
CSE 120

Principles of Operating
Systems

Spring 2017

Condition Variables and Monitors

Monitors

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 2

 A monitor is a programming language construct that

controls access to shared data

 Synchronization code added by compiler, enforced at runtime

 Why is this an advantage?

 A monitor is a module that encapsulates

 Shared data structures

 Procedures that operate on the shared data structures

 Synchronization between concurrent threads that invoke the

procedures

 A monitor protects its data from unstructured access

 It guarantees that threads accessing its data through

its procedures interact only in legitimate ways

Monitor Semantics

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 3

 A monitor guarantees mutual exclusion

 Only one thread can execute any monitor procedure at any

time (the thread is “in the monitor”)

 If a second thread invokes a monitor procedure when a first

thread is already executing one, it blocks

» So the monitor has to have a wait queue…

 If a thread within a monitor blocks, another one can enter

 What are the implications in terms of parallelism in a

monitor?

Account Example

 Hey, that was easy!

 But what if a thread wants to wait inside the monitor?

» Such as “mutex(empty)” by reader in bounded buffer?

Monitor account {

double balance;

double withdraw(amount) {

balance = balance – amount;

return balance;

}

}

withdraw(amount)

balance = balance – amount;

withdraw(amount)

return balance (and exit)

withdraw(amount)

balance = balance – amount

return balance;

balance = balance – amount;

return balance;

Threads

block

waiting

to get

into

monitor

When first thread exits, another can

enter. Which one is undefined.

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 4

Monitors, Monitor Invariants

and Condition Variables

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 5

 A monitor invariant is a safety property associated with the
monitor, expressed over the monitored variables. It holds
whenever a thread enters or exits the monitor.

 A condition variable is associated with a condition needed for a
thread to make progress once it is in the monitor.

Monitor M {

... monitored variables

Condition c;

waits outside of the monitor's mutex

brings in one thread waiting on condition

void enter_mon (...) {

if (extra property not true) wait(c);

do what you have to do

if (extra property true) signal(c);

}

Monitor Queues

Monitor bounded_buffer {

Condition not_full;

…other variables…

Condition not_empty;

void put_resource () {

…wait(not_full)…

…signal(not_empty)…

}

Resource get_resource () {

…

}

}

Waiting to enter

Waiting on

condition variables

Executing inside

the monitor

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 6

Signal Semantics

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 7

 There are two flavors of monitors that differ in the

scheduling semantics of signal()

 Hoare monitors (original)

» signal() immediately switches from the caller to a waiting thread

» The condition that the waiter was anticipating is guaranteed to

hold when waiter executes

» Signaler must restore monitor invariants before signaling

 Mesa monitors (Mesa, Java)

» signal() places a waiter on the ready queue, but signaler

continues inside monitor

» Condition is not necessarily true when waiter runs again

 Returning from wait() is only a hint that something changed

 Must recheck conditional case

Hoare vs. Mesa Monitors

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 8

 Hoare
if (empty)

wait(condition);

 Mesa
while (empty)

wait(condition);

 Tradeoffs

 Mesa monitors easier to use, more efficient

» Fewer context switches, easy to support broadcast

 Hoare monitors leave less to chance

» Easier to reason about the program

Monitor Bounded Buffer

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 9

Monitor bounded_buffer {

Resource buffer[N];

// Variables for indexing buffer

// monitor invariant involves these vars

Condition not_full; // space in buffer

Condition not_empty; // value in buffer

void put_resource (Resource R) {

while (buffer array is full)

wait(not_full);

Add R to buffer array;

signal(not_empty);

}

Resource get_resource() {

while (buffer array is empty)

wait(not_empty);

Get resource R from buffer array;

signal(not_full);

return R;

}

} // end monitor

 What happens if no threads are waiting when signal is called?

Monitor Readers and Writers

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 10

Using Mesa monitor semantics.

 Will have four methods: StartRead, StartWrite,

EndRead and EndWrite

 Monitored data: nr (number of readers) and nw

(number of writers) with the monitor invariant

(nr ≥ 0) ∧ (0 ≤ nw ≤ 1) ∧ ((nr > 0) ⇒ (nw = 0))

 Two conditions:

 canRead: nw = 0

 canWrite: (nr = 0) ∧ (nw = 0)

Monitor Readers and Writers

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 11

Monitor RW {

int nr = 0, nw = 0;

Condition canRead, canWrite;

void StartRead () {

while (nw != 0) do wait(canRead);

nr++;

}

void EndRead () {

nr--;

}

void StartWrite {

while (nr != 0 || nw != 0) do wait(canWrite);

nw++;

}

void EndWrite () {

nw--;

}

} // end monitor

 Write with just wait()

 Will be safe, maybe not live – why?

Monitor Readers and Writers

Monitor RW {

int nr = 0, nw = 0;

Condition canRead, canWrite;

void StartRead () {

while (nw != 0) do wait(canRead);

nr++;

}

void EndRead () {

nr--;

if (nr == 0) signal(canWrite);

}

void StartWrite () {

while (nr != 0 || nw != 0) do wait(canWrite);

nw++;

}

void EndWrite () {

nw--;

broadcast(canRead);

signal(canWrite);

}

} // end monitor

 add signal() and broadcast()

can we put a signal here?

can we put a signal here?

