilattice property if

for any 𝑜𝑖 ∈ O𝑖 , 𝑣𝑖 , 𝑣 ′𝑖 ∈ V𝑖 , there exists 𝑣
′′
𝑖 ∈ V𝑖 such that for all 𝑜 ′𝑖 ∈ O𝑖 ,

𝑣 ′′𝑖 (𝑜𝑖 ) − 𝑣 ′′𝑖 (𝑜 ′𝑖 ) ≥ max{𝑣𝑖 (𝑜𝑖 ) − 𝑣𝑖 (𝑜 ′𝑖 ), 𝑣 ′𝑖 (𝑜𝑖 ) − 𝑣 ′𝑖 (𝑜 ′𝑖 )}.
We say 𝑣 ′′𝑖 is a common upper bound of 𝑣𝑖 and 𝑣

′
𝑖 with respect to 𝑜𝑖 .

While the upper semilattice property may appear strong and/or counterintuitive, it turns out

that most natural settings commonly studied in the context of mechanism design in fact have this

property. For example, it is straightforward to check that in single-parameter settings (where a

valuation 𝑣𝑖 ∈ V𝑖 for a single agent is parameterized by an arbitrary nonnegative real number)

Definition 5 holds (e.g., if 𝑜𝑖 is allocation of the item and 𝑜 ′𝑖 is non-allocation, we can take 𝑣 ′′𝑖 =

max(𝑣𝑖 , 𝑣 ′𝑖 )). In fact, the upper semilattice property holds for all the following settings:

• Common outcome, complete domain: O1 = O2 = · · · = O𝑛 , and O = {(𝑜𝑐 , . . . , 𝑜𝑐 ) | 𝑜𝑐 ∈
O1 = · · · = O𝑛}. Each V𝑖 is the collection of all functions from O𝑖 to R+. This corresponds to
settings where the mechanism makes a single public decision that simultaneously affects all

agents.

• Single-parameter agents: O1 = O2 = · · · = O𝑛 = {0, 1}, and O ⊆ ×𝑖O𝑖 . Each 𝑣𝑖 ∈ V𝑖 is

described by a nonnegative number 𝑥𝑖 , where 𝑣𝑖 (1) = 𝑥𝑖 and 𝑣𝑖 (0) = 0. This corresponds

to settings where the mechanism allocates identical items to agents subject to an arbitrary

feasibility constraint, where each agent is interested in at most 1 item.

• Combinatorial auctions, single-minded agents: there is a ground set 𝑀 of items, O1 =

O2 = · · · = O𝑛 = 2
𝑀
, and O ⊆ ×𝑖O𝑖 . Each 𝑣𝑖 ∈ V𝑖 is described by a subset 𝑆𝑖 of 𝑀 and a

real number 𝑥𝑖 , where 𝑣𝑖 (𝑇 ) = 𝑥𝑖 if 𝑆𝑖 ⊆ 𝑇 and 𝑣𝑖 (𝑇 ) = 0 otherwise. This corresponds to

settings where the mechanism allocates heterogeneous items to agents subject to an arbitrary

feasibility constraint, where each agent is only interested in getting all items in a certain set.

• Combinatorial auctions, valuations “between” additive and XOS: there is a ground

set 𝑀 of items, O1 = O2 = · · · = O𝑛 = 2
𝑀
, and O ⊆ ×𝑖O𝑖 . Each V𝑖 is simultaneously a

superset of all monotone additive valuations and a subset of all monotone XOS valuations.

This corresponds to settings where the mechanism allocates heterogeneous items to agents

subject to an arbitrary feasibility constraint, where possible valuations are rich enough to

subsume all additive ones, but never go beyond XOS ones.

• Combinatorial auctions, valuations “beyond” subadditive: there is a ground set 𝑀 of

items, O1 = O2 = · · · = O𝑛 = 2
𝑀
, and O ⊆ ×𝑖O𝑖 . Each V𝑖 is simultaneously a superset

of all subadditive valuations. This corresponds to settings where the mechanism allocates

heterogeneous items to agents subject to an arbitrary feasibility constraint, where possible

valuations are rich enough to subsume all monotone subadditive ones.
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• Metric space: there is a metric space (𝑋𝑖 , 𝑑𝑖 ) for each agent 𝑖 where𝑂𝑖 ⊆ 𝑋𝑖 . Each 𝑣𝑖 ∈ V𝑖 is

induced by a point 𝑥𝑖 ∈ 𝑋𝑖 , such that 𝑣𝑖 (𝑜𝑖 ) = −𝑑𝑖 (𝑥𝑖 , 𝑜𝑖 ). This corresponds to settings where

each agent is located in a metric space, which also contains all possible outcomes, and the

agent wants the distance to the outcome to be as small as possible (e.g., in facility location

games).

Proposition 2. All the above settings have the upper semilattice property, and therefore admit the
payment characterization.

We now present our payment characterization for nonbossy mechanisms in such environments.

Our characterization states that whenever the environment has the upper semilattice property,

then for any IC and NB mechanism, the payment rule can be written as a function of the outcome

vector only.

Theorem 2 (Payment Characterization). If for all 𝑖 ∈ [𝑛], (V𝑖 ,O𝑖 ) has the upper semilattice
property, then for any IC and NB mechanism𝑀 = (𝑓 , 𝑝),

𝑝 (𝑣1, . . . , 𝑣𝑛) = 𝑝 (𝑣 ′1, . . . , 𝑣 ′𝑛) if 𝑓 (𝑣1, . . . , 𝑣𝑛) = 𝑓 (𝑣 ′1, . . . , 𝑣 ′𝑛).

Proof. Fix any IC and NB mechanism (𝑓 , 𝑝). Consider any two valuation profiles 𝑣1, . . . , 𝑣𝑛 and

𝑣 ′
1
, . . . , 𝑣 ′𝑛 where

𝑓 (𝑣1, . . . , 𝑣𝑛) = 𝑓 (𝑣 ′1, . . . , 𝑣 ′𝑛) = (𝑜1, . . . , 𝑜𝑛).
For each 𝑖 ∈ [𝑛], let 𝑣 ′′𝑖 be a common upper bound of 𝑣𝑖 and 𝑣

′
𝑖 , satisfying for any 𝑜 ′𝑖 ∈ O𝑖 \ {𝑜𝑖 },

𝑣 ′′𝑖 (𝑜𝑖 ) − 𝑣 ′′𝑖 (𝑜 ′𝑖 ) ≥ max{𝑣𝑖 (𝑜𝑖 ) − 𝑣𝑖 (𝑜 ′𝑖 ), 𝑣 ′𝑖 (𝑜𝑖 ) − 𝑣 ′𝑖 (𝑜 ′𝑖 )}.

We inductively argue that for any 𝑖 ∈ [𝑛],

𝑓 (𝑣1, . . . , 𝑣𝑛) = 𝑓 (𝑣 ′′1 , . . . , 𝑣 ′′𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑛) and 𝑓 (𝑣 ′
1
, . . . , 𝑣 ′𝑛) = 𝑓 (𝑣 ′′1 , . . . , 𝑣 ′′𝑖 , 𝑣 ′𝑖+1, . . . , 𝑣 ′𝑛),

and

𝑝 (𝑣1, . . . , 𝑣𝑛) = 𝑝 (𝑣 ′′1 , . . . , 𝑣 ′′𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑛) and 𝑝 (𝑣 ′
1
, . . . , 𝑣 ′𝑛) = 𝑝 (𝑣 ′′1 , . . . , 𝑣 ′′𝑖 , 𝑣 ′𝑖+1, . . . , 𝑣 ′𝑛).

In particular, this implies

𝑝 (𝑣1, . . . , 𝑣𝑛) = 𝑝 (𝑣 ′′1 , . . . , 𝑣 ′′𝑛 ) = 𝑝 (𝑣 ′1, . . . , 𝑣 ′𝑛).

To show this, we only need to argue that if agent 𝑖 changes their reported type from 𝑣𝑖 to 𝑣
′′
𝑖 ,

then their outcome does not change, i.e.,

𝑓𝑖 (𝑣 ′′1 , . . . , 𝑣 ′′𝑖−1, 𝑣𝑖 , 𝑣𝑖+1 . . . , 𝑣𝑛) = 𝑓𝑖 (𝑣 ′′1 , . . . , 𝑣 ′′𝑖−1, 𝑣 ′′𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑛).

If this is the case, then IC implies that agent 𝑖 must receive the same payment under both types, i.e.,

𝑝𝑖 (𝑣 ′′1 , . . . , 𝑣 ′′𝑖−1, 𝑣𝑖 , 𝑣𝑖+1 . . . , 𝑣𝑛) = 𝑝𝑖 (𝑣 ′′1 , . . . , 𝑣 ′′𝑖−1, 𝑣 ′′𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑛),

and NB implies that the payments and outcomes do not change for any other agent (which was the

inductive claim to be proved). Consider the menu agent 𝑖 faces when the other agents’ valuations

are (𝑣 ′′
1
, . . . , 𝑣 ′′𝑖−1, 𝑣𝑖+1, . . . , 𝑣𝑛). When 𝑖’s valuation function is 𝑣𝑖 , 𝑜𝑖 is the utility-maximizing option.

Moreover, by the construction of 𝑣 ′′𝑖 , when 𝑖’s valuation function is 𝑣 ′′𝑖 , 𝑜𝑖 can only become even

more desirable compared to other options, so IC ensures that

𝑓𝑖 (𝑣 ′′1 , . . . , 𝑣 ′′𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑛) = 𝑜𝑖 .

The other part of the argument (for 𝑣 ′) is completely symmetric. □
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Necessity of the upper semilattice property. One may naturally wonder if the upper semilattice

property is necessary for the characterization — below we show that it in fact is, even if we further

restrict our attention to IR mechanisms.

Proposition 3. There exists an IC, NB, and IR mechanism𝑀 = (𝑓 , 𝑝) where the above payment
characterization fails.

Proof. Let𝑛 = 2,V1 = {𝑥1, 𝑥2},V2 = {𝑦1, 𝑦2},O1 = O2 = {𝑜1, 𝑜2, 𝑜3}, andO = {(𝑜1, 𝑜1), (𝑜2, 𝑜2), (𝑜3, 𝑜3)}.
Let the valuations be such that

𝑜1 𝑜2 𝑜3
𝑥1 1 0 1

𝑥2 1 1 0

𝑦1 1 1 0

𝑦2 1 0 1

.

Moreover, both agents prefer 𝑜3 to 𝑜1, and 𝑜1 to 𝑜2 in tiebreaking. Consider the following mechanism.

