
CSE 120

Principles of Operating

Systems

Spring 2017

Lecture 3: Processes

Processes

October 1, 2015 CSE 120 – Lecture 3 –Processes 2

 This lecture starts a class segment that covers

processes, threads, and synchronization

 These topics are perhaps the most important in this class

 (They will be covered in the exams)

 Today’s topics are processes and process

management

 What are the units of execution?

 How are those units of execution represented in the OS?

 How is work scheduled in the CPU?

 What are the possible execution states of a process?

 How does a process move from one state to another?

The Process

October 1, 2015 CSE 120 – Lecture 3 –Processes 3

 The process is the OS abstraction for execution

 It is the unit of execution

 It is the unit of scheduling

 It is the dynamic execution context of a program

 A process is sometimes called a job or a task or a

sequential process

 A sequential process is a program in execution

 It defines the sequential, instruction-at-a-time execution of a

program

 Programs are static entities with the potential for execution

Process Components

October 1, 2015 CSE 120 – Lecture 3 –Processes 4

 A process contains all state for a program in execution

 An address space

 The code for the executing program

 The data for the executing program

 An execution stack encapsulating the state of procedure calls

 The program counter (PC) indicating the next instruction

 A set of general-purpose registers with current values

 A set of operating system resources

» Open files, network connections, etc.

 A process is named using its process ID (PID)

Basic Process Address Space

0x00000000

0xFFFFFFFF

Stack

Heap

(Dynamic Memory Alloc)

Static Data

(Data Segment)

Code

(Text Segment)

Address

Space

SP

PC

October 1, 2015 CSE 120 – Lecture 3 –Processes 5

Process State

October 1, 2015 CSE 120 – Lecture 3 –Processes 6

 A process has an execution state that indicates what it

is currently doing

 Running: Executing instructions on the CPU

» It is the process that has control of the CPU

» How many processes can be in the running state simultaneously?

 Ready: Waiting to be assigned to the CPU

» Ready to execute, but another process is executing on the CPU

 Waiting: Waiting for an event, e.g., I/O completion

» It cannot make progress until event is signaled (disk completes)

 As a process executes, it moves from state to state

 Unix “ps”: STAT column indicates execution state

 What state do you think a process is in most of the time?

 How many processes can a system support?

Process State Graph

New

October 1, 2015 CSE 120 – Lecture 3 –Processes 7

Ready

Running

Waiting

Terminated

Create

Process

Process

Exit

I/O, Page

Fault, etc.

I/O Done

Schedule

Process

Unschedule

Process

Process Data Structures

October 1, 2015 CSE 120 – Lecture 3 –Processes 8

How does the OS represent a process in the kernel?

 At any time, there are many processes in the system,

each in its particular state

 The OS data structure representing each process is

called the Process Control Block (PCB)

 The PCB contains all of the info about a process

 The PCB also is where the OS keeps all of a process’

hardware execution state (PC, SP, regs, etc.) when

the process is not running

 This state is everything that is needed to restore the hardware

to the same configuration it was in when the process was

switched out of the hardware

PCB Data Structure

October 1, 2015 CSE 120 – Lecture 3 –Processes 9

 The PCB contains a huge amount of information in

one large structure
» Process ID (PID)

» Executionstate

» Hardware state: PC, SP, regs

» Memorymanagement

» Scheduling

» Accounting

» Pointers for statequeues

» Etc.

 It is a heavyweight abstraction

struct proc (Solaris)

October 1, 2015 CSE 120 – Lecture 3 –Processes 10

/*

* One structure allocated per active process. It contains all

* data needed about the process while the process may be swapped

* out. Other per-process data (user.h) is also inside the proc structure.

* Lightweight-process data (lwp.h) and the kernel stack may be swapped out.

