
CSE 120

Principles of Operating

Systems

Spring 2017

Lecture 15: IO and File Systems

File Systems

May 26, 2016 CSE 120 – Lecture 12 – File Systems 2

 First we’ll discuss properties of physical disks

 Structure

 Performance

 Scheduling

 Then we’ll discuss how we build file systems on them

 Files

 Directories

 Sharing

 Protection

 File System Layouts

 File Buffer Cache

 Read Ahead

Disks and the OS

May 26, 2016 CSE 120 – Lecture 12 – File Systems 3

 Disks are messy physical devices:

 Errors, bad blocks, missed seeks, etc.

 The job of the OS is to hide this mess from higher

level software

 Low-level device control (initiate a disk read, etc.)

 Higher-level abstractions (files, databases, etc.)

 The OS may provide different levels of disk access to

different clients

 Physical disk (surface, cylinder, sector)

 Logical disk (disk block #)

 Logical file (file block, record, or byte #)

Physical Disk Structure

 Disk components

 Platters

 Surfaces

 Tracks

 Sectors

 Cylinders

 Arm

 Heads

Arm

May 26, 2016 CSE 120 – Lecture 12 – File Systems 4

Heads

Track

Platter

Surface

Cylinder

Sector

Disk Interaction

May 26, 2016 CSE 120 – Lecture 12 – File Systems 5

 Specifying disk requests requires a lot of info:

 Cylinder #, surface #, track #, sector #, transfer size…

 Older disks required the OS to specify all of this

 The OS needed to know all disk parameters

 Modern disks are more complicated

 Not all sectors are the same size, sectors are remapped,etc.

 Current disks provide a higher-level interface (SCSI)

 The disk exports its data as a logical array of blocks [0…N]

» Disk maps logical blocks to cylinder/surface/track/sector

 Only need to specify the logical block # to read/write

 But now the disk parameters are hidden from the OS

Modern Disk Specifications

May 26, 2016 CSE 120 – Lecture 12 – File Systems 6

 Seagate Enterprise Performance 3.5" (server)

 capacity: 600 GB

 rotational speed: 15,000 RPM

 sequential read performance: 233 MB/s (outer) – 160 MB/s (inner)

 seek time (average): 2.0 ms

 Seagate Barracuda 3.5" (workstation)

 capacity: 3000 GB

 rotational speed: 7,200 RPM

 sequential read performance: 210 MB/s - 156 MB/s (inner)

 seek time (average): 8.5 ms

 Seagate Savvio 2.5" (smaller form factor)

 capacity: 2000 GB

 rotational speed: 7,200 RPM

 sequential read performance: 135 MB/s (outer) - ? MB/s (inner)

 seek time (average): 11 ms

Disk Performance

May 26, 2016 CSE 120 – Lecture 12 – File Systems 7

 Disk request performance depends upon three steps

 Seek – moving the disk arm to the correct cylinder

» Depends on how fast disk arm can move (increasing very slowly)

 Rotation – waiting for the sector to rotate under the head

» Depends on rotation rate of disk (increasing, but slowly)

 Transfer – transferring data from surface into disk controller

electronics, sending it back to the host

» Depends on density (increasing quickly)

 When the OS uses the disk, it tries to minimize the cost

of all of these steps

 Particularly seeks and rotation

Solid State Disks

May 26, 2016 CSE 120 – Lecture 12 – File Systems 8

 SSDs are a relatively new storage technology

 Memory that does not require power to remember state

 No physical moving parts  faster than hard disks

 No seek and no rotation overhead

 But…more expensive, not as much capacity

 Generally speaking, file systems have remained

unchanged when using SSDs

 Some optimizations no longer necessary (e.g., layout policies,

disk head scheduling), but basically leave FS code as is

 Initially, SSDs have the same disk interface (SATA)

 Increasingly, SSDs used directly over the I/O bus (PCIe)

» Much higher performance

SSDs vs Disks

May 26, 2016 CSE 120 – Lecture 12 – File Systems 9

 Seek and rotational delays affect disk performance

 SSDs don’t suffer these artifacts

 But, SSDs do “write leveling”, which can slow writes as compared to

reads

 When will SSDs replace Disk drives?