• 𝑓 (𝑥1, 𝑦1) = (𝑜1, 𝑜1), 𝑝 (𝑥1, 𝑦1) = (1, 0),
• 𝑓 (𝑥2, 𝑦2) = (𝑜1, 𝑜1), 𝑝 (𝑥2, 𝑦2) = (0, 1),
• 𝑓 (𝑥2, 𝑦1) = (𝑜2, 𝑜2), 𝑝 (𝑥2, 𝑦1) = (0, 0),
• 𝑓 (𝑥1, 𝑦2) = (𝑜3, 𝑜3), 𝑝 (𝑥1, 𝑦2) = (0, 0).

This does not satisfy the payment characterization, because when the outcome vector is (𝑜1, 𝑜1), the
payment vector can either be (1, 0) or (0, 1). On the other hand, observe that the mechanism is NB

because the (common) outcome changes whenever either agent’s valuation changes, and verifying

that the mechanism is IC simply involves checking all relevant cases: when agent 2 reports 𝑦1,

agent 1 would not misreport 𝑥1 as 𝑥2, because that would create a tie between 𝑜1 and 𝑜2 where

agent 1 prefers 𝑜1. Agent 1 also would not misreport 𝑥2 as 𝑥1, because that would decrease their

utility from 1 to 0. When agent 2 reports 𝑦2, agent 1 would not misreport 𝑥1 as 𝑥2, because that

would create a tie between 𝑜1 and 𝑜3 where agent 1 prefers 𝑜3. Agent 1 also would not misreport 𝑥2
as 𝑥1, because that would decrease their utility from 1 to 0. The case of agent 2 is symmetric. □

5 FULL CHARACTERIZATIONS IN SPECIFIC SETTINGS
In this section, we present full characterizations of IC, NB, and possibly IR mechanisms in several

specific settings.

5.1 Gibbard-Satterthwaite Style Characterization for the Common Outcome Setting
First we present a characterization for the setting where all agents share a common outcome, as

described in Section 4. Somewhat surprisingly, this characterization shows that the seemingly rich

space of IC and NB mechanisms (which, notably, involve payments) contains only “trivial mecha-

nisms”. These mechanisms must have the same form as the characterization of non-manipulable

social choice rules in the celebrated result of Gibbard-Satterthwaite [Gibbard, 1973, Satterthwaite,

1975]: they are either dictatorships, or only two outcomes are relevant.

Theorem 3. Consider the setting where all agents share a common outcome and valuations are
from the complete domain, i.e., O = {(𝑜𝑐 , . . . , 𝑜𝑐 ) | 𝑜𝑐 ∈ O1 = · · · = O𝑛} where |O𝑖 | < ∞, and each
V𝑖 is the collection of all functions from O𝑖 to R+. In this setting, any IC and NB mechanism satisfies
the Gibbard-Satterthwaite characterization, i.e., either it is dictatorship or it uses only two outcomes.
Formally, any IC and NB mechanism𝑀 = (𝑓 , 𝑝) in this setting must satisfy at least one of the following
two conditions:

• Dictatorship: there exists an agent 𝑖 such that (𝑓 (𝑣), 𝑝 (𝑣)) = (𝑓 (𝑣𝑖 ), 𝑝 (𝑣𝑖 )), i.e., 𝑓 and 𝑝 depend
only on agent 𝑖’s valuation.
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• Two outcomes: the image of (𝑓 , 𝑝) has cardinality at most 2, i.e., |{(𝑓 (𝑣), 𝑝 (𝑣)) | 𝑣 ∈ V}| ≤ 2.

Proof Sketch. If the mechanism𝑀 is NB, then by our payment characterization, the payment

𝑝 is solely a function of the eventual outcome 𝑜 . Consider the social choice problem (where agents

wish to elect a single outcome) where the preferences of agent 𝑖 over the |O| outcomes are given

by the values of 𝑣𝑖 (𝑜) − 𝑝𝑖 (𝑜) in increasing order. Then𝑀 is a mechanism that solves this social

choice problem; moreover, we can show that if𝑀 is IC for the original problem, it must be IC for

this social choice problem, and that every possible collection of 𝑛 orderings over the outcomes can

occur. It follows from the Gibbard-Sattherthwaite theorem that𝑀 must take the above form. □

Given the equivalence between RwAVE and nonbossiness (Theorem 1), the above result can be

interpreted in the following way: when choosing a common outcome, only trivial mechanisms can

be robust against strategic behavior if agents care (even infinitesimally) about each other’s utilities.

5.2 Characterizations for Single-Parameter Environments
We now turn to single-parameter environments.

Theorem 4. Consider the single-item setting, i.e., O = {𝑜 ∈ {0, 1}𝑛 | ∥𝑜 ∥1 = 1} and each 𝑣𝑖 ∈ V𝑖 is
described by a single nonnegative number, namely the value of the item 𝑣𝑖 (1). In this setting, any IC,
IR, and NB mechanism is a sequential posted-price mechanism, i.e., the mechanism approaches all
agents in a predetermined order, makes a (possibly personalized) take-it-or-leave-it offer to each agent,
and allocates the item to the first agent who accepts the offer.

It is easy to see that any sequential posted-price mechanism is IC, IR, and NB. Conceptually,

the above characterization says that sequential posted-price mechanisms are the only format of

single-item auctions that are robust in the presence of almost-vanishing externalities. Theorem 4 is

a corollary of the following characterization of nonbossy mechanisms in general single-parameter

environments.

Theorem 5. Consider any single-parameter setting, whereO ⊆ {0, 1}𝑛 and each 𝑣𝑖 ∈ V𝑖 is described
by a single nonnegative number, namely the value of receiving an item 𝑣𝑖 (1). In this setting, any IC, IR,
and NB mechanism𝑀 = (𝑓 , 𝑝) is a “decision list” of the following form: each feasible outcome 𝑜 ∈ O
is associated with a payment vector 𝑝 (𝑜), where 𝑝𝑖 (𝑜) = 0 if 𝑜𝑖 = 0 for each 𝑖 , and a set 𝐸 (𝑜) ⊆ O
of feasible outcomes (we say 𝐸 (𝑜) is the exception list of 𝑜). We say a valuation vector 𝑣 satisfies an
outcome 𝑜 if for all 𝑖 , 𝑣𝑖 (𝑜𝑖 ) ≥ 𝑝𝑖 (𝑜).6 We choose a linear order among all feasible outcomes, and the
mechanism checks these outcomes in that order, and outputs the first outcome 𝑜 satisfied by 𝑣 such
that no feasible outcome 𝑜 ′ ∈ 𝐸 (𝑜) is also satisfied.
Formally, for any IC, IR and NB mechanism 𝑀 = (𝑓 , 𝑝), there exists a linear order of outcomes

𝑜 (1) , . . . , 𝑜 (𝑘) where 𝑘 = |O|, such that for all 𝑣 ∈ V , 𝑓 (𝑣) = 𝑜 ( 𝑗) and 𝑝 (𝑣) = 𝑝 (𝑜 ( 𝑗) ), where
𝑗 = min{ 𝑗 ′ ∈ [𝑘] : 𝑣 satisfies 𝑜 ( 𝑗 ′) ∧ (∀𝑜 ∈ 𝐸 (𝑜 ( 𝑗 ′) ), 𝑣 does not satisfy 𝑜)}.

Moreover, there exists a way to choose the exception lists such that the order does not matter, i.e., for
any valuation vector 𝑣 , there is precisely one 𝑗 such that

𝑣 satisfies 𝑜 ( 𝑗) ∧ (∀𝑜 ∈ 𝐸 (𝑜 ( 𝑗) ), 𝑣 does not satisfy 𝑜).
Unlike in the single-item case, the single-parameter characterization is considerably more general

than sequential posted-price mechanisms. In particular, IC, IR, and NB mechanisms allow posting a

vector of prices to all agents simultaneously, which is accepted if and only if each agent accepts

6
Here (and in the rest of the paper) we assume all agents prefer receiving an item when indifferent. If an agent 𝑖 prefers

not receiving an item, one can replace 𝑣𝑖 (𝑜𝑖 ) ≥ 𝑝𝑖 (𝑜) with 𝑣𝑖 (𝑜𝑖 ) > 𝑝𝑖 (𝑜) in the above definition and modify the proofs

accordingly.
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their personal component of the price vector. In fact, as we will show later, mechanisms that are

IC, IR, and NB simultaneously are strictly more powerful in terms of efficiency and revenue than

sequential posted-price mechanisms. Before diving into the proofs, we first present an example

illustrating what these decision lists look like.

Example 2. Consider an environment with 𝑛 = 3 agents and O = {0, 1}3. Consider the following
mechanism: allocate to all 3 agents if they all have value at least 1; otherwise, allocate to the

“clockwise first” agent with value at least 1 if there exists one; otherwise, do not allocate at all.

The full mechanism is described by the table below (the part corresponding to allocating to the

“clockwise first” agent is highlighted in red).

(𝑣1, 𝑣2, 𝑣3) (𝑜1, 𝑜2, 𝑜3) (𝑝1, 𝑝2, 𝑝3)

(≥ 1, ≥ 1, ≥ 1) (1, 1, 1) (1, 1, 1)
(≥ 1, ≥ 1, < 1) (1, 0, 0) (1, 0, 0)
(≥ 1, < 1, ≥ 1) (0, 0, 1) (0, 0, 1)
(< 1, ≥ 1, ≥ 1) (0, 1, 0) (0, 1, 0)
(≥ 1, < 1, < 1) (1, 0, 0) (1, 0, 0)
(< 1, ≥ 1, < 1) (0, 1, 0) (0, 1, 0)
(< 1, < 1, ≥ 1) (0, 0, 1) (0, 0, 1)
(< 1, < 1, < 1) (0, 0, 0) (0, 0, 0)

.

One may check that the above mechanism is IC, IR and NB. The mechanism corresponds to the

following decision list (which is not unique):

• 𝑜 (1) = (1, 1, 1), 𝑝 (𝑜 (1) ) = (1, 1, 1), 𝐸 (𝑜 (1) ) = ∅.
• 𝑜 (2) = (1, 0, 0), 𝑝 (𝑜 (2) ) = (1, 0, 0), 𝐸 (𝑜 (2) ) = {𝑜 (3) = (0, 0, 1)}.
• 𝑜 (3) = (0, 0, 1), 𝑝 (𝑜 (3) ) = (0, 0, 1), 𝐸 (𝑜 (3) ) = {𝑜 (4) = (0, 1, 0)}.
• 𝑜 (4) = (0, 1, 0), 𝑝 (𝑜 (4) ) = (0, 1, 0), 𝐸 (𝑜 (4) ) = {𝑜 (2) = (1, 0, 0)}.
• 𝑜 (5) = (0, 0, 0), 𝑝 (𝑜 (5) ) = (0, 0, 0), 𝐸 (𝑜 (5) ) = ∅.

