
CSE 120

Principles of Operating
Systems

Spring 2016

Using Semaphores and Condition Variables

Higher-Level Synchronization

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 2

 We looked at using locks to provide mutual exclusion

 Locks work, but they have limited semantics
 Just provide mutual exclusion

 Instead, we want synchronization mechanisms that
 Block waiters, leave interrupts enabled in critical sections

 Provide semantics beyond mutual exclusion

 Look at three common high-level mechanisms
 Semaphores: Modelling resource pools

 Condition Variables: Modelling uncounted events

 Monitors: Simplifying complex concurrency control policies

with mutexes and condition variables

 Use them to solve common synchronization problems

Semaphores

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 3

 Semaphores are an abstract data type that provide
mutual exclusion to critical sections
 Described by Dijkstra in THE system in 1968

 Semaphores can also be used as atomic counters
 More later

 Semaphores are “integers” that support two operations:
 Semaphore::Wait(): decrement, block until semaphore is open

» Also P(), after the Dutch word for “try to reduce” (also test, down)

 Semaphore::Signal: increment, allow another thread to enter

» Also V() after the Dutch word for increment, up

 That's it! No other operations – not even just reading its value

 Semaphore safety property: the semaphore value is
always greater than or equal to 0

Blocking in Semaphores

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 4

 Associated with each semaphore is a queue of waiting

processes

 When wait() is called by a thread:

 If semaphore is open, thread continues

 If semaphore is closed, thread blocks on queue

 Then signal() opens the semaphore:

 If a thread is waiting on the queue, the thread is unblocked

 If no threads are waiting on the queue, the signal is

remembered for the next thread

» In other words, signal() has “history” (c.f., condition vars later)

» This “history” is a counter

Semaphore Types

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 5

 Semaphores come in two types

 Mutex semaphore (or binary semaphore)

 Represents single access to a resource

 Guarantees mutual exclusion to a critical section

 Counting semaphore (or general semaphore)

 Represents a resource with many units available, or a

resource that allows certain kinds of unsynchronized

concurrent access (e.g., reading)

 Multiple threads can pass the semaphore

 Number of threads determined by the semaphore “count”

» mutex has count = 1, counting has count = N

Using Semaphores

 Use is similar to our locks, but semantics are different

struct Semaphore {

int value;

Queue q;

} S;

withdraw (account, amount) {

wait(S);

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

signal(S);

return balance;

}

wait(S);

balance = get_balance(account);

balance = balance – amount;

wait(S);

put_balance(account, balance);

signal(S);

wait(S);

…

signal(S);

…

signal(S);
It is undefined which

thread runs after a signal

Threads

block

critical

section

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 6

 To reference current thread: KThread.currentThread()

 KThread.sleep() assumes interrupts are disabled

 Note that interrupts are disabled only to enter/leave critical section

 How can it sleep with interrupts disabled?

Semaphores in Nachos

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 7

P () { // wait

Disable interrupts;

if (value == 0) {

add currentThread to waitQueue;

KThread.sleep(); // currentThread

}

value = value – 1;

Enable interrupts;

}

V () { // signal

Disable interrupts;

thread = get next on waitQueue;

thread.ready();

value = value + 1;

Enable interrupts;

}

Interrupts Disabled During

Context Switch

Semaphore::P () { // wait

Disable interrupts;

if (value == 0) {

add currentThread to waitQueue;

KThread.sleep(); // currentThread

}

value = value – 1;

Enable interrupts;

}

KThread::yield () {

Disable interrupts;

currentThread.ready(); // add to Q

runNextThread(); // context switch

Enable interrupts;

}

[Semaphore::P]

Disable interrupts;

if (value == 0) {

add currentThread to waitQueue;

Kthread.sleep();

[KThread::yield]

(Returns from runNextThread)

Enable interrupts;

[KThread::yield]

Disable interrupts;

currentThread.ready();

runNextThread();

[KThread::yield]

(Returns from runNextThread)

Enable interrupts;

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 8

Get Operation – Nope!

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 9

 We can’t add a get() to get the value from a

semaphore

 It could change between when we get() it and when

we try to use what we got

 It can go up via a V() or down via a P()

 It would necessarily be useless – and harmful if

used.

 Students ask, “What if a stale value is okay?”
 Just make a call to Random.randInt() instead!

 Since whatever you could get from the semaphore could

get incremented or decremented any number of times

before use, a random number within the proper range

really, really, really is just as good.

Semaphore Questions

 Are there any problems that can be solved with

counting semaphores that cannot be solved with

mutex semaphores?

 Does it matter which thread is unblocked by a signal

operation?

