
CSE 120

Principles of Operating

Systems

Spring 2017

Lecture 5: Scheduling

Administrivia

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 2

 Homework #1 due tomorrow

 Homework #2 out tomorrow

Scheduling Overview

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 3

 In discussing process management and

synchronization, we talked about context switching

among processes/threads on the ready queue

 But we have glossed over the details of exactly which

thread is chosen from the ready queue

 Making this decision is called scheduling

 In this lecture, we’ll look at:

 Goals of scheduling

 Starvation

 Various well-known scheduling algorithms

 Standard Unix scheduling algorithm

Multiprogramming

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 4

 In a multiprogramming system, we try to increase CPU

utilization and job throughput by overlapping I/O and

CPU activities

 Doing this requires a combination of mechanisms and policy

 We have covered the mechanisms

 Context switching, how and when it happens

 Process queues and process states

 Now we’ll look at the policies

 Which process (thread) to run, for how long, etc.

 We’ll refer to schedulable entities as jobs (standard

usage) – could be processes, threads, people, etc.

Scheduling Goals

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 5

 Scheduling works at two levels in an operating system
 To determine the multiprogramming level – the number of jobs

loaded into primary memory

» Moving jobs to/from memory is often called swapping

 To decide what job to run next to guarantee “good service”

» Good service could be one of many different criteria

 These decisions are known as long-term and short-
term scheduling decisions, respectively
 Long-term scheduling happens relatively infrequently

» Significant overhead in swapping a process out to disk

 Short-term scheduling happens relatively frequently

» Want to minimize the overhead of scheduling

 Fast context switches, fast queue manipulation

Scheduling

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 6

 The scheduler (aka dispatcher) is the module that manipulates

the queues, moving jobs to and fro

 The scheduling algorithm determines which jobs are chosen to

run next and what queues they wait on

 In general, the scheduler runs:

 When a job switches from running to waiting

 When an interrupt occurs (e.g., I/O completes)

 When a job is created or terminated

 We’ll discuss scheduling algorithms in two contexts

 In preemptive systems the scheduler can interrupt a running job

(involuntary context switch)

 In non-preemptive systems, the scheduler waits for a running job to

explicitly block (voluntary context switch)

Scheduling Goals

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 7

 Scheduling algorithms can have many different goals:

 CPU utilization (%CPU)

 Job throughput (# jobs/time)

 Turnaround time (Tfinish – Tstart)

 Waiting time (Avg(Twait): avg time spent on wait queues)

 Response time (Avg(Tready): avg time spent on ready queue)

 Batch systems

 Strive for job throughput, turnaround time (supercomputers)

 Interactive systems

 Strive to minimize response time for interactive jobs (PC)

Starvation

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 8

Starvation is a scheduling “non-goal”:

 Starvation is a situation where a process is prevented

from making progress because some other process

has the resource it requires

 Resource could be the CPU, or a lock (recall readers/writers)

 Starvation usually a side effect of the sched. algorithm

 A high priority process always prevents a low priority process

from running on the CPU

 One thread always beats another when acquiring a lock

 Starvation can be a side effect of synchronization

 Constant supply of readers always blocks out writers

FCFS/FIFO

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 9

 First-come first-served (FCFS), first-in first-out (FIFO)

 Jobs are scheduled in order of arrival to ready Q

 “Real-world” scheduling of people in lines (e.g., supermarket)

 Can be preemptive, or not.

 Jobs treated equally, no starvation

 Problem

 Average waiting time can be large if small jobs wait behind

long ones (high turnaround time)

» You have a basket, but you’re stuck behind someone with a cart

Shortest Job First (SJF)

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 10

 Shortest Job First (SJF)

 Choose the job with the smallest expected CPU burst

» Person with smallest number of items to buy

 Provably optimal minimum average waiting time

AWT = (8 + (8+4)+(8+4+2))/3 = 11.33

AWT = (4 + (4+8)+(4+8+2))/3 = 10

AWT = (4+ (4+2)+(4+2+8))/3 = 8

AWT = (2 + (2+4)+(2+4+8))/3 = 7.33

Shortest Job First (SJF)

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 11

 Problems

 Impossible to know size of CPU burst

» Like choosing person in line without looking inside basket/cart

 How can you make a reasonable guess?