In particular, exception lists are necessary in this example: there is no way to order 𝑜 (2) , 𝑜 (3) and
𝑜 (4) to always choose the clockwise first agent with value at least 1 without exception lists. Also

note that the above exception lists are order-specific, i.e., reordering the outcomes may result in

a decision list implementing a different mechanism. However, one can make the exception lists

order-oblivious by adding 𝑜 (1) to the exception lists of all other outcomes, and 𝑜 (2) , 𝑜 (3) and 𝑜 (4) to
the exception list of 𝑜 (5) .

We now describe some of the ideas in the proofs of Theorems 4 and 5. We first sketch how

Theorem 5 implies Theorem 4.

Proof Sketch of Theorem 4. By Theorem 5, we know any nonbossy mechanism for the single-

item setting can be written as a decision list mechanism. To show it is a posted-price mechanism, we

need to show that this decision list mechanism can be written in such a way that all the exception

lists are empty.

To do this, we make use of the fact that nonbossiness imposes some additional strong constraints

on the structure of the extension lists. For example, in this single-item setting we can show there

cannot exist two outcomes 𝑜 and 𝑜 ′ (where agents 𝑖 and 𝑖 ′ get allocated the items) such that

𝑜 ∈ 𝐸 (𝑜 ′) and 𝑜 ′ ∈ 𝐸 (𝑜). To see why, assume that 𝑜 comes before 𝑜 ′ in the decision list. Then if

outcome 𝑜 occurs, 𝑖 ′ can cause a different outcome to occur by increasing their value and causing 𝑜 ′

to be feasible (all the while, 𝑜 ′ will never be selected since 𝑜 is feasible and 𝑜 ∈ 𝐸 (𝑜)). By applying

similar logic, we can construct a total ordering over all the outcomes (where 𝑜 dominates 𝑜 ′ if
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whenever 𝑜 is feasible, 𝑜 ′ cannot be picked) and show that there exists a posted-price mechanism

which presents the items in this order. See the full proof for details. □

We now discuss our proof of Theorem 5. Our proof crucially relies on the following lemma, which

shows that if two valuation vectors 𝑣 and 𝑣 ′ both satisfy (in the sense of Theorem 5) outcomes 𝑜

and 𝑜 ′, then it is not possible that under valuation 𝑣 the outcome is 𝑜 and under 𝑣 ′ the outcome is

𝑜 ′.

Lemma 1. Consider any IC, IR, and NB mechanism𝑀 = (𝑓 , 𝑝) in a single-parameter environment.
Fix two different feasible outcomes 𝑜 and 𝑜 ′, and let 𝑝 (𝑜), 𝑝 (𝑜 ′) be the corresponding payment vectors.
Choose any two valuation vectors 𝑣 and 𝑣 ′ where both 𝑣 and 𝑣 ′ satisfy both 𝑜 and 𝑜 ′ (i.e.,min{𝑣𝑖 , 𝑣 ′𝑖 } ≥
max{𝑝𝑖 (𝑜), 𝑝𝑖 (𝑜 ′)} for each 𝑖 ∈ [𝑛]). Then,

𝑓 (𝑣) = 𝑜 =⇒ 𝑓 (𝑣 ′) ≠ 𝑜 ′.

Intuitively, Lemma 1 follows from yet another consequence of nonbossiness and incentive-

compatibility; we show that if we increase the valuation from either 𝑣 or 𝑣 ′ to a common maximum

𝑣 ′′, the outcome of the mechanism cannot change without violating one of these two properties.

Lemma 1 is useful for the following reason: instead of having to worry about the behavior of our

mechanism𝑀 = (𝑓 , 𝑝) for all valuation vectors 𝑣 , we can use Lemma 1 to construct a finite number

of different “classes” of valuation vector, where𝑀 acts identically on every vector in a class.

For example, consider the valuation vector 𝑣O defined via 𝑣O
𝑖

= max𝑜∈O 𝑝 (𝑜)𝑖 ; in words, 𝑣O
𝑖
is

the minimal valuation vector which satisfies every outcome in O. By Lemma 1, if 𝑣 is a valuation

vector which satisfies the outcome 𝑓 (𝑣O), then 𝑣 must also lead to the outcome 𝑓 (𝑣O). We can

therefore group the set of all valuations 𝑣 which satisfy 𝑓 (𝑣O) into a single “class”.

In the proof of Theorem 4 we repeat this logic for other subsets of outcomes to first construct

a structure we call a “decision tree”. In a decision tree, every node is labeled by a subset 𝑆 ⊆ O
of outcomes and corresponds to a class of valuations “equivalent to” (in the sense that we can

apply Lemma 1 to argue they have the same outcome) the minimal valuation 𝑣𝑆 that satisfies every

outcome in 𝑆 . The root of this tree is labeled by O and contains the class of valuations described

above. The children of a node labeled 𝑆 contain the maximal subsets 𝑆 ′ of 𝑆 where 𝑣𝑆
′
does not

belong to the class of valuations of 𝑣𝑆 .

By constructing this tree in this way, we can prove that each valuation 𝑣 is associated to some

node, and in fact it is associated to the node with the maximal label 𝑆 such that 𝑣 does not satisfy

any outcome outside of 𝑆 . This gives us a “decision-list-esque” mechanism, where for each 𝑣 we

iterate through the nodes of our tree until we find a node 𝑆 where 𝑣 both satisfies 𝑓 (𝑣𝑆 ) and does

not satisfy any outcome 𝑜 ∉ 𝑆 . This process may consider the same outcomes more than once, but

with a little bit more care we can convert this to a single decision list, and even an order-oblivious

one (see the full proof for details).

6 SEPARATING POSTED-PRICE MECHANISMS AND NONBOSSY MECHANISMS
We have seen that in general single-parameter environments, the set of nonbossy mechanisms

is richer than the set of posted-price mechanisms. However, it is not immediately clear how

much additional power nonbossy mechanisms have in terms of optimizing metrics of interest

to mechanism designers (e.g. revenue or welfare). In this section, we establish strict separations

in terms of revenue and efficiency between mechanisms that are IC, IR and NB, and sequential

posted-price mechanisms in single-parameter environments. In particular, we identify two sources

of separation: rich feasibility constraints and correlation between agents.
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6.1 General Downward-Closed Feasibility Constraints
As Theorem 4 shows, IC, IR and NB mechanisms are equivalent to sequential posted-price mecha-

nisms when there is a single item for sale — that is, when the family of all feasible sets of agents to

receive an item contains only singletons. More generally, it is known (see, e.g., [Chawla et al., 2010,

Kleinberg and Weinberg, 2012]) that sequential posted-price mechanisms can get at least 1/2 of the
optimal welfare with matroid feasibility constraints, or even intersections of a constant number of

matroids
7
. However, when we allow arbitrary downward-closed feasibility constraints, sequential

posted-price mechanisms can no longer achieve constant approximations to the optimal welfare.

Before proceeding, we first rephrase the notion of downward-closed feasibility constraints in our

terminology.

Definition 6 (Downward-Closed Feasibility Constraints). A single-parameter environment has

downward-closed feasibility constraints, if the space of feasible outcomes O ⊆ {0, 1}𝑛 satisfies: for

any 𝑜 ∈ O and 𝑜 ′ where 𝑜 ′𝑖 ≤ 𝑜𝑖 for each 𝑖 , it is always the case that 𝑜 ′ ∈ O.

Babaioff et al. [2007] prove the following lower bound for sequential posted-price mechanisms

in environments with downward-closed feasibility constraints.

Theorem 6 ([Babaioff et al., 2007], rephrased). The best possible approximation ratio that any
sequential posted-price mechanism can achieve in single-parameter Bayesian settings with independent
agents and downward-closed feasibility constraints, parametrized by the maximum number 𝑟 of agents
who can simultaneously receive an item, a.k.a. the rank of the feasibility constraint, is Ω(𝑟 ).

We will see momentarily that IC, IR and NB mechanisms achieve strictly (and in fact, expo-

nentially) better approximation ratios in the same environments. To be self-contained, we briefly

review the hard instance used in [Babaioff et al., 2007], which also provides a general sense of what

downward-closed feasibility constraints look like.

Example 3. Suppose the 𝑛 agents are partitioned into groups of size 𝑟 . The value of each agent

is independently 1 with probability 𝑝 , and 0 otherwise. The mechanism can allocate to any set

of agents, subject to the constraint that all agents receiving an item must be in the same group.

Consider the case where 𝑟 is much smaller than 𝑛, and 𝑝 = 1/𝑟 . By choosing 𝑟 appropriately, one

can create a situation where with high probability, there exists a group in which all agents have

value 1, so the expected optimal welfare is very close to 𝑟 . On the other hand, for each group, the

expected total value is 1, and moreover, this value is smaller than 2 even conditioned on some agent

in the group having value 1. In fact, that upper bounds the expected welfare of any sequential

posted-price mechanism. This is because when a sequential posted-price mechanism decides to

allocate an item to an agent, it is essentially committing to allocating to all agents in this group,

and no one else. At this point, the only information the mechanism has about this group is the

value of the current agent that the mechanism is visiting, which is at most 1. So in any case, the

conditional expected welfare is upper bounded by 2. This creates a gap of Ω(𝑟 ).

Below we show that IC, IR and NB mechanisms can achieve an exponentially improved approxi-

mation ratio in such environments.

Theorem 7. For any single-parameter Bayesian setting with independent agents and downward-
closed feasibility constraints, there exists an IC, IR and NB mechanism that achieves an 𝑂 (log 𝑟 )-
approximation with respect to the optimal welfare, where 𝑟 is the rank of the feasibility constraint.

7
This is also true for revenue since one can replace the actual value of each agent with the virtual value. Given this reduction,

we focus on welfare in the rest of the subsection.
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The proof works by reducing to the case where the support of every agent 𝑖’s value distribution

is {0, 𝑎𝑖 } for some fixed 𝑎𝑖 ≥ 0. We first show that in that case, there always exists an IC, IR and NB

mechanism which always extracts the full optimal welfare as revenue.

Lemma 2. For any single-parameter Bayesian setting with independent agents with binary supports
and downward-closed feasibility constraints, there exists an IC, IR and NB mechanism that always
extracts the full optimal welfare as revenue. Moreover, the revenue of the mechanism is weakly monotone
in the values, which is true even if values are not restricted to binary supports.

Proof. Consider the following mechanism:

• Let 𝑘 = |O|. Sort all outcomes in O into 𝑜 (1) , . . . , 𝑜 (𝑘) in decreasing order by the total welfare

of the outcome, i.e., such that for each 𝑗 ∈ [𝑘 − 1],∑
𝑖∈[𝑛]

𝑎𝑖 · 𝑜 ( 𝑗)𝑖
≥

∑
𝑖∈[𝑛]

𝑎𝑖 · 𝑜 ( 𝑗+1)𝑖
.