 In your laptop? Maybe already.

 For your home PC, if you have one? Maybe already.

 For massive bulk storage at Amazon, Google, etc? When they are

cheaper per byte

 As part of the memory hierarchy at Amazon, Google, etc? Already.

Disk Scheduling

May 26, 2016 CSE 120 – Lecture 12 – File Systems 10

 Because seeks are so expensive (milliseconds!), the
OS tries to schedule disk requests that are queued
waiting for the disk
 FCFS (do nothing)

» Reasonable when load is low

» Long waiting times for long request queues

 SSTF (shortest seek time first)

» Minimize arm movement (seek time), maximize request rate

» Favors middle blocks

 SCAN (elevator)

» Service requests in one direction until done, then reverse

 C-SCAN

» Like SCAN, but only go in one direction (typewriter)

Disk Scheduling (2)

May 26, 2016 CSE 120 – Lecture 12 – File Systems 11

 In general, unless there are request queues, disk

scheduling does not have much impact

 Important for servers, less so for PCs

 Modern disks often do the disk scheduling themselves

 Disks know their layout better than OS, can optimize better

 Ignores, undoes any scheduling done by OS

File Systems

May 26, 2016 CSE 120 – Lecture 12 – File Systems 12

 File systems

 Implement an abstraction (files) for secondary storage

 Organize files logically (directories)

 Permit sharing of data between processes, people, and

machines

 Protect data from unwanted access (security)

Files

May 26, 2016 CSE 120 – Lecture 12 – File Systems 13

 A file is data with some properties

 Contents, size, owner, last read/write time, protection, etc.

 A file can also have a type

 Understood by the file system

» Block, character, device, portal, link, etc.

 Understood by other parts of the OS or runtime libraries

» Executable, dll, source, object, text, etc.

 A file’s type can be encoded in its name or contents

 Windows encodes type in name

» .com, .exe, .bat, .dll, .jpg, etc.

 Unix encodes type in contents

» Magic numbers, initial characters (e.g., #! for shell scripts)

Basic File Operations

May 26, 2016 CSE 120 – Lecture 12 – File Systems 14

Unix

 creat(name)

 open(name, how)

 read(fd, buf, len)

 write(fd, buf, len)

 sync(fd)

 seek(fd, pos)

 close(fd)

 unlink(name)

Windows

 CreateFile(name, CREATE)

 CreateFile(name, OPEN)

 ReadFile(handle, …)

 WriteFile(handle, …)

 FlushFileBuffers(handle, …)

 SetFilePointer(handle, …)

 CloseHandle(handle, …)

 DeleteFile(name)

 CopyFile(name)

 MoveFile(name)

File Access Methods

May 26, 2016 CSE 120 – Lecture 12 – File Systems 15

 Some file systems provide different access methods

that specify different ways for accessing data in a file

 Sequential access – read bytes one at a time, in order

 Direct access – random access given block/byte number

 Record access – file is array of fixed- or variable-length

records, read/written sequentially or randomly by record #

 Indexed access – file system contains an index to a particular

field of each record in a file, reads specify a value for that field

and the system finds the record via the index (DBs)

 What file access method does Unix, Windows provide?

