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Lecture Overview
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Today we’ll cover more paging mechanisms:

 Optimizations

 Managing page tables (space)

 Efficient translations (TLBs) (time)

 Demand paged virtual memory (space)

 Recap address translation

 Advanced Functionality

 Sharing memory

 Copy on Write

 Mapped files



Managing Page Tables
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 Last lecture we computed the size of the page table  

for a 32-bit address space w/ 4K pages to be 4MB

 This is far far too much overhead for each process

 How can we reduce this overhead?

 Observation: Only need to map the portion of the address  

space actually being used (tiny fraction of entire addr space)

 How do we only map what is being used?

 Can dynamically extend page table…

 Does not work if addr space is sparce (internal fragmentation)

 Use another level of indirection: two-level page tables



Two-Level Page Tables
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 Two-level page tables
 Virtual addresses (VAs) have three parts:

»  Master page number, secondary page number, and offset

 Master page table maps VAs to secondary page table

 Secondary page table maps page number to physical page

 Offset indicates where in physical page address is located

 Example
 4K pages, 4 bytes/PTE

 How many bits in offset? 4K = 12 bits

 Want master page table in one page: 4K/4 bytes = 1K entries

 Hence, 1K secondary page tables. How many bits?

 Master (1K) = 10, offset = 12, inner = 32 – 10 – 12 = 10 bits



Physical Memory

Two-Level Page Tables
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Master page number Secondary Offset

Page frame Offset



Page Table Evolution
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Page Table Evolution
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Addressing Page Tables
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Where do we store page tables (which address space)?

 Physical memory

 Easy to address, no translation required

 But, allocated page tables consume memory for lifetime of VAS

 Virtual memory (OS virtual address space)

 Cold (unused) page table pages can be paged out to disk

 But, addressing page tables requires translation

 How do we stop recursion?

 Do not page the outer page table (called wiring)

 If we’re going to page the page tables, might as well  

page the entire OS address space, too

 Need to wire special code and data (fault, interrupt handlers)



Efficient Translations

November 5, 2015 CSE 120 – Lecture 10 –Paging 10

 Our original page table scheme already doubled the  

cost of doing memory lookups

 One lookup into the page table, another to fetch the data

 Now two-level page tables triple the cost!

 Two lookups into the page tables, a third to fetch the data

 Worse, 64-bit architectures support 4-level page tables

 And this assumes the page table is in memory

 How can we use paging but also have lookups cost  

about the same as fetching from memory?

 Cache translations in hardware

 Translation Lookaside Buffer (TLB)

 TLB managed by Memory Management Unit (MMU)



TLBs
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 Translation Lookaside Buffers
 Translate virtual page #s into PTEs (not physical addrs)

 Can be done in a single machine cycle

 TLBs implemented in hardware
 Fully associative cache (all entries looked up in parallel)

 Cache tags are virtual page numbers

 Cache values are PTEs (entries from page tables)

 With PTE + offset, can directly calculate physical address

 TLBs exploit locality
 Processes only use a handful of pages at a time

»  32-128 entries/pages (128-512K)

»  Only need those pages to be“mapped”

 Hit rates are therefore very important
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Managing TLBs
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 Address translations for most instructions are handled  
using the TLB
 >99% of translations, but there are misses (TLB miss)…

 Who places translations into the TLB (loads the TLB)?
 Hardware (Memory Management Unit) [x86]

»  Knows where page tables are in main memory

»  OS maintains tables, HW accesses them directly

»  Tables have to be in HW-defined format (inflexible)

 Software loaded TLB (OS) [MIPS, Alpha, Sparc, PowerPC]

»  TLB faults to the OS, OS finds appropriate PTE, loads it in TLB

»  Must be fast (but still 20-200 cycles)

»  CPU ISA has instructions for manipulating TLB

»  Tables can be in any format convenient for OS (flexible)



Managing TLBs (2)
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 OS ensures that TLB and page tables are consistent

 When it changes the protection bits of a PTE, it needs to  

invalidate the PTE if it is in the TLB

 Reload TLB on a process context switch

 Invalidate all entries

 Why? What is one way to fix it?

 When the TLB misses and a new PTE has to be  

loaded, a cached PTE must be evicted

 Choosing PTE to evict is called the TLB replacement policy

 Implemented in hardware, often simple (e.g., Last-Not-Used)



Paged Virtual Memory
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 We’ve mentioned before that pages can be moved  

between memory and disk

 This process is called demand paging

 OS uses main memory as a page cache of all the data  

allocated by processes in the system

 Initially, pages are allocated from memory

 When memory fills up, allocating a page in memory requires  

some other page to be evicted from memory

»  Why physical memory pages are called“frames”

 Evicted pages go to disk (where? the swap file/backing store)

 The movement of pages between memory and disk is done by  

the OS, and is transparent to the application



Page Faults
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 What happens when a process accesses a page that  
has been evicted?
1. When it evicts a page, the OS sets the PTE as invalid 

and  stores the location of the page in the swap file in the
PTE

2. When a process accesses the page, the invalid PTE 
will  cause a trap (page fault)

3. The trap will run the OS page fault handler

4. Handler uses the invalid PTE to locate page in swap file

5. Reads page into a physical frame, updates PTE to point to it

6. Restarts process

 But where does it put it? Have to evict something else
 OS usually keeps a pool of free pages around so that  

allocations do not always cause evictions



Address Translation Redux
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 We started this topic with the high-level problem of  

translating virtual addresses into physical addresses

 We’ve covered all of the pieces

 Virtual and physical addresses

 Virtual pages and physical page frames

 Page tables and page table entries (PTEs), protection

 TLBs

 Demand paging

 Now let’s put it together, bottom to top



The Common Case
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 Situation: Process is executing on the CPU, and it issues a read  

to an address

 What kind of address is it? Virtual or physical?

