

Copyright @ 2009 Ananda Gunawardena

Lecture 07

Pointers, *, ** and ***

In this lecture

• Revisit pointer

• Pointer arithmetic

• Passing a pointer to a function

• ** the address of a *

• *** the address of a **

• Dealing with ***

• Further readings

• Exercises

Revisiting pointers
A pointer is an address in the memory. Once the address of

a memory location is provided to a function, a function can

make changes to the actual content of the location. For

example,

int x=10;

foo(&x);

where foo is defined as

void foo(int* ptr){

 (*ptr)++;

}

Will actually increase the value of x by 1. Note that ptr

is dereferenced first, that is (*ptr) before being

incremented.

Question: What happens if *ptr++ is written instead of

(*ptr)++ ?

Copyright @ 2009 Ananda Gunawardena

Pointer Arithmetic
A pointers can be added and subtracted. For example, if

ptr1 and ptr2 are pointers (of the same type) then we can

define the following.

1. Ptr1 + n defines the address of a location that is n

locations from the ptr1. For example, if ptr1 is an

int*, then ptr1+n defines the address of ptr1[n]

2. ptr2 – n defines the address of a location that is n

locations before ptr2. For example, if ptr2 is a

char*, then ptr2-n defines the address of the nth

character from ptr2.

3. If ptr1 and ptr2 are both int*’s then ptr2-ptr1

defines the number of integers between ptr1 and ptr2

Exercise: Consider the following function.

int foo(char* s){

 char* tmp=s;
 while (*tmp++ != ‘\0’);

 return (tmp-s);

}

What does it return?

Passing a pointer to a function
Passing a pointer to a function is very important thing to

understand. For example, we may pass the address of an

integer (int*) to a function so the integer can be accessed

(perhaps changed) inside the function. We can pass the

address of a char* (that is a char**) to a function, so

memory can be allocated for the string (char*) inside the

function. We can also pass the address of a char** (that is

a char***) to a function so that char** can be changed

inside the function.

Copyright @ 2009 Ananda Gunawardena

Example 1: This example shows how to pass the address of a

char* to assign a string to a location.

char* s = NULL; /* this does not allocate memory for the

string*/

allocate(&s, n); /*call the function to allocate memory of

n bytes for s*/

int allocate(char** ptr, int n){

 if ((*ptr=malloc(n)) != NULL)

 return 0;

 return 1;
}

Example 2: This example shows how to pass the address of a

char** to assign an array of char*’s to a location.

char** s = NULL; /* this does not allocate memory for the

array of strings */

allocate(&s, n); /*call the function to allocate memory of
for an array of char*’s */

int allocate(char*** ptr, int n){

 if ((*ptr=malloc(n*sizeof(char*))) != NULL)

 return 0;
 return 1;

}

Question: Why is that we have to pass a *** in above case?

Example 3: This example shows how to pass the address of a

char** to double the size of an array of length n.

char** s = NULL; /* this does not allocates memory for the

array of strings */

allocate(&s,n); /* allocate as defined in example 2. Now

this allocates an array of n char’*s */

doubleArray(&s, n); /*call the function to double the size

of the array */

Copyright @ 2009 Ananda Gunawardena

int doubleArray(char*** ptr, int n){

 if ((*ptr=malloc(2*n*sizeof(char*))) != NULL)

 return 0;

 return 1;

}

Question: This doubles the array that was passed. But there

are problems. What are they?

More examples from previous notes

Example 1

Write a function that takes the name of a file (char*) that

contains ints, an array of ints and the address of a

variable count and reads the file into the array. Assume

that the array has enough space to hold the file. count

should be updated to the number of entries in the file.

Answer:

int foo(char* filename, int A[], int* countptr){

 FILE* fp=NULL;

 int num=0;

 if ((fp=fopen(filename,”r”)) != NULL){

 while (fscanf(fp,”%d”,&num)>0)

 { A[*countptr]= num;

 *countptr += 1;

 }

 return 0;

 }

 else return 1;

Insert Discussion from lecture

Example 2

Consider the following declaration.

int** matrix;

Copyright @ 2009 Ananda Gunawardena

Write a function matrixAllocate that takes two integers, m

and n and allocate an m by n block of memory.

int matrixAllocate(int*** Mptr, int n, int m){

 *Mptr = (int**)malloc(m*sizeof(int*));

 int i=0;

 for (i=0;i<m;i++)

 (*Mptr)[i] = malloc(n*sizeof(int));

}

insert Discussion from lecture

Example 3

Write a C function swap that takes the name of a 2D array,

num rows, num columns, and two values i and j and swap the

two rows i and j. All error checking must be done.

int swap(int M[m][n], int I, int j){

}

Insert Discussion from lecture

Further Readings
See K & R sections 5.7-5.9

Exercises
[1] Write a function freeAll(char* A[],int n) that takes an

array of char*’s and delete all memory associated with A

[2] Learn more about valgrind, a tool to check memory

leaks. Type: man valgrind