 Older systems provide the more complicated methods

Directories

May 26, 2016 CSE 120 – Lecture 12 – File Systems 16

 Directories serve two purposes

 For users, they provide a structured way to organize files

 For the file system, they provide a convenient naming

interface that allows the implementation to separate logical file

organization from physical file placement on the disk

 Most file systems support multi-level directories

 Naming hierarchies (/, /usr, /usr/local/, …)

 Most file systems support the notion of a current

directory

 Relative names specified with respect to current directory

 Absolute names start from the root of directory tree

Directory Internals

May 26, 2016 CSE 120 – Lecture 12 – File Systems 17

 A directory is a list of entries

 <name, location>

 Name is just the name of the file or directory

 Location depends upon how file is represented on disk

 List is usually unordered (effectively random)

 Entries usually sorted by program that reads directory

 Directories typically stored in files

 Only need to manage one kind of secondary storage unit

Basic Directory Operations

May 26, 2016 CSE 120 – Lecture 12 – File Systems 18

Unix

 Directories implemented in files

 Use file ops to create dirs

 C runtime library provides a

higher-level abstraction for

reading directories

 opendir(name)

 readdir(DIR)

 seekdir(DIR)

 closedir(DIR)

Windows

 Explicit dir operations

 CreateDirectory(name)

 RemoveDirectory(name)

 Very different method for

reading directory entries

 FindFirstFile(pattern)

 FindNextFile()

Path Name Translation

May 26, 2016 CSE 120 – Lecture 12 – File Systems 19

 Let’s say you want to open “/one/two/three”

 What does the file system do?

 Open directory “/” (well known, can always find)

 Search for the entry “one”, get location of “one” (in dir entry)

 Open directory “one”, search for “two”, get location of “two”

 Open directory “two”, search for “three”, get location of “three”

 Open file “three”

 Systems spend a lot of time walking directory paths

 This is why open is separate from read/write

 OS will cache prefix lookups for performance

» /a/b, /a/bb, /a/bbb, etc., all share “/a” prefix

File Sharing

May 26, 2016 CSE 120 – Lecture 12 – File Systems 20

 File sharing has been around since timesharing

 Easy to do on a single machine

 PCs, workstations, and networks get us there (mostly)

 File sharing is important for getting work done

 Basis for communication and synchronization

 Two key issues when sharing files

 Semantics of concurrent access

» What happens when one process reads while another writes?

» What happens when two processes open a file for writing?

» What are we going to use to coordinate?

 Protection

Protection

May 26, 2016 CSE 120 – Lecture 12 – File Systems 21

 File systems implement a protection system

 Who can access a file

 How they can access it

 More generally…

 Objects are “what”, subjects are “who”, actions are “how”

 A protection system dictates whether a given action

performed by a given subject on a given object should

be allowed

 You can read and/or write your files, but others cannot

 You can read “/etc/motd”, but you cannot write it

Representing Protection

Access Control Lists (ACL)

 For each object, maintain a list

of subjects and their permitted

actions

Capabilities

 For each subject, maintain a list

of objects and their permitted

actions

/one /two /three

Alice rw - rw

Bob w - r

Charlie w r rw

Subjects

Objects

ACL

Capability

May 26, 2016 CSE 120 – Lecture 12 – File Systems 22

 Setuid

May 26, 2016 CSE 120 – Lecture 12 – File Systems 23

 Show setuid bit

 Root/sudo/administrator

 Pic of ls -l

ACLs and Capabilities

May 26, 2016 CSE 120 – Lecture 12 – File Systems 24

 The approaches differ only in how the table is
represented
 What approach does Unix use in the FS?

 Capabilities are easier to transfer
 They are like keys, can handoff, does not depend on subject

 In practice, ACLs are easier to manage
 Object-centric, easy to grant, revoke

 To revoke capabilities, have to keep track of all subjects that
have the capability – a challenging problem

 ACLs have a problem when objects are heavily shared
 The ACLs become very large

 Use groups (e.g., Unix)

File System Layout

May 26, 2016 CSE 120 – Lecture 12 – File Systems 25

How do file systems use the disk to store files?