• For each 𝑗 ∈ [𝑘], post the price vector 𝑝 (𝑜 ( 𝑗) ) where for each 𝑖 ,

𝑝𝑖 (𝑜 ( 𝑗) ) = 𝑎𝑖 · 𝑜 ( 𝑗)𝑖
.

If the valuation vector 𝑣 satisfies this outcome 𝑜 ( 𝑗) , i.e., for each 𝑖 ,

𝑣𝑖 ≥ 𝑝𝑖 (𝑜 ( 𝑗) ),
then output outcome 𝑜 ( 𝑗) and terminate. Otherwise, proceed to the next outcome.

One can check that the mechanism is in fact IC, IR and NB. To see why the mechanism gets the

full optimal welfare, fix a valuation vector 𝑣 and consider the welfare-maximizing outcome 𝑜 ( 𝑗) .
Without loss of generality, 𝑜 ( 𝑗) satisfies: for each 𝑖 ,

𝑜
( 𝑗)
𝑖

= 1 =⇒ 𝑣𝑖 = 𝑎𝑖 .

This is because the feasibility constraint is downward-closed, so we can set 𝑜
( 𝑗)
𝑖

= 0 for any agent

𝑖 with value 𝑣𝑖 = 0, and the resulting outcome is still feasible. Now 𝑣 must satisfy 𝑜 ( 𝑗) , so the

above mechanism must output some outcome before (including) 𝑜 ( 𝑗) . If the mechanism outputs

an outcome before 𝑜 ( 𝑗) , then the welfare can never be smaller, because of the way we sort the

outcomes. So, the mechanism must always extract the optimal welfare as revenue with binary value

distributions. Finally, it is easy to check the revenue of the mechanism is monotone in the values,

since increasing the values can never make a satisfied outcome unsatisfied. □

We remark that the value distributions in Example 3 in fact have binary supports, and therefore

one can apply Lemma 2 to get an IC, IR and NB mechanism that extracts the full optimal welfare as

revenue, which is even stronger than the logarithmic guarantee in Theorem 7 for the general case.

We are now ready to prove Theorem 7.

Proof of Theorem 7. Without loss of generality, suppose for each agent 𝑖 , it is feasible to

allocate an item to 𝑖 and no one else (when this is infeasible for some 𝑖 , then 𝑖 can never receive an

item, so we can ignore 𝑖). Let 𝑜∗ (𝑣) be the welfare-maximizing outcome for a valuation vector 𝑣 , i.e.,

𝑜∗ (𝑣) = argmax

𝑜∈O

∑
𝑖

𝑣𝑖 (𝑜𝑖 ).

Let OPT be the expected optimal welfare, i.e.,

OPT = E𝑣

[∑
𝑖

𝑣𝑖 (𝑜∗𝑖 (𝑣))
]
.
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We decompose OPT into 3 parts:

OPT1 = E𝑣

[∑
𝑖

𝑣𝑖 (𝑜∗𝑖 (𝑣)) · I[𝑣𝑖 (𝑜∗𝑖 (𝑣)) ≥ 2OPT]
]
,

OPT2 = E𝑣

[∑
𝑖

𝑣𝑖 (𝑜∗𝑖 (𝑣)) · I[OPT/(2𝑟 ) ≤ 𝑣𝑖 (𝑜∗𝑖 (𝑣)) < 2OPT]
]
,

OPT3 = E𝑣

[∑
𝑖

𝑣𝑖 (𝑜∗𝑖 (𝑣)) · I[𝑣𝑖 (𝑜∗𝑖 (𝑣)) < OPT/(2𝑟 )]
]
.

Clearly OPT = OPT1 + OPT2 + OPT3. Also observe that

OPT3 = E𝑣

[∑
𝑖

𝑣𝑖 (𝑜∗𝑖 (𝑣)) · I[𝑣𝑖 (𝑜∗𝑖 (𝑣)) < OPT/(2𝑟 )]
]

= E𝑣


∑

𝑖:𝑜∗
𝑖
(𝑣)=1

𝑣𝑖 (𝑜∗𝑖 (𝑣)) · I[𝑣𝑖 (𝑜∗𝑖 (𝑣)) < OPT/(2𝑟 )]
 (𝑣𝑖 (0) = 0 for each 𝑣 and 𝑖)

< E𝑣


∑

𝑖:𝑜∗
𝑖
(𝑣)=1

OPT/(2𝑟 )


≤ E𝑣 [𝑟 · OPT/(2𝑟 )] (maximum size of feasible allocation set is 𝑟 )

= OPT/2.

As a result,

OPT1 + OPT2 ≥ OPT/2,
and

max{OPT1,OPT2} ≥ OPT/4.
Our plan is to get a significant fraction of the larger one between OPT1 and OPT2.

First consider the case where OPT1 ≥ OPT/4. Consider the following mechanism: visit all agents

in an arbitrary order; for each agent 𝑖 , if 𝑖’s value 𝑣𝑖 (1) is at least 2OPT, then we allocate to agent 𝑖

and terminate; otherwise, proceed to the next agent. We argue that this mechanism guarantees

welfare at least OPT1/2 ≥ OPT/8. In fact, for each 𝑖 , let

𝛼𝑖 = Pr[𝑣𝑖 (1) ≥ 2OPT] .

Observe that 𝛼𝑖 is the probability that we flip a coin for each agent 𝑖 , and in that case, 𝑖’s expected

value is E[𝑣𝑖 (1) | 𝑣𝑖 (1) ≥ 2OPT]. We have∑
𝑖

𝛼𝑖 · E[𝑣𝑖 (1) | 𝑣𝑖 (1) ≥ 2OPT] = E
[∑
𝑖

𝑣𝑖 (1) · I[𝑣𝑖 (1) ≥ 2OPT]
]

≥ E
[∑
𝑖

𝑣𝑖 (𝑜∗𝑖 (𝑣)) · I[𝑣𝑖 (𝑜∗𝑖 (𝑣)) ≥ 2OPT]
]
= OPT1 .

And moreover, since whenever there is some 𝑖 such that 𝑣𝑖 (1) ≥ 2OPT, the optimal welfare is at

least 2OPT, the probability of this event cannot be too large. That is,

(1 −
∏
𝑖

(1 − 𝛼𝑖 )) · (2OPT) ≤ OPT =⇒
∏
𝑖

(1 − 𝛼𝑖 ) ≥ 1/2.
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Now come back to our mechanism. Since agents are independent, the expected contribution to the

welfare from agent 𝑖 is∏
𝑖′<𝑖

(1 − 𝛼𝑖′) · 𝛼𝑖 · E[𝑣𝑖 (1) | 𝑣𝑖 (1) ≥ 2OPT] ≥
∏
𝑖′∈[𝑛]

(1 − 𝛼𝑖′) · 𝛼𝑖 · E[𝑣𝑖 (1) | 𝑣𝑖 (1) ≥ 2OPT]

≥ 1

2

· 𝛼𝑖 · E[𝑣𝑖 (1) | 𝑣𝑖 (1) ≥ 2OPT] .

Summing over 𝑖 , the expected welfare we get is at least

1

2

∑
𝑖

𝛼𝑖 · E[𝑣𝑖 (1) | 𝑣𝑖 (1) ≥ 2OPT] ≥ 1

2

· OPT1 ≥ OPT/8.

Now consider the case where OPT2 ≥ OPT/4. We further subdivide OPT2 into about log 𝑟

bins, and give a mechanism which gets a constant fraction of the contribution of the largest bin

(which contributes OPT2/𝑂 (log 𝑟 ) to the welfare) in expectation.
8
For each valuation vector 𝑣 and

𝑗 ∈ {1, . . . , ⌈log(4𝑟 )⌉}, let
bin𝑗 (𝑣) = {𝑖 ∈ [𝑛] : 𝑣𝑖 (𝑜∗𝑖 (𝑣)) ∈ [2OPT/2𝑗 , 2OPT/2𝑗−1)}.

Note that for each 𝑣 , the union of these bins does not necessarily contain all agents. However, since

these bins completely cover the possible range of values that may contribute to OPT2, we have

OPT2 ≤
∑
𝑗

E


∑

𝑖∈bin𝑗 (𝑣)
𝑣𝑖 (𝑜∗𝑖 (𝑣))

 .
So there must exist some 𝑗∗, such that

E


∑

𝑖∈bin𝑗∗ (𝑣)
𝑣𝑖 (𝑜∗𝑖 (𝑣))

 ≥ OPT2/𝑂 (log 𝑟 ) = OPT/𝑂 (log 𝑟 ).

We perform the following (imaginary) transformation to the value distributions: for each agent 𝑖 ,

consider the distribution which has probability mass Pr[𝑣𝑖 ∈ [2OPT/2𝑗∗ , 2OPT/2𝑗∗−1)] at 2OPT/2𝑗∗ ,
and the rest of the probability mass at 0. These imaginary value distributions are binary, and

dominated by the actual value distributions. We then run the mechanism constructed in Lemma 2

with these imaginary distributions as input. Since the revenue of themechanism is weaklymonotone

in the values, running it with the actual value distributions can only increase its revenue. Moreover,

for each 𝑣 and 𝑖 ∈ bin𝑗∗ (𝑣), 𝑣𝑖 ≤ 2OPT/2𝑗∗−1. So the expected revenue that our mechanism extracts

is at least

E


∑

𝑖∈bin𝑗∗ (𝑣)
2OPT/2𝑗∗ · 𝑜∗𝑖 (𝑣)

 ≥ E

1

2

∑
𝑖∈bin𝑗∗ (𝑣)

𝑣𝑖 (𝑜∗𝑖 (𝑣))
 ≥ OPT/𝑂 (log 𝑟 ).

So the welfare guaranteed by the mechanism is OPT/𝑂 (log 𝑟 ). This concludes the proof. □

6.2 Correlated Valuations
We now consider another case where IC, IR and NB mechanisms perform strictly better than

sequential posted-price mechanisms: when agents may have correlated valuations. In particular,

we give an example with only 2 agents, where any sequential posted-price menchanism can only

extract 4/5 of the optimal welfare as revenue, while there is an IC, IR and NB mechanism that

extracts the full optimal welfare.

