| H fhime 0 Lo —> weceo
Note Title - I U 8/27/2009
o N\
(g) \
N
) Ayl .-
\.7) o U 0o Lako -~
—
')
V] \ S I A —
N —
IR AR AN),
s 7’@7]
/fg\\ T e |

Lecture 02
I/0, Functions, Strings, Arrays

In this lecture
¢ Input and output (STDIN and STDOUT)
File I/O
Binary Files
Briefly
o Arraysin C
o Strings in C
o Functions in C
Additional Readings
Exercises

Input and Output

Input/output(l/0) is fundamental to any programming language. Most programming
languages provide built-in 1/O routines or provide libraries that can be used to do 1/0
operations. In C, I/0 is not part of the language, but by using stdio.h libraries one can
use I/0O routines in C. Whether the I/O comes from terminal or external device such as a
tape or disk, C deals with it in a standard way. External files can be treated as text files
or binary files. STDIN and STDOUT are the terminal input and output. There are two
stdio.h functions that can be used for this task. printf is used for standard output while
scanf is used for standard input.

Weriting output to STDOUT
Let us look at printf first. This is used to output to STDOUT (or terminal) and is a function
with variable number of arguments. Here is an example.

printf(“This is a test %d %.4f %10.2f %c\n”,134,56.455, 3355.5346, 65);

The prototype of printf is: int printf(char *s, argl, arg2, ...)

Where S typically called a format string contains regular characters (eg: “This is ..”) and
specification of conversion of arguments. For example first specification %d instructs the
compiler to replace that by the decimal representation of 134, the first argument. The
number of format specifications inside the format string must match the number of
arguments.

The formatting statements such as %10.2f are used to format your output to 10 total
spaces (blanks in front) and 2 decimal places. A list of format characters can be found in
Table 7-1 on page 154 on K&R.

If you are interested in outputting the characters to terminal then you can use the
function: int putchar(int)

Copyright @ 2009 Ananda Gunawardena

For example if you need to write the character ‘c’ to terminal then you may write:
putchar(‘c’) or putchar(99) where 99 is the ASCII value of character ‘c’. putchar returns
the ASCII value of the same character or EOF if an error occurs.

Reading input from STDIN

Function scanf can be used to read input from STDIN. For example, if you need to read
an integer from STDIN to integer variable x, then you can write; scanf(“%d”, &x);

Note that scanf requires a format statement (“%d”) and “address” of the variable that
input is read into. Each variable is given a location in the memory and &x indicates the
actual memory location for x. You can see this memory location by typing printf(“%x”,
&x); What you will see is a 32 bit address variable for x given as a hexadecimal(base-16)
number. Scanf stops when its exhaust the input string. Scanf returns the number of
successful matches. Basic scanf conversions can be found on Table 7-2 on page 158.

If you dealing with a stream of characters from keyboard you can use the function: int
getchar(void)

getchar returns the ASCII value of the next input character or EOF, a constant defined in
stdio.h Another function that may be of use is the sscanf. The prototype for sscanf is:
int sscanf(char*S,char* format, argl, arg2,...)

Where it scans the string S according to the format statement order of args. Blanks
within the format statement are ignored. It is important that arguments to scanf
statement are addresses of variables.

Reading “Characters” from stdin

You need to be extra careful about reading characters from stdin. If you just want to
read one character from the stdin (for example, to get a menu option) one problem may
be that the linefeed character (ASClI=10) may still be in the buffer waiting to be read.
Although you might think that you can flush the buffer using fflush, fflush(stdin) does
not work in some systems. One possibility is to write a dummy function

int flush(){
char ch;
scanf(“%c0);

}

To flush just the line feed character. After reading a character from the stdin, just call
flush to do the cleanup. Here is a simple program (courtesy Tim Hoffman) that illustrates
some of the concepts.

/* hello.c
lllustrates: printf, fflush, stdin, stdout
Author: Tim Hoffman

*/

#include <stdlib.h>

Copyright @ 2009 Ananda Gunawardena

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])

{
int x,y;
printf("Hello World: Enter two small positive numbers for x and y: ");
fflush(stdout); /* needed because output streams are buffered */
scanf("%d %d", &x, &y);
printf("\nYou entered %d for x and %d for y\n", x,y);
return EXIT_SUCCESS;

}

File1/O0

Any file is treated as a stream of bytes ending with the EOF character. However there is
a distinction between text file and a binary file. A text file is considered a file of readable
characters with lines ending with newline(‘\n’) character. Here is an example of a text
file.

