
CSE 120

Principles of Operating

Systems

Spring 2017

Lecture 12: Paging

Lecture Overview

November 5, 2015 CSE 120 – Lecture 10 –Paging 2

Today we’ll cover more paging mechanisms:

 Optimizations

 Managing page tables (space)

 Efficient translations (TLBs) (time)

 Demand paged virtual memory (space)

 Recap address translation

 Advanced Functionality

 Sharing memory

 Copy on Write

 Mapped files

Managing Page Tables

November 5, 2015 CSE 120 – Lecture 10 –Paging 3

 Last lecture we computed the size of the page table

for a 32-bit address space w/ 4K pages to be 4MB

 This is far far too much overhead for each process

 How can we reduce this overhead?

 Observation: Only need to map the portion of the address

space actually being used (tiny fraction of entire addr space)

 How do we only map what is being used?

 Can dynamically extend page table…

 Does not work if addr space is sparce (internal fragmentation)

 Use another level of indirection: two-level page tables

Two-Level Page Tables

November 5, 2015 CSE 120 – Lecture 10 –Paging 4

 Two-level page tables
 Virtual addresses (VAs) have three parts:

» Master page number, secondary page number, and offset

 Master page table maps VAs to secondary page table

 Secondary page table maps page number to physical page

 Offset indicates where in physical page address is located

 Example
 4K pages, 4 bytes/PTE

 How many bits in offset? 4K = 12 bits

 Want master page table in one page: 4K/4 bytes = 1K entries

 Hence, 1K secondary page tables. How many bits?

 Master (1K) = 10, offset = 12, inner = 32 – 10 – 12 = 10 bits

Physical Memory

Two-Level Page Tables

Page table

Virtual Address

Master Page Table

Physical Address

Page frame

Secondary Page Table

November 5, 2015 CSE 120 – Lecture 10 –Paging 5

Master page number Secondary Offset

Page frame Offset

Page Table Evolution

Virtual Address

Space

Page N-1

Physical MemoryLinear (Flat)

Page Table Page 0

Page 1

Page 2

November 5, 2015 CSE 120 – Lecture 10 –Paging 6

Page Table Evolution

Virtual Address

Space

Page N-1

Physical Memory

Hierarchical

Page Table

Page 0

Page 1

Page 2

Secondary

Master

November 5, 2015 CSE 120 – Lecture 10 –Paging 7

Page Table Evolution

Virtual Address

Space

Page N-1

Physical Memory

Hierarchical

Page Table

Page 0

Page 1

Page 2

Secondary

Master

Unmapped

Not Needed

November 5, 2015 CSE 120 – Lecture 10 –Paging 8

Addressing Page Tables

November 5, 2015 CSE 120 – Lecture 10 –Paging 9

Where do we store page tables (which address space)?

 Physical memory

 Easy to address, no translation required

 But, allocated page tables consume memory for lifetime of VAS

 Virtual memory (OS virtual address space)

 Cold (unused) page table pages can be paged out to disk

 But, addressing page tables requires translation

 How do we stop recursion?

 Do not page the outer page table (called wiring)

 If we’re going to page the page tables, might as well

page the entire OS address space, too

 Need to wire special code and data (fault, interrupt handlers)

Efficient Translations

November 5, 2015 CSE 120 – Lecture 10 –Paging 10

 Our original page table scheme already doubled the

cost of doing memory lookups

 One lookup into the page table, another to fetch the data

 Now two-level page tables triple the cost!

 Two lookups into the page tables, a third to fetch the data

 Worse, 64-bit architectures support 4-level page tables

 And this assumes the page table is in memory

 How can we use paging but also have lookups cost

about the same as fetching from memory?

 Cache translations in hardware

 Translation Lookaside Buffer (TLB)

 TLB managed by Memory Management Unit (MMU)

TLBs

November 5, 2015 CSE 120 – Lecture 10 –Paging 11

 Translation Lookaside Buffers
 Translate virtual page #s into PTEs (not physical addrs)

 Can be done in a single machine cycle

 TLBs implemented in hardware
 Fully associative cache (all entries looked up in parallel)

 Cache tags are virtual page numbers

 Cache values are PTEs (entries from page tables)

 With PTE + offset, can directly calculate physical address

 TLBs exploit locality
 Processes only use a handful of pages at a time

» 32-128 entries/pages (128-512K)

» Only need those pages to be“mapped”

 Hit rates are therefore very important

TLBs

CPU

TLB

DRAM

Cache of PTEs

Typical Details:

Small (Just 32-128 PTEs)

Separate Instruction and Data TLBs

Two-level (256-512 combined I/D)

Full Page Table

in Memory

Virtual

Addresses

Physical

Addresses

November 5, 2015 CSE 120 – Lecture 10 –Paging 12

Managing TLBs

November 5, 2015 CSE 120 – Lecture 10 –Paging 13

 Address translations for most instructions are handled
using the TLB
 >99% of translations, but there are misses (TLB miss)…