*/

typedef struct proc {

/*

* Fields requiring no explicit locking

*/

/* pointer to a.out vnode */

/* process address space pointer */

/* ptr to proc struct's mutex lock */

/* lock for p_cred */

/* process credentials */

struct vnode *p_exec;

struct as *p_as; struct

plock *p_lockp;

kmutex_t p_crlock;

struct cred *p_cred;

/*

* Fields protected by pidlock

*/

/* number of swapped out lwps */

/* status of process */

int p_swapcnt;

char p_stat;

char p_wcode; /* current wait code */

/* flags protected only by pidlock */ushort_t p_pidflag;

int p_wdata;

pid_t p_ppid;

*p_link;

/* current wait return value */

/* process id of parent */

/* forward link */

/* ptr to parent process */*p_parent;

*p_child;

*p_sibling;

/* ptr to first child process */

/* ptr to next sibling proc on chain */

p_psibling; / ptr to prev sibling proc on chain */

p_sibling_ns; / prt to siblings with new state */

p_child_ns; / prt to children with new state */

*p_next;

*p_prev;

/* active chain link next */

/* active chain link prev */

struct proc

struct proc

struct proc

struct proc

struct proc

struct proc

struct proc

struct proc

struct proc

struct proc

struct proc

struct proc

p_nextofkin; / gets accounting info at exit */

*p_orphan;

*p_nextorph;

*p_ppglink;

*p_sessp;

*p_pidp;

*p_pgidp;

/* process group hash chain link next */

/* process group hash chain link prev */

/* session information */

/* process ID info */

/* process group ID info */

*p_pglink;

struct proc

struct sess

struct pid

struct pid

/*

* Fields protected by p_lock

*/

kcondvar_t p_cv;

kcondvar_t p_flag_cv;

kcondvar_t p_lwpexit;

kcondvar_t p_holdlwps;

ushort_t p_pad1;

uint_t p_flag;

/* proc struct's condition variable */

/* waiting for some lwp to exit */

/* process is waiting for its lwps */

/* to to be held. */

/* unused */

/* protected while set. */

/* user time, this process */

/* system time, this process */

/* sum of children's user time */

/* sum of children's system time */

/* segment accounting info */

/* base address of heap */

/* heap size in bytes */

/* flags defined below */

clock_t p_utime;

clock_t p_stime;

clock_t p_cutime;

clock_t p_cstime;

caddr_t *p_segacct;

caddr_t p_brkbase;

size_t p_brksize;

/*

* Per process signal stuff.

*/

k_sigset_t p_sig;

k_sigset_t p_ignore;

k_sigset_t p_siginfo;

struct sigqhdr *p_sigqhdr;

struct sigqhdr *p_signhdr;

uchar_t p_stopsig;

/* signals pending to this process */

/* ignore when generated */

/* gets signal info with signal */

struct sigqueue *p_sigqueue; /* queued siginfo structures */

/* hdr to sigqueue structure pool */

/* hdr to signotify structure pool */

/* jobcontrol stop signal */

struct proc (Solaris) (2)

October 1, 2015 CSE 120 – Lecture 3 –Processes 11

/*

* Special per-process flag when set will fix misaligned memory

* references.

*/

char p_fixalignment;

/*

* Per process lwp and kernel thread stuff

*/

/* most recently allocated lwpid */id_t p_lwpid;

int p_lwpcnt;

int p_lwprcnt; int

p_lwpwait; int

p_zombcnt;

int p_zomb_max;

id_t *p_zomb_tid;

/* number of lwps in this process */

/* number of not stopped lwps */

/* number of lwps in lwp_wait() */

/* number of zombie lwps */

/* number of entries in p_zomb_tid */

/* array of zombie lwpids */

/* circular list of threads */kthread_t *p_tlist;

/*

* /proc (process filesystem) debugger interface stuff.