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 12

Monitor Readers and Writers

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 13

 Is there any priority between readers and writers?

 What if you wanted to ensure that a waiting writer

would have priority over new readers?

Monitors and Java

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 14

 A lock and condition variable are in every Java object

 No explicit classes for locks or condition variables

 Every object is/has a monitor

 At most one thread can be inside an object’s monitor

 A thread enters an object’s monitor by

» Executing a method declared “synchronized”

 Can mix synchronized/unsynchronized methods in same class

» Executing the body of a “synchronized” statement

 Supports finer-grained locking than an entire procedure

 Identical to the Modula-2 “LOCK (m) DO” construct

 The compiler generates code to acquire the object’s lock at

the start of the method and release it just before returning

» The lock itself is implicit, programmers do not worry about it

Monitors and Java

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 15

 Every object can be treated as a condition variable

 Half of Object’s methods are for synchronization!

 Take a look at the Java Object class:

 Object::wait(*) is Condition::wait()

 Object::notify() is Condition::signal()

 Object::notifyAll() is Condition::broadcast()

Monitors and Java

https://commons.wikimedia.org/wiki/Fi

le:Monitor_(synchronization)-Java.png

Condition Vars & Locks

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 17

 Condition variables are also used without monitors in

conjunction with blocking locks

 This is what you are implementing in Project 1

 A monitor is “just like” a module whose state includes

a condition variable and a lock

 Difference is syntactic; with monitors, compiler adds the code

 It is “just as if” each procedure in the module calls

acquire() on entry and release() on exit

 But can be done anywhere in procedure, at finer granularity

 With condition variables, the module methods may

wait and signal on independent conditions

Condition Variables

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 18

 Condition variables support three operations:

 Wait – release monitor lock, wait for C/V to be signaled

» So condition variables have wait queues, too

 Signal – wakeup one waiting thread

 Broadcast – wakeup all waiting threads

 Condition variables are not boolean objects

 “if (condition_variable) then” … does not make sense

 “if (num_resources == 0) then wait(resources_available)” does

 An example will make this more clear

Condition Vars != Semaphores

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 19

 Condition variables != semaphores

 Although their operations have the same names, they have

entirely different semantics (such is life, worse yet to come)

 However, they each can be used to implement the other

 Access to the monitor is controlled by a lock

 wait() blocks the calling thread, and gives up the lock

» To call wait, the thread has to be in the monitor (hence has lock)

» Semaphore::wait just blocks the thread on the queue

 signal() causes a waiting thread to wake up

» If there is no waiting thread, the signal is lost

» Semaphore::signal increases the semaphore count, allowing

future entry even if no thread is waiting

» Condition variables have no history

Using Cond Vars & Locks

 Alternation of two threads (ping-pong)

 Each executes the following:

Lock lock;

Condition cond;

void ping_pong () {

acquire(lock);

while (1) {

printf(“ping or pong\n”);

signal(cond, lock);

wait(cond, lock);

}

release(lock);

}

Must acquire lock before you can

wait (similar to needing interrupts

disabled to call Sleep in Nachos)

Wait atomically releases lock

and blocks until signal()

Wait atomically acquires lock

before it returns

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 20

CV Implementation – Data

Struct.

struct condition {

proc next; /* doubly linked list implementation of */

proc prev; /* queue for blocked threads */

mutex listLock; /*protects queue */

};

CV – Wait Implementation

void wait (condition *cv, mutex *mx)

{

mutex_acquire(&cv->listLock); /* protect the queue */

enqueue(&cv->next, &cv->prev, thr_self()); /* enqueue */

mutex_release (&cv->listLock); /* we're done with the list */

/* The suspend and mutex_release operation must be atomic */

mutex_release(mx);

thr_suspend (self); /* Sleep 'til someone wakes us */

mutex_acquire(mx); /* Woke up – our turn, get resource lock */

return;

}

CV – Signal Implementation

void signal (condition *cv)

{

thread_id tid;

mutex_acquire(cv->listlock); /* protect the queue */

tid = dequeue(&cv->next, &c->prev);

mutex_release(listLock);

if (tid>0)

thr_continue (tid);

return;

}

/* Note: This did not release mx */

CV Implementation -

Broadcast

void broadcast (condition *cv)

{

thread_id tid;

mutex_acquire(c->listLock); /* protect the queue */

while (&cv->next) /* queue is not empty */

{

tid = dequeue(&c->next, &c->prev); /* wake one */

thr_continue (tid); /* Make it runnable */

}

mutex_release (c->listLock); /* done with the queue */

}

/* Note: This did not release mx */

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 25

Summary

 Semaphores
 wait()/signal() implement blocking mutual exclusion

 Also used as atomic counters (counting semaphores)

 Can be inconvenient to use

 Monitors
 Synchronizes execution within procedures that manipulate

encapsulated data shared among procedures

» Only one thread can execute within a monitor at a time

 Relies upon high-level language support

 Condition variables
 Used by threads as a synchronization point to wait for events

 Inside monitors, or outside with locks