 Who places translations into the TLB (loads the TLB)?
 Hardware (Memory Management Unit) [x86]

» Knows where page tables are in main memory

» OS maintains tables, HW accesses them directly

» Tables have to be in HW-defined format (inflexible)

 Software loaded TLB (OS) [MIPS, Alpha, Sparc, PowerPC]

» TLB faults to the OS, OS finds appropriate PTE, loads it in TLB

» Must be fast (but still 20-200 cycles)

» CPU ISA has instructions for manipulating TLB

» Tables can be in any format convenient for OS (flexible)

Managing TLBs (2)

November 5, 2015 CSE 120 – Lecture 10 –Paging 14

 OS ensures that TLB and page tables are consistent

 When it changes the protection bits of a PTE, it needs to

invalidate the PTE if it is in the TLB

 Reload TLB on a process context switch

 Invalidate all entries

 Why? What is one way to fix it?

 When the TLB misses and a new PTE has to be

loaded, a cached PTE must be evicted

 Choosing PTE to evict is called the TLB replacement policy

 Implemented in hardware, often simple (e.g., Last-Not-Used)

Paged Virtual Memory

November 5, 2015 CSE 120 – Lecture 10 –Paging 15

 We’ve mentioned before that pages can be moved

between memory and disk

 This process is called demand paging

 OS uses main memory as a page cache of all the data

allocated by processes in the system

 Initially, pages are allocated from memory

 When memory fills up, allocating a page in memory requires

some other page to be evicted from memory

» Why physical memory pages are called“frames”

 Evicted pages go to disk (where? the swap file/backing store)

 The movement of pages between memory and disk is done by

the OS, and is transparent to the application

Page Faults

November 5, 2015 CSE 120 – Lecture 10 –Paging 16

 What happens when a process accesses a page that
has been evicted?
1. When it evicts a page, the OS sets the PTE as invalid

and stores the location of the page in the swap file in the
PTE

2. When a process accesses the page, the invalid PTE
will cause a trap (page fault)

3. The trap will run the OS page fault handler

4. Handler uses the invalid PTE to locate page in swap file

5. Reads page into a physical frame, updates PTE to point to it

6. Restarts process

 But where does it put it? Have to evict something else
 OS usually keeps a pool of free pages around so that

allocations do not always cause evictions

Address Translation Redux

November 5, 2015 CSE 120 – Lecture 10 –Paging 17

 We started this topic with the high-level problem of

translating virtual addresses into physical addresses

 We’ve covered all of the pieces

 Virtual and physical addresses

 Virtual pages and physical page frames

 Page tables and page table entries (PTEs), protection

 TLBs

 Demand paging

 Now let’s put it together, bottom to top

The Common Case

November 5, 2015 CSE 120 – Lecture 10 –Paging 18

 Situation: Process is executing on the CPU, and it issues a read

to an address

 What kind of address is it? Virtual or physical?

 The read goes to the TLB in the MMU

1. TLB does a lookup using the page number of the address

2. Common case is that the page number matches, returning a page

table entry (PTE) for the mapping for this address

3. TLB validates that the PTE protection allows reads (in this example)

4. PTE specifies which physical frame holds the page

5. MMU combines the physical frame and offset into a physical address

6. MMU then reads from that physical address, returns value to CPU

 Note: This is all done by the hardware

TLB Misses

November 5, 2015 CSE 120 – Lecture 10 –Paging 19

 At this point, two other things can happen

1. TLB does not have a PTE mapping this virtual address

2. PTE in TLB, but memory access violates PTE protection bits

 We’ll consider each in turn

Reloading the TLB

November 5, 2015 CSE 120 – Lecture 10 –Paging 20

 If the TLB does not have mapping, two possibilities:

1. MMU loads PTE from page table in memory

» Hardware managed TLB, OS not involved in this step

» OS has already set up the page tables so that the hardware can

access it directly

2. Trap to the OS

» Software managed TLB, OS intervenes at this point

» OS does lookup in page table, loads PTE into TLB

» OS returns from exception, TLB continues

 A machine will only support one method or the other

 At this point, there is a PTE for the address in the TLB

TLB Misses (2)

November 5, 2015 CSE 120 – Lecture 10 –Paging 21

Note that:

 Page table lookup (by HW or OS) can cause a
recursive fault if page table is paged out
 Assuming page tables are in OS virtual address space

 Not a problem if tables are in physical memory

 Yes, this is a complicated situation

 When TLB has PTE, it restarts translation
 Common case is that the PTE refers to a valid page in memory

» These faults are handled quickly, just read PTE from the page
table in memory and load into TLB

 Uncommon case is that TLB faults again on PTE because of
PTE protection bits (e.g., page is invalid)

» Becomes a pagefault…

Page Faults

November 5, 2015 CSE 120 – Lecture 10 –Paging 22

 PTE can indicate a protection fault

 Read/write/execute – operation not permitted on page

 Invalid – virtual page not allocated, or page not in physical

memory

 TLB traps to the OS (software takes over)