*/

k_sigset_t p_sigmask; /* mask of traced signals (/proc) */

k_fltset_t p_fltmask; /* mask of traced faults (/proc) */

/* pointer to primary /proc vnode */struct vnode *p_trace;

struct vnode *p_plist;

kthread_t *p_agenttp;

/* list of /proc vnodes for process */

/* thread ptr for /proc agent lwp */

struct watched_area *p_warea; /* list of watched areas */

ulong_t p_nwarea; /* number of watched areas */

struct watched_page *p_wpage; /* remembered watched pages (vfork) */

int p_nwpage;

int p_mapcnt;

struct proc *p_rlink;

/* number of watched pages (vfork) */

/* number of active pr_mappage()s */

/* linked list for server */

kcondvar_t p_srwchan_cv;

size_t p_stksize; /* process stack size in bytes */

/*

* Microstate accounting, resource usage, and real-time profiling

*/

hrtime_t p_mstart;

hrtime_t p_mterm;

/* hi-res process start time */

/* hi-res process termination time */

hrtime_t p_mlreal;

kmutex_t p_pflock;

struct prof p_prof;

/* elapsed time sum over defunct lwps */

hrtime_t p_acct[NMSTATES]; /* microstate sum over defunct lwps */

struct lrusage p_ru; /* lrusage sum over defunct lwps */

struct itimerval p_rprof_timer; /* ITIMER_REALPROF interval timer */

uintptr_t p_rprof_cyclic; /* ITIMER_REALPROF cyclic*/

uint_t p_defunct; /* number of defunct lwps */

/*

* profiling. A lock is used in the event of multiple lwp's

* using the same profiling base/size.

*/

/* protects user profile arguments */

/* profile arguments */

/*

* The user structure

*/

struct user p_user; /* (see sys/user.h) */

/*

* Doors.

*/

kthread_t

struct door_node

struct door_node

kcondvar_t

char

*p_server_threads;

p_door_list; / active doors */

*p_unref_list;

p_server_cv;

p_unref_thread; /* unref thread created */

/*

* Kernel probes

*/

uchar_t p_tnf_flags;

struct proc (Solaris) (3)

October 1, 2015 CSE 120 – Lecture 3 –Processes 12

/*

* C2 Security (C2_AUDIT)

*/

caddr_t p_audit_data;

kthread_t *p_aslwptp;

/* per process audit structure */

/* thread ptr representing "aslwp" */

#if defined(i386) || defined(i386) || defined(ia64)

/*

* LDT support.

*/

kmutex_t p_ldtlock;

struct seg_desc *p_ldt;

/* protects the following fields */

/* Pointer to private LDT */

struct seg_desc p_ldt_desc; /* segment descriptor for private LDT */

/* highest selector used */int p_ldtlimit;

#endif

size_t p_swrss;

struct aio *p_aio;

struct itimer **p_itimer;

k_sigset_t

kcondvar_t

timeout_id_t

p_notifsigs;

p_notifcv;

p_alarmid;

/* resident set size before last swap */

/* pointer to async I/O struct */

/* interval timers */

/* signals in notification set */

/* notif cv to synchronize with aslwp */

/* alarm's timeout id */

uint_t p_sc_unblocked; /* number of unblocked threads */

struct vnode *p_sc_door; /* scheduler activations door */

p_usrstack; /* top of the process stack */

p_stkprot; /* stack memory protection */

caddr_t

uint_t

model_t p_model; /* data model determined at exec time */

struct lwpchan_data *p_lcp; /* lwpchan cache */

/*

* protects unmapping and initilization of robust locks.

*/

kmutex_t p_lcp_mutexinitlock;

utrap_handler_t *p_utraps; /* pointer to user trap handlers */

refstr_t *p_corefile; /* pattern for core file */

#if defined(ia64)

caddr_t

size_t

uchar_t

#endif

void

struct task

*p_rce;

*p_task;

struct proc *p_taskprev;

struct proc *p_tasknext;

p_lwpdaemon;int

int

kthread_t

p_upstack; /* base of the upward-growing stack */

p_upstksize; /* size of that stack, in bytes */

p_isa; /* which instruction set is utilized */

/* resource control extension data */

/* our containing task */

/* ptr to previous process in task */

/* ptr to next process in task */

/* number of TP_DAEMON lwps */

p_lwpdwait; /* number of daemons in lwp_wait() */

**p_tidhash; /* tid (lwpid) lookup hash table */

struct sc_data *p_schedctl; /* available schedctl structures */

} proc_t;