10\n
20\n
eof

A binary file on the other hand is a sequence of bytes stored in a file. So if your intention
is to store 10 and 20 in the file, you can store them very compactly using just two bytes.

0000101000010100

The trick is that you need to know how to read the data from the binary file since there
are no newline or EOF characters or spaces that separates the data.

Reading from a File

A file can be considered a data stream and the first part of reading from a file is to open
up a pointer to that file. For example;

FILE* fp; // defines a pointer to any file (input/output/text/binary)

To open a file for reading we simply use the fopen function defined in stdio.

fp = fopen(filename, “r”’);

Copyright @ 2009 Ananda Gunawardena

This indicates that the file with the filename(a string) is open for read only. We can
combine the two statements for example by writing

FILE* fp = fopen(“data.txt”, “r”’);

o, n

Available file opening modes are “r” = read, “w” = write and “a” = append. Some
systems may require binary files to open with “b” mode. So you may write:

FILE* fp = fopen(“data.bin”, ;

If the file cannot be open fopen will return NULL. You need to check this before starting
to read data from the file.

There are two functions that can be used to read from a file. fscanf and fprintf. The
function prototype for fscanf is

int fscanf(FILE* fp, const char* format, aorgl, arg2, ...);

fscanf reads formatted data from a file stream fp and stores them in arguments
according to the format statement given.

For example if a file data.txt contains two short ints

10
20

Then you can read two numbers in the file by;
FILE* fp = fopen(“data.txt”, “r”’);
intx,y;

fscanf(fp,”%d %d”, &x, &y);

WRITING TO A FILE
We can open a file as

FILE* fout = fopen(“out.txt”,”w”);

This opens the out.txt in your working directory (it creates a new one if it does not
exists) for writing. We can write, for example two integers to the file as

fprintf(fout,”%d %d”, 20, 30);

Copyright @ 2009 Ananda Gunawardena

here is a program (courtesy Tim Hoffman) that illustrates some concepts

/* fileio.c
lllustrates:
argc, argv
atoi(), exit()
printf(), fprintf(), fscanf()
fopen(), fclose()
Author: Tim Hoffman

*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])

{
FILE *infile, *outfile; /* infile and outfile are pointers to FILE objects */
int x,i,n;

if (argc < 3)
{
printf("must enter two values on cmd line: a small positive integer followed by
name
of output file.\n");
exit(EXIT_FAILURE);

}

n = atoi(argv[1]); /* read the man pages on atoi(). Converts a string to an int */
if (n<=0)
{
printf("must enter a SMALL POSITIVE INT followed by name for output file on cmd
line\n");
exit(EXIT_FAILURE);
}

outfile = fopen(argv[2], "wt"); /* "wt" means we are writing text to the file */
if (NULL==outfile) /* if the open fails then a NULL pointer was put into outfile */

{
printf("Can't open %s for output.\n", argv[2]);
exit(EXIT_FAILURE);

Copyright @ 2009 Ananda Gunawardena

/* READY TO WRITE A SEQUENCE Of INTS TO THE OUTPUT TEXT FILE */

printf("\nWriting to file %s\n", argv[2]);
for (i=1; i<=n; ++i)
{
printf("...wrote %d\n",i);
fprintf(outfile, "%d\n", i);
}

fclose(outfile);
/*RE-OPEN THAT FILE AS INPUT AND READ THEM BACK IN AND ECHO TO STDOUT */

infile = fopen(argv[2], "rt"); /* "rt" means we are reading the text file */

if (infile==NULL)

/* we really don't expect this to happen considering we just wrote it - but we always
test */

{

printf("Can't open %s for input.\n", argv[2]);

exit(EXIT_FAILURE);

}

printf("\nNow reading from file %s\n", argv[2]);
for (i=1; i<=n; ++i)

{

fscanf(infile, "%d", &x);

printf("...read %d\n",x);

}

fclose(infile);

return 0;

}

READING FROM A BINARY FILE
If the file is binary, then we cannot use fscanf to read the data from the file. Instead we
need to use : fread
The function prototype for fread is
For example if we want to read 2 bytes from memory and store them in a short int
i e can write;

fread(&x, sizeof(x),1,fp);

The prototype for fread is
size_t fread (void * ptr, size_t size, size_t count, FILE * stream);

Copyright @ 2009 Ananda Gunawardena

We will discuss more on binary files later in the course.