8
In fact, the mechanism extracts a constant fraction of the welfare from that bin as revenue.
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Example 4. Consider the following environment with 𝑛 = 2 agents, and no feasibility constraints

(i.e., the mechanism may allocate to any set of agents). The values of the two agents are (1, 1) with
probability 1/5, (2, 0) with probability 2/5, and (0, 2) with probability 2/5. Consider any sequential

posted-price mechanism, which without loss of generality visits agent 1 first, and then agent 2. The

only reasonable ways to price the agents are the following:

• Set the price for agent 1 to 1. If agent 1 buys, then set the price for agent 2 to 1. Otherwise,

set the price for agent 2 to 2. The expected revenue of this mechanism is 8/5. In particular,

when the values are (2, 0), the mechanism only extracts revenue 1 from agent 1 (it extracts

the full optimal welfare of 2 in all other cases).

• Set the price for agent 1 to 2, and set the price for agent 2 to 1. The expected revenue of

this mechanism is 7/5. In particular, when the values are (0, 2), the mechanism only extracts

revenue 1 from agent 2, and when the values are (1, 1), the mechanism only extracts 0 from

agent 1 (it extracts the full optimal welfare of 2 when the values are (2, 0)).
• Set the price for agent 1 to 2, and set the price for agent 2 to 2. The expected revenue of this

mechanism is 8/5. In particular, when the values are (1, 1), the mechanism does not extract

any revenue (it extracts the full optimal welfare of 2 in all other cases).

So the optimal sequential posted-pricemechanism achieves revenue 8/5. On the other hand, consider
the following decision list (which is IC, IR and NB):

• 𝑜 (1) = (1, 1), 𝑝 (𝑜 (1) ) = (1, 1), 𝐸 (𝑜 (1) ) = ∅.
• 𝑜 (2) = (1, 0), 𝑝 (𝑜 (2) ) = (2, 0), 𝐸 (𝑜 (2) ) = ∅.
• 𝑜 (3) = (0, 1), 𝑝 (𝑜 (3) ) = (0, 2), 𝐸 (𝑜 (3) ) = ∅.

One can check the decision list extracts revenue 2 in all cases.
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A RESTRICTING POSSIBLE EXTERNALITIES
In our definition of agents with externalities in Section 2.3, we allowed the external component of

their preference (the “externality”) to be any arbitrary ordering over the outcomes and payments

of the other agents. In this appendix, we show that this freedom is unnecessary – all our results

continue to hold with only mild constraints on the set of possible externalities (namely, as long

as each agent can express either altruistic or malicious preferences towards other agents, our

characterization continues to hold).

We formalize this as follows. Fixing other agents’ valuations to be 𝑣−𝑖 , let Pext

𝑖 (𝑣−𝑖 ) be the set of
allowed preferences for agent 𝑖 over other agents’ outcome-payment pairs. For any agent 𝑗 ≠ 𝑖 , we

say Pext

𝑖 (𝑣−𝑖 ) covers ≺int

𝑗 (𝑣 𝑗 ), if at least one of the following two conditions hold:

• There exists a preference ≺ext

𝑖 ∈ Pext

𝑖 (𝑣−𝑖 ), such that for all (𝑜, 𝑞) ∈ O × R𝑛+, if (𝑜 𝑗 , 𝑞 𝑗 ) ≺int

𝑗

(𝑜 ′𝑗 , 𝑞′𝑗 ), then (𝑜−𝑖 , 𝑞−𝑖 ) ≺ext

𝑖 (𝑜 ′−𝑖 , 𝑞′−𝑖 ). When 𝑖 has such an external component of preference,

we say 𝑖 cares positively about 𝑗 .
• There exists a preference ≺ext

𝑖 ∈ Pext

𝑖 (𝑣−𝑖 ), such that for all (𝑜, 𝑞) ∈ O × R𝑛+, if (𝑜 𝑗 , 𝑞 𝑗 ) ≺int

𝑗

(𝑜 ′𝑗 , 𝑞′𝑗 ), then (𝑜 ′−𝑖 , 𝑞′−𝑖 ) ≺ext

𝑖 (𝑜−𝑖 , 𝑞−𝑖 ). When 𝑖 has such an external component of preference,

we say 𝑖 cares negatively about 𝑗 .
We make the following richness assumption on the possible externalities for each agent.

Assumption 1 (Richness of Externalities). For any agent 𝑖 and 𝑣−𝑖 ∈ V−𝑖 , Pext

𝑖 (𝑣−𝑖 ) covers all
{≺int

𝑗 (𝑣 𝑗 )} 𝑗≠𝑖 .

We also remark that Assumption 1 is in a sense necessary for the concept of RwAVE to distinguish

itself from IC as a stronger notion of robustness — without the richness assumption, it could be

the case that all agents are always indifferent to others’ interests, and as a result RwAVE would be

precisely equivalent to IC. With Assumption 1, all of our proofs (most notably our characterization

of RwAVE mechanisms as non-bossy in Theorem 1 continue to hold).

B NONBOSSINESS AND OBVIOUS STRATEGYPROOFNESS
The notion of nonbossiness is reminiscent of another important notion of robustness against strate-

gic behavior, namely obvious strategyproofness (OSP), proposed by Li [2017]. Roughly speaking,

a mechanism (as an extensive-form game) is OSP, if for any agent, the worst (over other agents’

actions) thing that may happen under truthful reporting is at least as good as the best thing that

may happen under any deviation from reporting truthfully. A mechanism, as a pair of allocation

and payment rules, is OSP implementable, if there is a way to implement this mechanism using an

extensive-form game that is OSP. OSP implementability appears conceptually related to NB, since

both notions require that it is “hard” for an agent to manipulate the utility of another agent.

We remark that similar as nonbossiness and OSP appear, neither of the two notions is stronger

or weaker than the other, even when restricted to IC and IR mechanisms.

Theorem 8. There exists an NB, IC and IR mechanism that is not OSP implementable, and an OSP
implementable, IC and IR mechanism that is not NB.

Proof. For the former, consider the mechanism used in the proof of Proposition 3, and possible

ways to implement it using an extensive-form game. Since there are only 2 agents, each with

two possible types, the mechanism should interact with each agent exactly once. Without loss

of generality, suppose the mechanism interacts with agent 1 first (the 2 agents are symmetric).
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Consider the case where agent 1’s valuation is 𝑥1 ∈ V1. If agent 1 reports 𝑥1 truthfully, then the

worst thing that can happen is agent 2 reporting 𝑦1, in which case agent 1 gets outcome 𝑜1 and

pays 1, leading to a utility of 0. However, if agent 1 deviates and reports 𝑥2, then the best thing that

can happen is agent 2 reporting 𝑦2, in which case agent 1 gets outcome 𝑜1 and pays 0, leading to a

utility of 1. This means the mechanism is not OSP implementable.

For the latter, it is known that the second-price auction is OSP implementable (using the English

auction), but it is not NB, since the payment of the winner depends on the highest other bid. □

Despite this non-comparability, many of the NB mechanisms we study and construct in this

paper are indeed also OSP implementable. Specifically, sequential posted-price mechanisms for a

single item are OSP in their default implementation, as are incentive-compatible decision list mech-

anisms with empty exception lists (in particular, the mechanism of Lemma 2 which exponentially

outperforms the best sequential posted-price mechanism is of this form).

C OMITTED PROOFS
C.1 Proof of Theorem 1

Proof of Theorem 1. First, fix an environment (V,O) and a mechanism𝑀 = (𝑓 , 𝑝). Assuming

𝑀 is IC and NB, we show it is RwAVE. To this end, consider any agent 𝑖 , valuation vector 𝑣 ∈ V ,

external component of 𝑖’s preference ≺ext

𝑖 ∈ Pext

𝑖 (𝑣−𝑖 ), and deviation 𝑣 ′𝑖 ∈ V𝑖 . Also let ≺int

𝑖 be the

internal component of 𝑖’s preference induced by 𝑣𝑖 . Since𝑀 is IC, we have

(𝑓𝑖 (𝑣𝑖 , 𝑣−𝑖 ), 𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 )) ⪯int

𝑖 (𝑓𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 ), 𝑝𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 )) .

So, in order to show

(𝑓 (𝑣𝑖 , 𝑣−𝑖 ), 𝑝 (𝑣𝑖 , 𝑣−𝑖 )) ⪯𝑖 (𝑓 (𝑣 ′𝑖 , 𝑣−𝑖 ), 𝑝 (𝑣 ′𝑖 , 𝑣−𝑖 )),
we only need to argue that whenever

(𝑓𝑖 (𝑣𝑖 , 𝑣−𝑖 ), 𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 )) = (𝑓𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 ), 𝑝𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 )),

we have

(𝑓−𝑖 (𝑣𝑖 , 𝑣−𝑖 ), 𝑝−𝑖 (𝑣𝑖 , 𝑣−𝑖 )) ⪯ext

𝑖 (𝑓−𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 ), 𝑝−𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 )).
This follows directly from the fact that𝑀 is NB, since when

(𝑓𝑖 (𝑣𝑖 , 𝑣−𝑖 ), 𝑝𝑖 (𝑣𝑖 , 𝑣−𝑖 )) = (𝑓𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 ), 𝑝𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 )),

NB requires that

(𝑓 (𝑣𝑖 , 𝑣−𝑖 ), 𝑝 (𝑣𝑖 , 𝑣−𝑖 )) = (𝑓 (𝑣 ′𝑖 , 𝑣−𝑖 ), 𝑝 (𝑣 ′𝑖 , 𝑣−𝑖 )),
and therefore

(𝑓−𝑖 (𝑣𝑖 , 𝑣−𝑖 ), 𝑝−𝑖 (𝑣𝑖 , 𝑣−𝑖 )) =ext

𝑖 (𝑓−𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 ), 𝑝−𝑖 (𝑣 ′𝑖 , 𝑣−𝑖 )) .
Now consider the other direction. Assuming𝑀 is RwAVE, we show it is IC and NB. First observe

that any RwAVE mechanism𝑀 is IC. Below we show𝑀 is also NB. Fix any agent 𝑖 , valuation vector

𝑣 , and deviation 𝑣 ′𝑖 . Suppose towards a contradiction that there exists 𝑗 ≠ 𝑖 , such that

(𝑓𝑗 (𝑣𝑖 , 𝑣−𝑖 ), 𝑝 𝑗 (𝑣𝑖 , 𝑣−𝑖 )) ≠ (𝑓𝑗 (𝑣 ′𝑖 , 𝑣−𝑖 ), 𝑝 𝑗 (𝑣 ′𝑖 , 𝑣−𝑖 )) .

Moreover, without loss of generality,

(𝑓𝑗 (𝑣 ′𝑖 , 𝑣−𝑖 ), 𝑝 𝑗 (𝑣 ′𝑖 , 𝑣−𝑖 )) ≺int

𝑗 (𝑓𝑗 (𝑣𝑖 , 𝑣−𝑖 ), 𝑝 𝑗 (𝑣𝑖 , 𝑣−𝑖 )) .