PCBs and Hardware State

October 1, 2015 CSE 120 – Lecture 3 –Processes 13

 When a process is running, its hardware state (PC,

SP, regs, etc.) is in the CPU

 The hardware registers contain the current values

 When the OS stops running a process, it saves the

current values of the registers into the process’ PCB

 When the OS is ready to start executing a new

process, it loads the hardware registers from the

values stored in that process’ PCB

 What happens to the code that is executing?

 The process of changing the CPU hardware state from

one process to another is called a context switch

 This can happen 100 or 1000 times a second!

State Queues

October 1, 2015 CSE 120 – Lecture 3 –Processes 14

How does the OS keep track of processes?

 The OS maintains a collection of queues that

represent the state of all processes in the system

 Typically, the OS has one queue for each state

 Ready, waiting, etc.

 Each PCB is queued on a state queue according to its

current state

 As a process changes state, its PCB is unlinked from

one queue and linked into another

State Queues

X Server PCB Idle PCB

Emacs PCB

Ready Queue Firefox PCB

Disk I/O Queue

Console Queue

Sleep Queue

.

.

.

ls PCB

There may be many wait queues,

one for each type of wait (disk,

console, timer, network, etc.)

October 1, 2015 CSE 120 – Lecture 3 –Processes 15

PCBs and State Queues

October 1, 2015 CSE 120 – Lecture 3 –Processes 16

 PCBs are data structures dynamically allocated in OS

memory

 When a process is created, the OS allocates a PCB

for it, initializes it, and places it on the ready queue

 As the process computes, does I/O, etc., its PCB

moves from one queue to another

 When the process terminates, its PCB is deallocated

Process Creation

October 1, 2015 CSE 120 – Lecture 3 –Processes 17

 A process is created by another process

 Parent is creator, child is created (Unix: ps “PPID” field)

 What creates the first process (Unix: init (PID 0 or 1))?

 The parent defines (or donates) resources and

privileges for its children

 Unix: Process User ID is inherited – children of your shell

execute with your privileges

 After creating a child, the parent may either wait for it

to finish its task or continue in parallel

Process Creation: Windows

October 1, 2015 CSE 120 – Lecture 3 –Processes 18

 The system call on Windows for creating a process is

called, surprisingly enough, CreateProcess:
BOOL CreateProcess(char *prog, char *args) (simplified)

 CreateProcess

 Creates and initializes a new PCB

 Creates and initializes a new address space

 Loads the program specified by “prog” into the address space

 Copies “args” into memory allocated in address space

 Initializes the saved hardware context to start execution at

main (or wherever specified in the file)

 Places the PCB on the ready queue

January 16, 2007 CSE 120 – Lecture 3 – Processes 19

October 1, 2015 CSE 120 – Lecture 3 –Processes 20

Process Creation: Unix

 In Unix, processes are created using fork()
int fork()

 fork()
 Creates and initializes a new PCB

 Creates a new address space

 Initializes the address space with a copy of the entire
contents of the address space of the parent

 Initializes the kernel resources to point to the resources used
by parent (e.g., open files)

 Places the PCB on the ready queue

 Fork returns twice
 Huh?

 Returns the child’s PID to the parent, “0” to the child

January 16, 2007 CSE 120 – Lecture 3 – Processes 21

October 1, 2015 CSE 120 – Lecture 3 –Processes 22

fork()

int main(int argc, char *argv[])

{

char *name = argv[0];

int child_pid = fork();

if (child_pid == 0) {

printf(“Child of %s is %d\n”, name, getpid());

return 0;

} else {

printf(“My child is %d\n”, child_pid);

return 0;

}

}

What does this program print?