 Hint: consider the following three processes sharing a

semaphore mutex that is initially 1:

while (1) {

wait(mutex);

// in critical section

signal(mutex);

}

while (1) {

wait(mutex);

// in critical section

signal(mutex);

}

while (1) }

wait(mutex);

// in critical section

signal(mutex);

}

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 10

Counting vs Binary Semaphores

• All semaphores are counting
• If V()ed they will increment
• If P()ed they will decrement

• When semaphores are intended to move between 0

and 1 we call them binary semaphores
• But, if we break this discipline – they will count.
• There is no safety built-in

• Binary semaphores can “count” the availability of a

mutually exclusive critical section, i.e. from 1 available

to 0 available and vice-versa

Semaphore Summary

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 12

 Semaphores can be used to solve any of the

traditional synchronization problems

 However, they have some drawbacks

 They are essentially shared global variables

» Can potentially be accessed anywhere in program

 No connection between the semaphore and the data being

controlled by the semaphore

 Used both for critical sections (mutual exclusion) and

coordination (scheduling)

» Note that I had to use comments in the code to distinguish

 No control or guarantee of proper usage

 Sometimes hard to use and prone to bugs

 Another approach: Use programming language support

Condition Variables

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 13

 Condition variables provide a way to wait for events

 Unlike semaphores, they do not count or otherwise

track resources

 Combined with mutexes, they can be used to manage

resource pools.

 We’ll talk about, for example, using them to

construct semaphores and higher-level monitors

 Condition variables are not boolean objects

 “if (condition_variable) then” … does not make sense

 “if (num_resources == 0) then wait(resources_available)” does

 An example will make this more clear

Condition Variables

 Condition variables support three operations:

• Wait (Mutex m) – add calling thread to the

condition variable’s queue and put the thread to

sleep

• Signal (Mutex m) – remove a thread, if any, from

the condition variable’s queue and wake it up

• Broadcast (Mutex m) – remove and wake-up all

threads in the condition variables queue

Why the mutex?

if (predicate) {

--------------context switch---------

cv.wait()

}

if (predicate) {

cv.wait()

}

The test of the predicate and the wait need to be atomic or

two or more threads can end up skipping the wait and entering

The critical section

mutex_acquire (m)

if (predicate) {

cv.wait(m)

}

// possible critical section

mutex_release(m)

Note: cv.wait() must atomically block the

calling process and release the mutex or

other threads can’t acquire it – including to

signal. It must also require it before returning

to put things back as found.

Don’t make a habit if the if quite yet. See next slide.

About that if…don’t do that!

if (predicate) { -----------

cv.wait()

}

while (predicate) {

cv.wait()

}

We’ll talk about the reason more shortly. But, the short version is that, we might

see a sequence such as (i) a thread wait()s for a condition, (ii) a thread gets

dispatched and then pre-empted, (iii) another thread signals and wakes up the

wait()ing thread, placing it into the runnable list -- behind the pre-empted thread

(iii) before the awoken thread gets to run, the pre-empted thread runs and

changes the predicate condition, e.g. consumes some available resources.

In this case, a while is needed to ensure the predicate invariant holds.

In some cv implementations or uses an if might be safe. But, it is terrible practice.

A change in library, software port, or misunderstanding can break things.

A “while” is ALWAYS safe. An “if” offers no gain – just risk. Just make “while” your

habit.

Typical Use

Mutex mx;

GetLock (condition cv, mutex mx) {

mutex_acquire (mx);

while (LOCKED)

wait (cv,mx)

;

lock=LOCKED;

mutex_release (mx);

}

Typical Use (cont.)

ReleaseLock (condition cv, mutex mx)

{

mutex_acquire (mx);

lock = UNLOCKED;

signal (cv);

mutex_release (mx);

}

Using Cond Vars & Locks

 Alternation of two threads (ping-pong)

 Each executes the following:

Lock lock;

Condition cond;

void ping_pong () {

acquire(lock);

while (1) {

printf(“ping or pong\n”);

signal(cond, lock);

wait(cond, lock);

}

release(lock);

}

Must acquire lock before you can

wait (similar to needing interrupts

disabled to call Sleep in Nachos)

Wait atomically releases lock

and blocks until signal()

Wait atomically acquires lock

before it returns

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 19

Condition Vars != Semaphores

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 20

 Condition variables != semaphores

 Although their operations have the same names, they have

entirely different semantics (such is life, worse yet to come)

 However, they each can be used to implement the other

 Access to the monitor is controlled by a lock

 wait() blocks the calling thread, and gives up the lock

» To call wait, the thread has to be in the monitor (hence has lock)

» Semaphore::wait just blocks the thread on the queue

 signal() causes a waiting thread to wake up

» If there is no waiting thread, the signal is lost

» Semaphore::signal increases the semaphore count, allowing

future entry even if no thread is waiting

» Condition variables have no history

Summary

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 21

 Semaphores
 wait()/signal() implement blocking mutual exclusion

 Model a resource pool

 Condition variables
 Waits for events

 Does not count

 Requires a mutex to protect predicate-wait sequence

