
CSE 120

Principles of Operating

Systems

Spring 2016

Deadlock

Deadlock

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 2

 Synchronization is a live gun – we can easily shoot ourselves in

the foot

 Incorrect use of synchronization can block all processes

 You have likely been intuitively avoiding this situation already

 More generally, processes that allocate multiple resources

generate dependencies on those resources

 Locks, semaphores, monitors, etc., just represent the resources that

they protect

 If one process tries to allocate a resource that a second process

holds, and vice-versa, they can never make progress

 We call this situation deadlock, and we’ll look at:

 Definition and conditions necessary for deadlock

 Representation of deadlock conditions

 Approaches to dealing with deadlock

Deadlock Definition

 Deadlock is a problem that can arise:

 When processes compete for access to limited resources

 When processes are incorrectly synchronized

 Definition:

 Deadlock exists among a set of processes if every process is

waiting for an event that can be caused only by another

process in the set.

lockA->Acquire();

…

lockB->Acquire();

lockB->Acquire();

…

lockA->Acquire();

Process 1 Process 2

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 3

Conditions for Deadlock

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 4

 Deadlock can exist if and only if the following four

conditions hold simultaneously:

1. Mutual exclusion – At least one resource must be held in a

non-sharable mode

2. Hold and wait – There must be one process holding one

resource and waiting for another resource

3. No preemption – Resources cannot be preempted (critical

sections cannot be aborted externally)

4. Circular wait – There must exist a set of processes [P1, P2,

P3,…,Pn] such that P1 is waiting for P2, P2 for P3, etc.

Resource Allocation Graph

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 5

 Deadlock can be described using a resource allocation

graph (RAG)

 The RAG consists of a set of vertices P={P1, P2, …,

Pn} of processes and R={R1, R2, …, Rm} of resources

 A directed edge from a process to a resource, PiRi, means

that Pi has requestedRj

 A directed edge from a resource to a process, RiPi, means

that Rj has been allocated byPi

 Each resource has a fixed number of units

 If the graph has no cycles, deadlock cannot exist

 If the graph has a cycle, deadlock may exist

RAG Example

A cycle…and

deadlock!

Same cycle…but no

deadlock. Why?

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 6

A Simpler Case

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 7

 If all resources are single unit and all processes make

single requests, then we can represent the resource

state with a simpler waits-for graph (WFG)

 The WFG consists of a set of vertices P={P1, P2, …,

Pn} of processes

 A directed edge PiPj means that Pi has requested a

resource that Pj currentlyholds

 If the graph has no cycles, deadlock cannot exist

 If the graph has a cycle, deadlock exists

Dealing With Deadlock

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 8

 There are four approaches for dealing with deadlock:

 Ignore it – how lucky do you feel?

 Prevention – make it impossible for deadlock to happen

 Avoidance – control allocation of resources

 Detection and Recovery – look for a cycle in dependencies

Deadlock Prevention

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 9

 Prevention – Ensure that at least one of the necessary

conditions cannot happen

 Mutual exclusion

» Make resources sharable (not generally practical)

 Hold and wait

» Process cannot hold one resource when requesting another

» Process requests, releases all needed resources at once

 Preemption

» OS can preempt resource (costly)

 Circular wait

» Impose an ordering (numbering) on the resources and request

them in order (popular implementation technique)

Deadlock Avoidance

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 10

 Avoidance

 Provide information in advance about what resources will be

needed by processes to guarantee that deadlock will not

happen

 System only grants resource requests if it knows that the

process can obtain all resources it needs in future requests

 Avoids circularities (wait dependencies)

 Tough

 Hard to determine all resources needed in advance

 Good theoretical problem, not as practical to use

Banker’s Algorithm

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 11

 The Banker’s Algorithm is the classic approach to

deadlock avoidance for resources with multiple units

1. Assign a credit limit to each customer (process)

 Maximum credit claim must be stated in advance

2. Reject any request that leads to a dangerous state

 A dangerous state is one where a sudden request by any

customer for the full credit limit could lead to deadlock

 A recursive reduction procedure recognizes dangerous states

3. In practice, the system must keep resource usage well

below capacity to maintain a resource surplus

 Rarely used in practice due to low resource utilization

Banker’s Algorithm Simplified

3 3 3 3

OKOK

3 3

OK

3 3

UNSAFE

October 28, 2014 CSE 120 – Lecture 8 – Scheduling and Deadlock 12

Detection and Recovery

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 13

 Detection and recovery

 If we don’t have deadlock prevention or avoidance, then

deadlock may occur

 In this case, we need to detect deadlock and recover from it

 To do this, we need two algorithms

 One to determine whether a deadlock has occurred

 Another to recover from the deadlock

 Possible, but expensive (time consuming)

 Implemented in VMS

 Run detection algorithm when resource request times out

Deadlock Detection

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 14

 Detection

 Traverse the resource graph looking for cycles

 If a cycle is found, preempt resource (force a process to

release)

 Expensive

 Many processes and resources to traverse

 Only invoke detection algorithm depending on

 How often or likely deadlock is

 How many processes are likely to be affected when it occurs

Deadlock Recovery

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 15

Once a deadlock is detected, we have two options…

1. Abort processes

 Abort all deadlocked processes

» Processes need to start over again

 Abort one process at a time until cycle is eliminated

» System needs to rerun detection after each abort

2. Preempt resources (force their release)

 Need to select process and resource to preempt

 Need to rollback process to previous state

 Need to prevent starvation

Deadlock Summary

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 16

 Deadlock occurs when processes are waiting on each

other and cannot make progress

 Cycles in Resource Allocation Graph (RAG)

 Deadlock requires four conditions

 Mutual exclusion, hold and wait, no resource preemption,

circular wait

 Four approaches to dealing with deadlock:

 Ignore it – Living life on the edge

 Prevention – Make one of the four conditions impossible

 Avoidance – Banker’s Algorithm (control allocation)

 Detection and Recovery – Look for a cycle, preempt or abort

Deadlock and Resources

October 28, 2014 CSE 120 – Lecture 8 – Scheduling and Deadlock 17

 There are two kinds of resources: consumable and
reusable
 Consumable resources are generated and destroyed by

processes: e.g., a process waiting for a message from
another process

 Reusable resources are allocated and released by processes:
e.g., locks on files

 Deadlock with consumable resources is usually
treated as a correctness issue (e.g., proofs) or with
timeouts

 From here on, we only consider reusable resources

Deadlock Prevention

October 28, 2014 CSE 120 – Lecture 8 – Scheduling and Deadlock 18

Consider a database system in which a user submits

commands that read and update tables.

Tables that are read or updated need to be locked when

accessed.

 How would you do each of the following?

 Don't enforce mutex?

 Don't allow hold and wait?

 Allow preemption?

 Don't allow circular waiting?