Example Output

October 1, 2015 CSE 120 – Lecture 3 –Processes 23

alpenglow (18) ~/tmp> cc t.c

alpenglow (19) ~/tmp> a.out

My child is 486

Child of a.out is 486

Duplicating Address Spaces

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

PC

child_pid = 486 child_pid = 0

PC

October 1, 2015 CSE 120 – Lecture 3 –Processes 24

Divergence

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

PC

PC

child_pid = 486 child_pid = 0

October 1, 2015 CSE 120 – Lecture 3 –Processes 25

Example Continued

October 1, 2015 CSE 120 – Lecture 3 –Processes 26

alpenglow (18) ~/tmp> cc t.c

alpenglow (19) ~/tmp> a.out

My child is 486

Child of a.out is 486

alpenglow (20) ~/tmp> a.out

Child of a.out is 498

My child is 498

Why is the output in a different order?

Why fork()?

October 1, 2015 CSE 120 – Lecture 3 –Processes 27

 Very useful when the child…

 Is cooperating with the parent

 Relies upon the parent’s data to accomplish its task

 Example: Web server
while (1) {

int sock = accept();

if ((child_pid = fork()) == 0) {

Handle client request

} else {

Close socket

}

}

Process Creation: Unix (2)

October 1, 2015 CSE 120 – Lecture 3 –Processes 28

 Wait a second. How do we actually start a new

program?
int exec(char *prog, char *argv[])

 exec()

 Stops the current process

 Loads the program “prog” into the process’ address space

 Initializes hardware context and args for the new program

 Places the PCB onto the ready queue

 Note: It does not create a new process

 What does it mean for exec to return?

Process Creation: Unix (3)

October 1, 2015 CSE 120 – Lecture 3 –Processes 30

 fork() is used to create a new process, exec is used to

load a program into the address space

 Why does Windoes have CreateProcess while Unix uses

fork/exec?

 What happens if you run “exec csh” in your shell?

 What happens if you run “exec ls” in your shell? Try it.

 fork() can return an error. Why might this happen?

Process Termination

October 1, 2015 CSE 120 – Lecture 3 –Processes 30

 All good processes must come to an end. But how?

 Unix: exit(int status), Windows: ExitProcess(int status)

 Essentially, free resources and terminate

 Terminate all threads (next lecture)

 Close open files, network connections

 Allocated memory (and VM pages out on disk)

 Remove PCB from kernel data structures, delete

 Note that a process does not need to clean up itself

 Why does the OS have to do it?

wait() a second…

October 1, 2015 CSE 120 – Lecture 3 –Processes 31

 Often it is convenient to pause until a child process

has finished

 Think of executing commands in a shell

 Unix wait() (Windows: WaitForSingleObject)

 Suspends the current process until any child process ends

 waitpid() suspends until the specified child process ends

 Wait has a return value…what is it?

 Unix: Every process must be “reaped” by a parent

 What happens if a parent process exits before a child?

 What do you think a “zombie” process is?

Unix Shells

October 1, 2015 CSE 120 – Lecture 3 –Processes 32

while (1) {

char *cmd = read_command();

int child_pid = fork();

if (child_pid == 0) {

Manipulate STDIN/OUT/ERR file descriptors for pipes,

redirection, etc.

exec(cmd);

panic(“exec failed”);

} else {

waitpid(child_pid);

}

}

Process Summary

October 1, 2015 CSE 120 – Lecture 3 –Processes 33

 What are the units of execution?
 Processes

 How are those units of execution represented?
 Process Control Blocks (PCBs)

 How is work scheduled in the CPU?
 Process states, process queues, context switches

 What are the possible execution states of a process?
 Running, ready, waiting

 How does a process move from one state to another?
 Scheduling, I/O, creation, termination

 How are processes created?
 CreateProcess (NT), fork/exec (Unix)

Announcements…

October 1, 2015 CSE 120 – Lecture 3 –Processes 34

 Read Chapters 26, 27

 Project 0 due (Due by noon tomorrow)

 Project 1 starts (Out by midnight)

 HW #1 out tonight