Arraysin C
Arrays are static blocks of memory assigned by the compiler. Arrays can be initialized
and implicitly assigned a size. For example

int A[]=1{1,2,3};
declares an array of size 3 and assign values to 1, 2, 3. Array indices starts from 0.
An array can also be declared,as

constint n = 10;
int A[n];

The size of the memory assigned is the number of bytes necessary to hold n integers.
The name of the array, A in this case, serves as the address of the first byte of the array
memory block. For example, the statement

printf(“%x\n”, A);

outputs the address of the starting byte of the array. As we learn pointers we will be
able to manipulate the values of the array using indirect pointers.

C does not check for array boundaries. So a statement such as A[n] = some_value; is
completely legal and but could have some devastating effects. We can define arrays of
any standard types or user defined types(discussed later). Arrays can be defined as
dynamic structures once we understand how to allocate memory using malloc or calloc.
This will be discussed later.

Two Dimensional Arrays
C can define two dimensional arrays. For example,

char List[100][20]

Defines a two dimensional array of 100x20, where we have 100 rows to store a string of
max size 20. We can set the character 2 of string 50 to ‘a’ by doing

List[50][2] = ‘@’;

Strings in C
It is very important to understand the how strings are processed in C. Unlike in Java,
where String is an object, in C a string is considered to be a sequence of characters

Copyright @ 2009 Ananda Gunawardena

ending with the null character ‘\0’. It is very important to have ‘\0’ at the end a string or
else it may throw run time errors (or segmentation faults) if we try to do something like
this.

char name[4];
name[0]="g’; name[1]="u’; name[2]="n’; name[3]="a’;
printf(“%s”, name);

It is possible in some systems that the null character may be automatically added. We
will talk about C string in detail next week, but until then you can see some of the
functions available for C strings from Bb. We just touched on some of the topics of 10,
strings and files in C. We will be discussing more of these things later in the course.

Functions in C

Functions allow programs to be broken into smaller, more manageable components.
Functions can also hide details of the operations from the program that uses it. Also
using functions allow programmers to debug code more easily. C functions can be
included in separate files, compiled and linked later to create the executable. The basic
form of a function is:

<return_type> function_name(arguments){
Function_statements
Return value

Although functions support modular code development, they are generally less efficient
as function execution uses run time stack for function evaluation. All argumentsto a C
function are passed by value. That is a copy of the variables is placed in the runtime
stack so function can perform its operations. As C supports passing addresses of
variables into functions, one can effectively passed an argument by “reference” so
function can modify the value of a global variable. We will discuss more about functions
later in the course.