 File systems define a block size (e.g., 4KB)

 Disk space is allocated in granularity of blocks

 A “Master Block” determines location of root directory

 Always at a well-known disk location

 Often replicated across disk for reliability

 A free map determines which blocks are free, allocated

 Usually a bitmap, one bit per block on the disk

 Also stored on disk, cached in memory for performance

 Remaining disk blocks used to store files (and dirs)

 There are many ways to do this

Disk Layout Strategies

May 26, 2016 CSE 120 – Lecture 12 – File Systems 26

 Files span multiple disk blocks

 How do you find all of the blocks for a file?

1. Contiguous allocation

» Likememory

» Fast, simplifies directory access

» Inflexible, causes fragmentation, needs compaction

2. Linked structure

» Each block points to the next, directory points to the first

» Good for sequential access, bad for all others

3. Indexed structure (indirection, hierarchy)

» An “index block” contains pointers to many other blocks

» Handles random better, still good for sequential

» May need multiple index blocks (linked together)

Unix Inodes

 Unix inodes implement an indexed structure for files

 Also store metadata info (protection, timestamps, length, ref count…)

 Each inode contains 15 block pointers

 First 12 are direct blocks (e.g., 4 KB blocks)

 Then single, double, and triple indirect

…
12
13

14

0

1
…

… …

(Metadata)

May 26, 2016 CSE 120 – Lecture 12 – File Systems 27

(1)

(2)

(3)

Unix Inodes and Path Search

May 26, 2016 CSE 120 – Lecture 12 – File Systems 28

 Unix inodes are not directories

 Inodes describe where on the disk the blocks for a file

are placed

 Directories are files, so inodes also describe where the blocks

for directories are placed on the disk

 Directory entries map file names to inodes

 To open “/one”, use Master Block to find inode for “/” on disk

 Open “/”, look for entry for “one”

 This entry gives the disk block number for the inode for “one”

 Read the inode for “one” into memory

 The inode says where first data block is on disk

 Read that block into memory to access the data in the file

File Buffer Cache

May 26, 2016 CSE 120 – Lecture 12 – File Systems 29

 Applications exhibit significant locality for reading and

writing files

 Idea: Cache file blocks in memory to capture locality

 Called the file buffer cache

 Cache is system wide, used and shared by all processes

 Reading from the cache makes a disk perform like memory

 Even a small cache can be very effective

 Issues

 The file buffer cache competes with VM (tradeoff here)

 Like VM, it has limited size

 Need replacement algorithms again (LRU usually used)

Caching Writes

May 26, 2016 CSE 120 – Lecture 12 – File Systems 30

 On a write, some applications assume that data
makes it through the buffer cache and onto the disk
 As a result, writes are often slow even with caching

 OSes typically do write back caching
 Maintain a queue of uncommitted blocks

 Periodically flush the queue to disk (30 second threshold)

 If blocks changed many times in 30 secs, only need one I/O

 If blocks deleted before 30 secs (e.g., /tmp), no I/Os needed

 Unreliable, but practical
 On a crash, all writes within last 30 secs are lost

 Modern OSes do this by default; too slow otherwise

 System calls (Unix: fsync) enable apps to force data to disk

Read Ahead

May 26, 2016 CSE 120 – Lecture 12 – File Systems 31

 Many file systems implement “read ahead”

 FS predicts that the process will request next block

 FS goes ahead and requests it from the disk

 This can happen while the process is computing on previous

block

» Overlap I/O with execution

 When the process requests block, it will be in cache

 Compliments the disk cache, which also is doing read ahead

 For sequentially accessed files can be a big win

 Unless blocks for the file are scattered across the disk

 File systems try to prevent that, though (during allocation)

Summary

May 26, 2016 CSE 120 – Lecture 12 – File Systems 32

 Files
 Operations, access methods

 Directories
 Operations, using directories to do path searches

 Sharing

 Protection
 ACLs vs. capabilities

 File System Layouts
 Unix inodes

 File Buffer Cache
 Strategies for handling writes

 Read Ahead

Next time…

May 26, 2016 CSE 120 – Lecture 12 – File Systems 33

 Read Chapters 11.8, 12.7