 The read goes to the TLB in the MMU

1. TLB does a lookup using the page number of the address

2. Common case is that the page number matches, returning a page  

table entry (PTE) for the mapping for this address

3. TLB validates that the PTE protection allows reads (in this example)

4. PTE specifies which physical frame holds the page

5. MMU combines the physical frame and offset into a physical address

6. MMU then reads from that physical address, returns value to CPU

 Note: This is all done by the hardware



TLB Misses
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 At this point, two other things can happen

1. TLB does not have a PTE mapping this virtual address

2. PTE in TLB, but memory access violates PTE protection bits

 We’ll consider each in turn



Reloading the TLB
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 If the TLB does not have mapping, two possibilities:

1. MMU loads PTE from page table in memory

»  Hardware managed TLB, OS not involved in this step

»  OS has already set up the page tables so that the hardware can

access it directly

2. Trap to the OS

»  Software managed TLB, OS intervenes at this point

»  OS does lookup in page table, loads PTE into TLB

»  OS returns from exception, TLB continues

 A machine will only support one method or the other

 At this point, there is a PTE for the address in the TLB



TLB Misses (2)
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Note that:

 Page table lookup (by HW or OS) can cause a  
recursive fault if page table is paged out
 Assuming page tables are in OS virtual address space

 Not a problem if tables are in physical memory

 Yes, this is a complicated situation

 When TLB has PTE, it restarts translation
 Common case is that the PTE refers to a valid page in memory

» These faults are handled quickly, just read PTE from the page  
table in memory and load into TLB

 Uncommon case is that TLB faults again on PTE because of  
PTE protection bits (e.g., page is invalid)

»  Becomes a pagefault…



Page Faults
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 PTE can indicate a protection fault

 Read/write/execute – operation not permitted on page

 Invalid – virtual page not allocated, or page not in physical  

memory

 TLB traps to the OS (software takes over)

 R/W/E – OS usually will send fault back up to process, or  

might be playing games (e.g., copy on write, mapped files)

 Invalid

»  Virtual page not allocated in address space

 OS sends fault to process (e.g., segmentation fault)

»  Page not in physical memory

 OS allocates frame, reads from disk, maps PTE to physical frame



Advanced Functionality
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 Now we’re going to look at some advanced  

functionality that the OS can provide applications  

using virtual memory tricks

 Shared memory

 Copy on Write

 Mapped files



Sharing
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 Private virtual address spaces protect applications  

from each other

 Usually exactly what we want

 But this makes it difficult to share data (have to copy)

 Parents and children in a forking Web server or proxy will  

want to share an in-memory cache without copying

 We can use shared memory to allow processes to  

share data using direct memory references

 Both processes see updates to the shared memory segment

»  Process B can immediately read an update by process A

 How are we going to coordinate access to shared data?



Sharing (2)
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 How can we implement sharing using page tables?

 Have PTEs in both tables map to the same physical frame

 Each PTE can have different protection values

 Must update both PTEs when page becomes invalid

 Can map shared memory at same or different virtual  

addresses in each process’ address space

 Different: Flexible (no address space conflicts), but pointers  

inside the shared memory segment are invalid (Why?)

 Same: Less flexible, but shared pointers are valid (Why?)

 What happens if a pointer inside the shared segment  

references an address outside the segment?



Isolation: No Sharing
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Sharing Pages
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Copy on Write
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 OSes spend a lot of time copying data

 System call arguments between user/kernel space

 Entire address spaces to implement fork()

 Use Copy on Write (CoW) to defer large copies as  

long as possible, hoping to avoid them altogether

 Instead of copying pages, create shared mappings of parent  

pages in child virtual address space

 Shared pages are protected as read-only in parent and child

»  Reads happen as usual

» Writes generate a protection fault, trap to OS, copy page, change  

page mapping in client page table, restart write instruction

 How does this help fork()?



Copy on Write: Before Fork
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Copy on Write: Fork
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Copy on Write: On A Write
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Mapped Files
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 Mapped files enable processes to do file I/O using  

loads and stores

 Instead of “open, read into buffer, operate on buffer, …”

 Bind a file to a virtual memory region (mmap() in Unix)

 PTEs map virtual addresses to physical frames holding file data

 Virtual address base + N refers to offset N in file

 Initially, all pages mapped to file are invalid

 OS reads a page from file when invalid page is accessed

 OS writes a page to file when evicted, or region unmapped

 If page is not dirty (has not been written to), no write needed

»  Another use of the dirty bit in PTE



Mapped Files
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Mapped Files (2)
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 File is essentially backing store for that region of the  

virtual address space (instead of using the swap file)

 Virtual address space not backed by “real” files also called 

Anonymous VM

 Advantages

 Uniform access for files and memory (just use pointers)

 Less copying

 Drawbacks

 Process has less control over data movement

»  OS handles faults transparently

 Does not generalize to streamed I/O (pipes, sockets, etc.)



Summary
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Paging mechanisms:

 Optimizations

 Managing page tables (space)

 Efficient translations (TLBs) (time)

 Demand paged virtual memory (space)

 Recap address translation

 Advanced Functionality

 Sharing memory

 Copy on Write

 Mapped files

Next time: Paging policies



Next time…
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 Chapters 21-23