Now, let us choose an external preference component ≺ext

𝑖 for agent 𝑖 such that for all (𝑜, 𝑞) ∈ O×R𝑛+,
if (𝑜 𝑗 , 𝑞 𝑗 ) ≺int

𝑗 (𝑜 ′𝑗 , 𝑞′𝑗 ), then (𝑜−𝑖 , 𝑞−𝑖 ) ≺ext

𝑖 (𝑜 ′−𝑖 , 𝑞′−𝑖 ). Note that even if we are in the restricted model
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of externalities of Appendix A, Assumption 1 guarantees such an ordering exists in Pext

𝑖 (𝑣−𝑖 ). When

𝑖 has this external preference component, we have

(𝑓 (𝑣 ′𝑖 , 𝑣−𝑖 ), 𝑝 (𝑣 ′𝑖 , 𝑣−𝑖 )) ≺𝑖 (𝑓 (𝑣𝑖 , 𝑣−𝑖 ), 𝑝 (𝑣𝑖 , 𝑣−𝑖 )) .
However, RwAVE requires that

(𝑓 (𝑣𝑖 , 𝑣−𝑖 ), 𝑝 (𝑣𝑖 , 𝑣−𝑖 )) ⪯𝑖 (𝑓 (𝑣 ′𝑖 , 𝑣−𝑖 ), 𝑝 (𝑣 ′𝑖 , 𝑣−𝑖 )),
a contradiction. This concludes the proof. □

C.2 Proof of Proposition 2
Proof of Proposition 2. We argue these cases one by one. In each of these settings, fixing 𝑖 , 𝑣𝑖 ,

𝑣 ′𝑖 and 𝑜𝑖 , we explicitly construct a common upper bound of 𝑣𝑖 and 𝑣
′
𝑖 with respect to 𝑜𝑖 , as described

in Definition 5.

• Common outcome, complete domain. Let 𝑣 ′′𝑖 be such that 𝑣 ′′𝑖 (𝑜𝑖 ) = max{𝑣𝑖 (𝑜𝑖 ), 𝑣 ′𝑖 (𝑜𝑖 )}
and 𝑣 ′′𝑖 (𝑜 ′𝑖 ) = 0 for 𝑜 ′𝑖 ∈ O𝑖 \ {𝑜𝑖 }.

• Single-parameter agents. If𝑜𝑖 = 0, then let 𝑣 ′′𝑖 (1) = 0; otherwise, let 𝑣 ′′𝑖 (1) = max{𝑣𝑖 (1), 𝑣 ′𝑖 (1)}.
• Combinatorial auctions, single-minded agents. Let 𝑣𝑖 be described by 𝑆𝑖 and 𝑥𝑖 , and 𝑣

′
𝑖

by 𝑆 ′𝑖 and 𝑥
′
𝑖 . Let 𝑣

′′
𝑖 be induced by 𝑆 ′′𝑖 and 𝑥 ′′𝑖 , where 𝑆

′′
𝑖 = 𝑜𝑖 , and 𝑥

′′
𝑖 = max{𝑥𝑖 , 𝑥 ′𝑖 }. Consider

𝑣𝑖 , and observe that for any 𝑜 ′𝑖 ⊆ 𝑀 , if 𝑜𝑖 ⊈ 𝑜
′
𝑖 , then

𝑣 ′′𝑖 (𝑜𝑖 ) − 𝑣 ′′𝑖 (𝑜 ′𝑖 ) = 𝑣 ′′𝑖 (𝑜𝑖 ) ≥ 𝑣𝑖 (𝑜𝑖 ) ≥ 𝑣𝑖 (𝑜𝑖 ) − 𝑣𝑖 (𝑜 ′𝑖 ).
If 𝑜𝑖 ⊆ 𝑜 ′𝑖 , then because 𝑣𝑖 is monotone,

𝑣 ′′𝑖 (𝑜𝑖 ) − 𝑣 ′′𝑖 (𝑜 ′𝑖 ) = 0 ≥ 𝑣𝑖 (𝑜𝑖 ) − 𝑣𝑖 (𝑜 ′𝑖 ).
Similarly, for 𝑣 ′𝑖 , we always have

𝑣 ′′𝑖 (𝑜𝑖 ) − 𝑣 ′′𝑖 (𝑜 ′𝑖 ) ≥ 𝑣 ′𝑖 (𝑜𝑖 ) − 𝑣 ′𝑖 (𝑜 ′𝑖 ).
• Combinatorial auctions, valuations “between” additive and XOS. Recall that an XOS

valuation is the pointwise maximum of a number of additive valuations, each of which is a

clause. Let 𝑐𝑖 be the clause of 𝑣𝑖 such that 𝑣𝑖 (𝑜𝑖 ) = 𝑐𝑖 (𝑜𝑖 ), and 𝑐 ′𝑖 be the clause of 𝑣 ′𝑖 such that

𝑣 ′𝑖 (𝑜𝑖 ) = 𝑐 ′𝑖 (𝑜𝑖 ). Note that 𝑐𝑖 (resp. 𝑐 ′𝑖 ) also satisfies for any set of items 𝑇 ⊆ 𝑀 , 𝑐𝑖 (𝑇 ) ≤ 𝑣𝑖 (𝑇 )
(resp. 𝑐 ′𝑖 (𝑇 ) ≤ 𝑣 ′𝑖 (𝑇 )). Let 𝑣 ′′𝑖 be an additive valuation such that for each item 𝑗 ,

𝑣 ′′𝑖 ({ 𝑗}) =
{
max{𝑐𝑖 ({ 𝑗}), 𝑐 ′𝑖 ({ 𝑗})}, if 𝑗 ∈ 𝑜𝑖
0, otherwise

.

Clearly 𝑣 ′′𝑖 ∈ V𝑖 , because it is additive. For any 𝑜
′
𝑖 ⊆ 𝑀 ,

𝑣 ′′𝑖 (𝑜𝑖 ) − 𝑣 ′′𝑖 (𝑜 ′𝑖 ) =
∑
𝑗 ∈𝑜𝑖\𝑜′𝑖

𝑣 ′′𝑖 ({ 𝑗}) −
∑
𝑗 ∈𝑜′

𝑖
\𝑜𝑖

𝑣 ′′𝑖 ({ 𝑗})

=
∑
𝑗 ∈𝑜𝑖\𝑜′𝑖

𝑣 ′′𝑖 ({ 𝑗}) ≥
∑
𝑗 ∈𝑜𝑖\𝑜′𝑖

𝑐𝑖 ({ 𝑗}) (construction of 𝑣 ′′𝑖 )

≥
∑
𝑗 ∈𝑜𝑖\𝑜′𝑖

𝑐𝑖 ({ 𝑗}) −
∑
𝑗 ∈𝑜′

𝑖
\𝑜𝑖

𝑐𝑖 ({ 𝑗})

= 𝑐𝑖 (𝑜𝑖 ) − 𝑐𝑖 (𝑜 ′𝑖 ) = 𝑣𝑖 (𝑜𝑖 ) − 𝑐𝑖 (𝑜 ′𝑖 ) (property of 𝑐𝑖 )

≥ 𝑣𝑖 (𝑜𝑖 ) − 𝑣𝑖 (𝑜 ′𝑖 ). (property of 𝑐𝑖 )

Similarly,

𝑣 ′′𝑖 (𝑜𝑖 ) − 𝑣 ′′𝑖 (𝑜 ′𝑖 ) ≥ 𝑣 ′𝑖 (𝑜𝑖 ) − 𝑣 ′𝑖 (𝑜 ′𝑖 ).



Renato Paes Leme, Jon Schneider, and Hanrui Zhang 23

• Combinatorial auctions, valuations “beyond” subadditive. Let𝐶 = max{𝑣𝑖 (𝑀), 𝑣 ′𝑖 (𝑀)},
and 𝑣 ′′𝑖 be such that 𝑣 ′′𝑖 (∅) = 0, 𝑣 ′′𝑖 (𝑇 ) = 2𝐶 if 𝑜𝑖 ⊆ 𝑇 , and 𝑣 ′′𝑖 (𝑇 ) = 𝐶 otherwise. It is easy to

check 𝑣 ′′𝑖 is subadditive, and so 𝑣 ′′𝑖 ∈ V𝑖 . For any 𝑜
′
𝑖 , if 𝑜𝑖 ⊆ 𝑜 ′𝑖 , because 𝑣𝑖 is monotone,

𝑣 ′′𝑖 (𝑜𝑖 ) − 𝑣 ′′𝑖 (𝑜 ′𝑖 ) = 0 ≥ 𝑣𝑖 (𝑜𝑖 ) − 𝑣𝑖 (𝑜 ′𝑖 ).
If 𝑜𝑖 ⊈ 𝑜

′
𝑖 , then

𝑣 ′′𝑖 (𝑜𝑖 ) − 𝑣 ′′𝑖 (𝑜 ′𝑖 ) = 𝐶 ≥ 𝑣𝑖 (𝑀) ≥ 𝑣𝑖 (𝑜𝑖 ) − 𝑣𝑖 (𝑜 ′𝑖 ).
Similarly,

𝑣 ′′𝑖 (𝑜𝑖 ) − 𝑣 ′′𝑖 (𝑜 ′𝑖 ) ≥ 𝑣 ′𝑖 (𝑜𝑖 ) − 𝑣 ′𝑖 (𝑜 ′𝑖 ).
• Metric space. Let 𝑣𝑖 be induced by 𝑥𝑖 and 𝑣

′
𝑖 by 𝑥

′
𝑖 . Let 𝑣

′′
𝑖 be induced by 𝑜𝑖 ∈ O ⊆ 𝑋𝑖 . Then

for any 𝑜 ′𝑖 ∈ O ⊆ 𝑋𝑖 ,
𝑣 ′′𝑖 (𝑜𝑖 ) − 𝑣 ′′𝑖 (𝑜 ′𝑖 ) = 𝑑𝑖 (𝑜𝑖 , 𝑜 ′𝑖 ) ≥ 𝑑𝑖 (𝑥𝑖 , 𝑜 ′𝑖 ) − 𝑑𝑖 (𝑥𝑖 , 𝑜𝑖 ) = 𝑣𝑖 (𝑜𝑖 ) − 𝑣𝑖 (𝑜 ′𝑖 ).