 R/W/E – OS usually will send fault back up to process, or

might be playing games (e.g., copy on write, mapped files)

 Invalid

» Virtual page not allocated in address space

 OS sends fault to process (e.g., segmentation fault)

» Page not in physical memory

 OS allocates frame, reads from disk, maps PTE to physical frame

Advanced Functionality

November 5, 2015 CSE 120 – Lecture 10 –Paging 23

 Now we’re going to look at some advanced

functionality that the OS can provide applications

using virtual memory tricks

 Shared memory

 Copy on Write

 Mapped files

Sharing

November 5, 2015 CSE 120 – Lecture 10 –Paging 24

 Private virtual address spaces protect applications

from each other

 Usually exactly what we want

 But this makes it difficult to share data (have to copy)

 Parents and children in a forking Web server or proxy will

want to share an in-memory cache without copying

 We can use shared memory to allow processes to

share data using direct memory references

 Both processes see updates to the shared memory segment

» Process B can immediately read an update by process A

 How are we going to coordinate access to shared data?

Sharing (2)

November 5, 2015 CSE 120 – Lecture 10 –Paging 25

 How can we implement sharing using page tables?

 Have PTEs in both tables map to the same physical frame

 Each PTE can have different protection values

 Must update both PTEs when page becomes invalid

 Can map shared memory at same or different virtual

addresses in each process’ address space

 Different: Flexible (no address space conflicts), but pointers

inside the shared memory segment are invalid (Why?)

 Same: Less flexible, but shared pointers are valid (Why?)

 What happens if a pointer inside the shared segment

references an address outside the segment?

Isolation: No Sharing

Virtual Address

Space #1 Physical Memory
Virtual Address

Space #2

November 5, 2015 CSE 120 – Lecture 10 –Paging 26

Sharing Pages

Virtual Address

Space #1 Physical Memory
Virtual Address

Space #2

PTEs Point to Same

Physical Page

November 5, 2015 CSE 120 – Lecture 10 –Paging 27

Copy on Write

November 5, 2015 CSE 120 – Lecture 10 –Paging 28

 OSes spend a lot of time copying data

 System call arguments between user/kernel space

 Entire address spaces to implement fork()

 Use Copy on Write (CoW) to defer large copies as

long as possible, hoping to avoid them altogether

 Instead of copying pages, create shared mappings of parent

pages in child virtual address space

 Shared pages are protected as read-only in parent and child

» Reads happen as usual

» Writes generate a protection fault, trap to OS, copy page, change

page mapping in client page table, restart write instruction

 How does this help fork()?

Copy on Write: Before Fork

Parent Virtual

Address Space Physical Memory

November 5, 2015 CSE 120 – Lecture 10 –Paging 29

Copy on Write: Fork

Parent Virtual

Address Space Physical Memory

Child Virtual

Address Space

Read-Only

Mappings

November 5, 2015 CSE 120 – Lecture 10 –Paging 30

Copy on Write: On A Write

Parent Virtual

Address Space Physical Memory

Child Virtual

Address Space

Now Read-Write

& Private

November 5, 2015 CSE 120 – Lecture 10 –Paging 31

Mapped Files

November 5, 2015 CSE 120 – Lecture 10 –Paging 32

 Mapped files enable processes to do file I/O using

loads and stores

 Instead of “open, read into buffer, operate on buffer, …”

 Bind a file to a virtual memory region (mmap() in Unix)

 PTEs map virtual addresses to physical frames holding file data

 Virtual address base + N refers to offset N in file

 Initially, all pages mapped to file are invalid

 OS reads a page from file when invalid page is accessed

 OS writes a page to file when evicted, or region unmapped

 If page is not dirty (has not been written to), no write needed

» Another use of the dirty bit in PTE

Mapped Files

Virtual Address

Space

Mapped File

November 5, 2015 CSE 120 – Lecture 10 –Paging 33

Mapped Files (2)

November 5, 2015 CSE 120 – Lecture 10 –Paging 34

 File is essentially backing store for that region of the

virtual address space (instead of using the swap file)

 Virtual address space not backed by “real” files also called

Anonymous VM

 Advantages

 Uniform access for files and memory (just use pointers)

 Less copying

 Drawbacks

 Process has less control over data movement

» OS handles faults transparently

 Does not generalize to streamed I/O (pipes, sockets, etc.)

Summary

November 5, 2015 CSE 120 – Lecture 10 –Paging 35

Paging mechanisms:

 Optimizations

 Managing page tables (space)

 Efficient translations (TLBs) (time)

 Demand paged virtual memory (space)

 Recap address translation

 Advanced Functionality

 Sharing memory

 Copy on Write

 Mapped files

Next time: Paging policies

Next time…

November 5, 2015 CSE 120 – Lecture 10 –Paging 36

 Chapters 21-23