 Can potentially starve

 Flavors

 Can be either preemptive or non-preemptive

 Preemptive SJF is called shortest remaining time first (SRTF)

Priority Scheduling

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 12

 Priority Scheduling

 Choose next job based on priority

» Airline checkin for first class passengers

 Can implement SJF, priority = 1/(expected CPU burst)

 Also can be either preemptive or non-preemptive

 Problem

 Starvation – low priority jobs can wait indefinitely

 Solution

 “Age” processes

» Increase priority as a function of waiting time

» Decrease priority as a function of CPU consumption

Round Robin (RR)

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 13

 Round Robin

 Excellent for timesharing

 Ready queue is treated as a circular queue (FIFO)

 Each job is given a time slice called a quantum

 A job executes for the duration of the quantum, or until it

blocks or is interrupted

 No starvation

 Can be preemptive or non-preemptive

 Problem

 Context switches are frequent and need to be very fast

Combining Algorithms

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 14

 Scheduling algorithms can be combined

 Have multiple queues

 Use a different algorithm for each queue

 Move processes among queues

 Example: Multiple-level feedback queues (MLFQ)

 Multiple queues representing different job types

» Interactive, CPU-bound, batch, system, etc.

 Queues have priorities, jobs on same queue scheduled RR

 Jobs can move among queues based upon execution history

» Feedback: Switch from interactive to CPU-bound behavior

Unix Scheduler

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 15

 The canonical Unix scheduler uses a MLFQ
 3-4 classes spanning ~170 priority levels

» Timesharing: first 60 priorities

» System: next 40 priorities

» Real-time: next 60 priorities

» Interrupt: next 10 (Solaris)

 Priority scheduling across queues, RR within a queue
 The process with the highest priority always runs

 Processes with the same priority are scheduled RR

 Processes dynamically change priority
 Increases over time if process blocks before end of quantum

 Decreases over time if process uses entire quantum

Motivation of Unix Scheduler

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 16

 The idea behind the Unix scheduler is to reward

interactive processes over CPU hogs

 Interactive processes (shell, editor, etc.) typically run

using short CPU bursts

 They do not finish quantum before waiting for more input

 Want to minimize response time

 Time from keystroke (putting process on ready queue) to

executing keystroke handler (process running)

 Don’t want editor to wait until CPU hog finishes quantum

 This policy delays execution of CPU-bound jobs

 But that’s ok

Scheduling Overhead

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 17

 Operating systems aim to minimize overhead

 Context switching takes non-zero time, so it is pure overhead

 Overhead includes context switch + choosing next process

 Modern time-sharing OSes (Unix, Windows, …) time-

slice processes in ready list

 A process runs for its quantum, OS context switches to

another, next process runs, etc.

 A CPU-bound process will use its entire quantum (e.g., 10ms)

 An IO-bound process will use part (e.g., 1ms), then issue IO

 The IO-bound process goes on a wait queue, the OS switches

to the next process to run, the IO-bound process goes back

on the ready list when the IO completes

Utilization

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 18

 CPU utilization is the fraction of time the system is

doing useful work (e.g., not context switching or idle)

 If the system has

 Quantum of 10ms + context-switch overhead of 0.1ms

 3 CPU-bound processes + round-robin scheduling

 In steady-state, time is spent as follows:

 10ms + 0.1ms + 10ms + 0.1ms + 10ms + 0.1ms

 CPU utilization = time doing useful work / total time

 CPU utilization = (3*10ms) / (3*10ms + 3*0.1ms) = 30/30.3

 If one process is IO-bound, it will not use full quantum

 10ms + 0.1ms + 10ms + 0.1ms + 1ms + 0.1ms

 CPU util = (2*10 + 1) / (2*10 + 1 + 3*0.1) = 21/21.3

Scheduling Summary

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 19

 Scheduler (dispatcher) is the module that gets invoked

when a context switch needs to happen

 Scheduling algorithm determines which process runs,

where processes are placed on queues

 Many potential goals of scheduling algorithms

 Utilization, throughput, wait time, response time, etc.

 Various algorithms to meet these goals

 FCFS/FIFO, SJF, Priority, RR

 Can combine algorithms

 Multiple-level feedback queues

 Unix example

Thread Scheduling

 Discussed scheduling in the context of processes, but

thread scheduling is analogous

 Process scheduling and thread scheduling are

essentially the same for kernel supported threads

 User-level thread facilities have analogous user-level

thread scheduler

February 1, 2007 CSE 120 – Lecture 8 – Scheduling and Deadlock 20