And similarly

𝑣 ′′𝑖 (𝑜𝑖 ) − 𝑣 ′′𝑖 (𝑜 ′𝑖 ) ≥ 𝑣 ′𝑖 (𝑜𝑖 ) − 𝑣 ′𝑖 (𝑜 ′𝑖 ). □

C.3 Proof of Theorem 3
Proof of Theorem 3. Fix an IC and NB mechanism𝑀 = (𝑓 , 𝑝). By Proposition 2, the payment

characterization (Theorem 2) applies in this setting. To this end, for each 𝑜𝑐 ∈ O1 = · · · = O𝑛 , let
𝑝𝑖 (𝑜𝑐 ) be agent 𝑖’s payment when the common outcome is 𝑜𝑐 . For each valuation vector 𝑣 , consider

the following transformed valuation vector 𝑣 , where for each agent 𝑖 and outcome 𝑜𝑐 ,

𝑣𝑖 (𝑜𝑐 ) = 𝑣𝑖 (𝑜𝑐 ) − 𝑝𝑖 (𝑜𝑐 ) .
Observe that for any 𝑖 and 𝑣𝑖 ∈ V𝑖 , letting ≺int

𝑖 = ≺int

𝑖 (𝑣𝑖 ), for any 𝑜𝑐 , 𝑜 ′𝑐 ∈ O1 = · · · = O𝑛 ,

(𝑜𝑐 , 𝑝𝑖 (𝑜𝑐 )) ≺int

𝑖 (𝑜 ′𝑐 , 𝑝𝑖 (𝑜 ′𝑐 )) ⇐⇒ 𝑣𝑖 (𝑜𝑐 ) > 𝑣𝑖 (𝑜 ′𝑐 ) ∨ (𝑣𝑖 (𝑜𝑐 ) = 𝑣𝑖 (𝑜 ′𝑐 ) ∧ 𝑜𝑐 ≺tb

𝑖 𝑜 ′𝑐 ).

Now consider the behavior of
ˆ𝑓 , the transformed version of 𝑓 , over all possible transformed

valuations
ˆV = {𝑣 | 𝑣 ∈ V}, where we define ˆ𝑓 (𝑣) = 𝑓 (𝑣). Then, the above observation gives

a way to derive ≺int

𝑖 from 𝑣 directly, and so we can define IC for
ˆ𝑓 based on ≺int

𝑖 . Note that
ˆ𝑓

corresponds bijectively to 𝑓 , and ( ˆ𝑓 , 𝑝zero) is IC iff (𝑓 , 𝑝) is IC, where 𝑝zero assigns 0 payment to all

agents in all cases. In other words, one can view
ˆ𝑓 as an IC mechanism over

ˆV without payments.

Suppose |O1 | = |O2 | = · · · = |O𝑛 | = 𝑘 . Observe that such transformed valuations
ˆV can induce all

possible strict total orders over outcomes: for example, in order for agent 𝑖’s internal component of

preference to be

𝑜
(1)
𝑐 ≺int

𝑖 𝑜
(2)
𝑐 ≺int

𝑖 · · · ≺int

𝑖 𝑜
(𝑘)
𝑐 ,

we only need

𝑣𝑖 (𝑜 (1)𝑐 ) > 𝑣𝑖 (𝑜 (2)𝑐 ) > · · · > 𝑣𝑖 (𝑜 (𝑘)𝑐 ).
Such a transformed valuation can be obtained from, for example, 𝑣𝑖 ∈ V𝑖 such that

𝑣𝑖 = (𝑘 − 𝑖) + 𝑝𝑖 (𝑜 (𝑖)𝑐 ).

Now since
ˆ𝑓 is IC, it must induce a social choice rule over all strict total orders over the outcomes

(i.e., it cannot assign different outcomes to two transformed valuation vectors inducing the same

orders for all agents simultaneously), and moreover, this social choice rule cannot be manipulable.

By the Gibbard-Satterthwaite Theorem [Gibbard, 1973, Satterthwaite, 1975], this social choice rule

must either be dictatorship or use only two outcomes. The same characterization immediately

applies to
ˆ𝑓 , and by the payment characterization extends to (𝑓 , 𝑝), which concludes the proof. □
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C.4 Proof of Theorem 4
Proof of Theorem 4. For any IC, IR and NB mechanism 𝑀 = (𝑓 , 𝑝), let 𝑜 (1) , . . . , 𝑜 (𝑛+1) be a

decision list implementing 𝑀 (with payment vectors 𝑝 (𝑜 (1) ), . . . , 𝑝 (𝑜 (𝑛+1) ) and exception lists

𝐸 (𝑜 (1) ), . . . , 𝐸 (𝑜 (𝑛+1) )). Such a decision list exists by Theorem 5 (we do not even require this list

to be order-oblivious). Without loss of generality, assume each agent can sometimes get the item

— otherwise we can remove the agents who never get the item, since they can never affect the

outcome and payments because of NB. Note that the empty outcome (0, . . . , 0) can never appear in

an exception list of another outcome 𝑜 ( 𝑗) , because in that case 𝑜 ( 𝑗) can never happen (since the

payment vector corresponding to the empty outcome must be (0, . . . , 0), and the empty outcome is

always satisfied). Moreover, if the empty outcome is ordered before another outcome 𝑜 ( 𝑗) , 𝑜 ( 𝑗) must

be in the exception list of the empty outcome, because, again, otherwise 𝑜 ( 𝑗) can never happen.

Given these facts, we can without loss of generality move the empty outcome to the end of the list,

and assume 𝑜 (𝑛+1) = (0, . . . , 0). Moreover, we renumber the agents so that 𝑜
(𝑖)
𝑖

= 1 for all 𝑖 ∈ [𝑛].
That is, in the 𝑖-th outcome, agent 𝑖 receives the item. For brevity, let 𝑞𝑖 = 𝑝𝑖 (𝑜 (𝑖) ) for each 𝑖 ∈ [𝑛].

Now observe that for any two agents 𝑖 and 𝑖 ′, it cannot be the case that 𝑜 (𝑖) ∈ 𝐸 (𝑜 (𝑖′) ) and
𝑜 (𝑖

′) ∈ 𝐸 (𝑜 (𝑖) ) simultaneously. This is because if that happens, then for the valuation vector 𝑣

where 𝑣𝑖 = 𝑞𝑖 , 𝑣𝑖′ = 𝑞𝑖′ , and 𝑣𝑖′′ = 0 for 𝑖 ′′ ∉ {𝑖, 𝑖 ′}, we must have 𝑓 (𝑣) ∉ {𝑜 (𝑖) , 𝑜 (𝑖′) }. However, for
the valuation vector 𝑣 ′ where 𝑣 ′𝑖 = 𝑞𝑖 and 𝑣

′
𝑖′′ = 0 for 𝑖 ′′ ≠ 𝑖 , we must have 𝑓 (𝑣 ′) = 𝑜 (𝑖) .9 In other

words, 𝑖 ′ can affect 𝑖’s outcome and payment without affecting 𝑖 ′’s own outcome or payment, which

violates NB.

We define the following “domination” binary relation over agents: we say 𝑖 dominates 𝑖 ′ if
𝑜 (𝑖) ∈ 𝐸 (𝑜 (𝑖′) ), or 𝑖 < 𝑖 ′ and 𝑜 (𝑖′) ∉ 𝐸 (𝑜 (𝑖) ). Intuitively, if 𝑖 dominates 𝑖 ′, then if 𝑜 (𝑖) is feasible (i.e.,
𝑣𝑖 ≥ 𝑞𝑖 ) then 𝑜 (𝑖

′)
cannot be chosen. Observe that any two different agents 𝑖 and 𝑖 ′ are comparable

under the domination relation, i.e., one of the two must dominate the other, and it is never the

case that the two agents dominate each other simultaneously (because it cannot be the case that

𝑜 (𝑖) ∈ 𝐸 (𝑜 (𝑖′) ) and 𝑜 (𝑖′) ∈ 𝐸 (𝑜 (𝑖) ) simultaneously, as argued above).

Below we argue by contradiction that the domination relation actually is a total order over

agents. In particular, it does not have 3-cycles. Suppose otherwise, i.e., there exist 𝑖 , 𝑖 ′ and 𝑖 ′′, such
that 𝑖 dominates 𝑖 ′, 𝑖 ′ dominates 𝑖 ′′, and 𝑖 ′′ dominates 𝑖 . Then for the valuation vector 𝑣 where

𝑣𝑖 = 𝑞𝑖 , 𝑣𝑖′ = 𝑞𝑖′ , 𝑣𝑖′′ = 𝑞𝑖′′ and 𝑣𝑖′′′ = 0 for all 𝑖 ′′′ ∉ {𝑖, 𝑖 ′, 𝑖 ′′}, we must have 𝑓 (𝑣) ∉ {𝑜 (𝑖) , 𝑜 (𝑖′) , 𝑜 (𝑖′′) }.
However, for 𝑣 ′ where 𝑣 ′𝑖 = 𝑞𝑖 , 𝑣

′
𝑖′ = 𝑞𝑖′ and 𝑣

′
𝑖′′′ = 0 for all 𝑖 ′′′ ∉ {𝑖, 𝑖 ′}, we must have 𝑓 (𝑣 ′) = 𝑜 (𝑖) .

This means 𝑖 ′′ can affect 𝑖’s outcome and payment without affecting 𝑖 ′′’s own outcome or payment,

violating NB.

Now we argue that the total order given by the domination relation is precisely one possible

order that can be used in a sequential posted-price mechanism to implement𝑀 . In particular, the

following sequential posted-price mechanism is equivalent to the decision list implementing𝑀 :

repeatedly visit the agent who dominates all other agents among unvisited ones. Upon visiting each

agent 𝑖 , offer the price 𝑞𝑖 . If 𝑣𝑖 ≥ 𝑞𝑖 , then let 𝑓 (𝑣) = 𝑜 (𝑖) and 𝑝 (𝑣) = 𝑝 (𝑜 (𝑖) ). Otherwise, continue the
process. Terminate the process and let (𝑓 (𝑣), 𝑝 (𝑣)) = ((0, . . . , 0), (0, . . . , 0)) if there is no unvisited

agent left. One can check this sequential posted-price mechanism does precisely what the decision

list does. □

9
One subtlety is it is possible that there exists some 𝑖′′ where 𝑞𝑖′′ = 0. This does not affect the argument much, because

such an 𝑖′′ cannot appear in the exception list associated with any other nonempty outcome, and 𝑖′′ must be agent 𝑛. Then

one can assume without loss of generality that 𝑖′ ≠ 𝑛, and the rest of the argument still works. Similarly one can fix the

argument for the nonexistence of 3-cycles below.
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C.5 Proof of Lemma 1
Proof of Lemma 1. Suppose to the contrary that both 𝑓 (𝑣) = 𝑜 and 𝑓 (𝑣 ′) = 𝑜 ′. Choose 𝑣 ′′ such

that 𝑣 ′′𝑖 = min{𝑣𝑖 , 𝑣 ′𝑖 } for each 𝑖 ∈ [𝑛]. The plan is to argue that 𝑓 (𝑣 ′′) = 𝑓 (𝑣) and 𝑓 (𝑣 ′′) = 𝑓 (𝑣 ′)
simultaneously, a contradiction. We only need to show 𝑓 (𝑣 ′′) = 𝑓 (𝑣) = 𝑜 , for which it suffices to

inductively argue that for each 𝑖 ∈ [𝑛],
𝑓 (𝑣) = 𝑓 (𝑣1, . . . , 𝑣𝑖−1, 𝑣 ′′𝑖 , 𝑣 ′′𝑖+1, . . . , 𝑣 ′′𝑛 ) = 𝑓 (𝑣1, . . . , 𝑣𝑖−1, 𝑣𝑖 , 𝑣 ′′𝑖+1, . . . , 𝑣 ′′𝑛 ).