Further Readings
K & R Chapter 1 — Tutorial Introduction Pages 5-31

Copyright @ 2009 Ananda Gunawardena

Dec HxOct Char Cec Hx Ot Himl Chr [Dec Hx Oct Himl Chr| Dec Hy Oct Hirml Shr
0 0 000 WNUL (null) 32 Z0 040 Space| 64 40 100 d; 3 98 60 140 `
1 1 001 50H (start of heading) 33 21 041 ! ! 65 41 101 A & a7 g1 141 &#%7; a4
2 2 002 5TX (start of text) 34 ZE 042 " 7 66 42 102 «#66; B 95 62 142 _ b
3 3 003 ETX (end of text) 35 Z3 043 #: # 67 43 103 «#67; C 99 63 143 c ©
4 4 004 EOT (end of transmission) 36 24 044 $ & 65 44 104 s#658; D |100 54 144 &#l00; d
5 5 005 ENQ (enequirsy) 37 25 045 %r % 69 45 105 ##659: E (101 65 145 &#l0l: e
6 6 006 ACE (acknowledge) 38 Z6 046 ƃ & 70 46 106 F F |102 66 146 f €
7 7 007 BEL (hell) 39 Z7 047 ':; ' 71 47 107 «#71: G (103 67 147 &«#l03: O
8 & 010 BS (backspace) 40 Z8 050 Ɨ | 72 48 110 H H |104 65 150 h: h
9 9 011 TAE (horizontal tahb) 41 29 051)) 73 49 111 I I |105 89 151 &#l05; 1
10 & 0lZ LF (NL line feed, new line)| 42 Zi 052 &#d2; * 74 4h 112 J 7 |10g gA 152 j:7 J
11 B 013 VT (wertical tab) 43 ZB 053 + + 75 4B 115 K K |107 8B 153 k k
12 C 014 FF (NP form feed, new page)| 44 2C 054 , 76 4C 114 «#76: L |108 6C 154 l 1
13 D 015 CR (carriage return) 45 ZD 055 - - 77 4D 115 «#77: M (109 6D 155 &«#l05: m
14 E 0la 30 (shift out) 46 ZE 056 . . 76 4E 116 «#78:; N (110 6E 156 &«#ll0: n
15 F 017 3I (shift in) 47 ZF 057 «#47; / 79 4F 117 «#79; 0 [111 6F 157 &«#lll; o
16 10 0Z0 DLE (data link escape) 43 30 060 - 0 30 50 120 «#80; P [L1Z 70 le0 lZ: p
17 11 021 DCl (dewvice control 1) 49 31 06l 1 1 8l 51 121 «#a6l; 0 (113 71 lel q g
15 12 0Z2 DCZ (dewvice control 2) 50 32 06Z 2 2 82 52 12ZZ «#02; B (114 72 1leZ r ¢
1% 13 023 DC3 (device control 3) 51 33 063 ȓ 3 3 53 123 #5837 3 (115 73 163 &«#1l15: =
20 14 024 DC4 (device control 4) 5Z 34 064 4 4 g4 54 124 «#34; T (116 74 164 &«#ll6: T
21 15 025 NAE (negatiwe acknowledge) 53 35 065 5 5 G5 55 125 «#85; T (117 75 165 &#ll7: 1
ZZ 16 026 3TN (synchronous idle) 54 36 066 6 6 06 56 126 «#56; V (116 76 1lA6 s v
23 17 027 ETE (end of trans. block) 55 37 087 7 7 87 57 127 / W (119 77 1la7 &«#119: w
24 18 030 CAN (cancel) 5E8 38 070 8 8 83 55 130 «#a68; X (120 78 170 x x
25 19 031 EM (end of wmedium) 57 39 071 9 9 89 59 131 ͛ T (121 79 171 &«#121:; ¥
26 1k 032 5UE (substitute) 5E Sh 072 7 @ a0 S5k 132 &«#90; Z (122 74 172 &«#lZ:Z: =
27 1B 033 ELC (escape) 59 3B 073 ': ; 91 5B 133 «#91; [|123 7B 173 {:; |
28 1C 034 Fa (file separator) 60 3C 074 &«#60; < 92 5C 134 \ |124 7C 174 |:; |
28 1D 035 G3 (group separator) 6l 3D 075 l; = 93 5D 135]] |125 7D 175 «#1l25; }
30 1E 036 B3 (record separator) 62 3E 076 > > 94 S5E 136 «#94; *~ [1Ze 7E 176 ~ -
31 LF 037 US (unit separator) 63 3F 077 ? 2 95 SF 137 «#35; _ [127 7F 177 DEL
Source: www.LookupTables.com
ASCIl TABLE
Exercises

1. Suppose you want to process a binary file (a sequence of bytes ending with EOF
character) and output characters in the file. How would you do that?

2. Write a program to read a file of text and count the words in the file. Output one
word per line to STDOUT.

3. Suppose a TAB is 3 characters long. Write a program that will take a string (with
tabs) as input and replace each tab with a space.

4. Suppose a file of the following format is given.

123/n
34/n
EOF

Write the binary representation of the file. See if you can write a little program to
confirm your output.

Answers
1. We can read one character at a time from any file until we hit EOF character
(assuming file has an EOF character).
char ch;
FILE* fp = fopen(filename,”r");

Copyright @ 2009 Ananda Gunawardena

while (fscanf(fp,”%c”, &ch) != EOF) {}

4. 123/n
34/n
EOF

123/n=00110001001100100011001100001010

34/n =001100110011010000001010
EOF =There is no ASCII value for EOF

Copyright @ 2009 Ananda Gunawardena