Fix some 𝑖 ∈ [𝑛]. By the induction hypothesis,

𝑓 (𝑣1, . . . , 𝑣𝑖−1, 𝑣 ′′𝑖 , 𝑣 ′′𝑖+1, . . . , 𝑣 ′′𝑛 ) = 𝑓 (𝑣) = 𝑜.
Observe that 𝑣𝑖 ≥ 𝑣 ′′𝑖 since 𝑣 satisfies both 𝑜 and 𝑜 ′, and 𝑣 ′′ is the maximum of 𝑝 (𝑜) and 𝑝 (𝑜 ′).
Consider the following 2 cases:

• 𝑜𝑖 = 0. In this case, because𝑀 is IC, 𝑓 must be monotone (by Myerson’s characterization of

single-parameter IC mechanisms [Myerson, 1981]), so decreasing agent 𝑖’s value from 𝑣𝑖 to

𝑣 ′′𝑖 cannot change the personal outcome (or payment) of agent 𝑖 , i.e.,

𝑓𝑖 (𝑣1, . . . , 𝑣𝑖−1, 𝑣 ′′𝑖 , 𝑣 ′′𝑖+1, . . . , 𝑣 ′′𝑛 ) = 𝑓𝑖 (𝑣1, . . . , 𝑣𝑖−1, 𝑣𝑖 , 𝑣 ′′𝑖+1, . . . , 𝑣 ′′𝑛 ).
Now since𝑀 is NB, the above implies

𝑓 (𝑣1, . . . , 𝑣𝑖−1, 𝑣 ′′𝑖 , 𝑣 ′′𝑖+1, . . . , 𝑣 ′′𝑛 ) = 𝑓 (𝑣1, . . . , 𝑣𝑖−1, 𝑣𝑖 , 𝑣 ′′𝑖+1, . . . , 𝑣 ′′𝑛 ).
• 𝑜𝑖 = 1. In this case, because𝑀 is IC, fixing other agents’ valuations, the menu agent 𝑖 faces

is a take-it-or-leave-it offer with price 𝑝𝑜𝑖 ≤ 𝑣 ′′𝑖 (again by Myerson’s characterization). So,

decreasing 𝑖’s value from 𝑣𝑖 to 𝑣
′′
𝑖 results in the same outcome and payment, because both 𝑣𝑖

and 𝑣 ′′𝑖 are no smaller than 𝑝𝑖 (𝑜). Again, since𝑀 is NB, this implies

𝑓 (𝑣1, . . . , 𝑣𝑖−1, 𝑣 ′′𝑖 , 𝑣 ′′𝑖+1, . . . , 𝑣 ′′𝑛 ) = 𝑓 (𝑣1, . . . , 𝑣𝑖−1, 𝑣𝑖 , 𝑣 ′′𝑖+1, . . . , 𝑣 ′′𝑛 ).
This finishes the induction step, and shows that 𝑓 (𝑣) = 𝑓 (𝑣 ′′). But then similarly one can show

𝑓 (𝑣 ′) = 𝑓 (𝑣 ′′), which leads to a contradiction because 𝑓 (𝑣) = 𝑜 ≠ 𝑜 ′ = 𝑓 (𝑣 ′). This concludes the
proof. □

C.6 Proof of Theorem 5
Proof of Theorem 5. Given an IC, IR, and NB mechanism𝑀 = (𝑓 , 𝑝), we explicitly construct

a decision list implementing this mechanism. We first construct a “decision tree” (which is quite

different from a normal decision tree), which we will later turn into a decision list. The decision

tree we construct is of the following form: each node is associated with a set of outcomes, which

we call the domain of the node, and a single outcome in the domain. In particular, the domain of

the root is O. Each node may have any number of children, with the constraint that the domain of

any child of a node is a strict subset of the domain of its parent (so the decision tree must be finite).

The way we choose an outcome using such a decision tree is the following: starting from the root,

at every node, we check whether the valuation vector 𝑣 satisfies the outcome associated with the

node. If yes, then that outcome is the one we choose. Otherwise, we move on to an arbitrary child

of the current node satisfying the following condition: 𝑣 does not satisfy any outcome that is not in

the domain of that child (we will see from the construction that such a child always exists), and

repeat the above procedure. The intuition behind the procedure will become clear momentarily.

Now we construct the tree. For any set of outcomes 𝑆 ⊆ O, let 𝑣𝑆 be such that for each 𝑖 ∈ [𝑛],
𝑣𝑆𝑖 = max{𝑝𝑖 (𝑜) | 𝑜 ∈ 𝑆}.

We start from the root, whose domain is O, and let 𝑓 (𝑣O) be the outcome associated with the root.

This means the tree should choose 𝑓 (𝑣O) whenever it is satisfied. This is in fact consistent with
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𝑓 , because for any other outcome 𝑜 ∈ O, 𝑣O satisfies both 𝑓 (𝑣O) and 𝑜 . By Lemma 1, whenever

𝑓 (𝑣O) is satisfied by a valuation vector 𝑣 , 𝑓 (𝑣) ≠ 𝑜 . This holds for any 𝑜 ∈ O \ {𝑓 (𝑣O)}, so it must

be the case that 𝑓 (𝑣) = 𝑓 (𝑣O) whenever 𝑣 satisfies 𝑓 (𝑣O).
Now we describe the way we construct the children of a node (e.g., the root), which, applied

recursively, gives the entire tree. Let 𝐷 be the domain of the parent node, and 𝑜 be the outcome

associated with the parent node. Each child corresponds to a maximal subset 𝐷 ′
of 𝐷 such that 𝑣𝐷

′

does not satisfy 𝑜 . Note that there may be many such maximal subsets, and we construct a child

for each of these maximal subsets. For the child whose domain is 𝐷 ′
, again, we let the outcome

associated with that child be 𝑓 (𝑣𝐷′). Observe that when the tree chooses 𝑓 (𝑣𝐷′) at this node, this
choice must also be consistent with 𝑓 . This is because if we reach this node, then it must be the case

that the valuation vector 𝑣 can only satisfy outcomes in 𝐷 ′
. And again by Lemma 1, if 𝑣 satisfies

𝑓 (𝑣𝐷′), then it must be the case that 𝑓 (𝑣) = 𝑓 (𝑣𝐷′).
Now consider the correctness of the decision tree constructed, i.e., whether it implements 𝑓 .

Above we have argued that whenever the decision tree chooses an outcome, that outcome must be

consistent with the choice by 𝑓 . So we only need to show the decision tree in fact always outputs

an outcome. Consider any valuation vector 𝑣 . First observe that 𝑣 satisfies at least 1 outcome, i.e.,

the empty outcome (0, . . . , 0). Below we argue that at any node with domain 𝐷 and associated

outcome 𝑜 , there is always a child that we can go to, if 𝑣 does not satisfy 𝑜 . In fact, let 𝑆 ≠ ∅ be

the set of outcomes that 𝑣 satisfies. Because of the way we go down the tree, we must have 𝑆 ⊆ 𝐷 .

Also, we have 𝑣𝑖 ≥ 𝑣𝑆𝑖 for each 𝑖 ∈ [𝑛], simply by the definition of 𝑆 . If 𝑣 does not satisfy 𝑜 , then

clearly 𝑣𝑆 does not satisfy 𝑜 either. So 𝑆 must be a subset of the domain of at least 1 child of the

current node, because we choose the domains of the children in a maximal way. That child is a

node we can go to. Now because the tree is finite, we cannot keep going down forever, so we must

be able to choose an outcome somewhere in the tree. Together with all the arguments above, this

shows that the tree we construct in fact implements 𝑓 (and𝑀 because 𝑝 (𝑣) = 𝑝 (𝑓 (𝑣))).
Now we turn the decision tree into a decision list. First observe that when evaluating the decision

tree, the order in which we visit the nodes does not matter (although the specific way of evaluating

the tree discussed above is instrumental in proving the correctness of the construction). More

specifically, let {(𝐷 ( 𝑗) , 𝑜 ( 𝑗) )} 𝑗 ∈[𝐾 ] be the collection of domain-outcome pairs of all nodes of the

decision tree, where 𝐾 is the number of nodes. To evaluate the decision tree, it suffices to check

(𝐷 ( 𝑗) , 𝑜 ( 𝑗) ) one by one in any order, and choose the first 𝑜 ( 𝑗) where 𝑣 satisfies 𝑜 ( 𝑗) and does not

satisfy any outcome not in 𝐷 ( 𝑗)
. In fact, since the decision tree implements 𝑓 , exactly one of these

pairs will satisfy the condition of being chosen. Now we merge pairs with the same outcome: for

any outcome 𝑜 ∈ O, let

𝐷 (𝑜) =
⋃

𝑗 :𝑜 ( 𝑗 )=𝑜

𝐷 ( 𝑗) .

Consider the new collection of pairs {(𝐷 (𝑜), 𝑜)}𝑜∈O , and observe that it is equivalent to the old list:
when the old list chooses some outcome, the new list chooses the same outcome. One subtlety is

that the new list may choose multiple outcomes simultaneously, which would make it ill-defined.

However, this cannot happen because whenever the new list chooses an outcome, it must be the

outcome assigned by 𝑓 . To see why this is the case, consider any valuation vector 𝑣 . Let (𝐷 (𝑜), 𝑜)
be a pair in the new list such that 𝑣 satisfies 𝑜 and does not satisfy any outcome not in 𝐷 (𝑜). By
Lemma 1, because 𝑣 satisfies 𝑜 , for any 𝑜 ′ ∈ 𝐷 (𝑜) \ {𝑜} that is also satisfied by 𝑣 , 𝑓 (𝑣) ≠ 𝑜 ′. On the

other hand, since𝑀 is IR, 𝑓 (𝑣) must be satisfied by 𝑣 , so the only option left is 𝑓 (𝑣) = 𝑜 . Now let

the exception list of each outcome 𝑜 be 𝐸 (𝑜) = O \𝐷 (𝑜). This gives an order-oblivious decision list

as stated in Theorem 5. □
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