
CSE 120

Principles of Operating

Systems

Spring 2017

Lecture 1: Course Introduction

Gregory Kesden

Lecture 1 Overview

CSE 120 – Lecture 1 – Course Intro 2

 Class overview, administrative info

 What is an operating system?

Personnel

CSE 120 – Lecture 1 – Course Intro 3

 Instructor

 Gregory Kesden

» Office hours: http://cseweb.ucsd.edu/~gkesden/schedule.html

 Tas + Tutors + Instructor

 cse-120-staff@googlegroups.com

http://cseweb.ucsd.edu/~gkesden/schedule.html
mailto:cse-120-staff@googlegroups.com

CSE 120 Class Overview

CSE 120 – Lecture 1 – Course Intro 4

 Course material taught through class lectures,

textbook readings, and handouts

 Course assignments are

 Homework questions (primarily from the book)

 Three large programming projects in groups

 Discussion sections are a forum for asking questions

 Lecture material and homework

 Other forums

 Discussion board (http://piazza.com)

Homeworks

CSE 120 – Lecture 1 – Course Intro 5

 There will be 4-5 homeworks throughout the quarter

 Reinforce lecture material…no better practice

 Collaboration vs. cheating

 I encourage you to discuss homework problems with others

» You can learn a lot from each other

 But there is a distinction between collaboration and cheating

 Rule of thumb: Discuss together in library, walk home, and

write up answers independently

 Cheating is copying from other student’s homeworks or

solution sets, searching for answers on the Web, etc.

 Suspicious homeworks will be flagged for review

Textbook

Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau, Operating

Systems: Three Easy Pieces, Version 0.90, March 2015

CSE 120 – Lecture 1 – Course Intro 6

Nachos Project

CSE 120 – Lecture 1 – Course Intro 7

Nachos

CSE 120 – Lecture 1 – Course Intro 8

 Nachos is an instructional operating system
 It is a user-level operating system and a machine simulator

» Not unlike the Java runtime environment

» Will become abundantly clear (or not so clear) very soon

 Programming environment will be Java on Unix (Linux)

 The projects will require serious time commitments

» Waiting until the last minute is not a viable option

 You will do three+ projects using Nachos
 Concurrency and synchronization

 System calls, processes, multiprogramming

 Virtual memory

 You will work in groups of 1-2 on the projects
 Start thinking about partners

Labs

CSE 120 – Lecture 1 – Course Intro 9

 We will use the labs in the CSE basement

 Linux running on x86 machines

 You may also use your home machine

 The same project source will work on Windows (mostly)

 Note: We will test and grade on uAPE machines

 Be sure to test your projects there as well

 Why work in the labs?

 TAs there to help

 Classmates there to help (and have fun)

 I will visit the labs to help

Exams

CSE 120 – Lecture 1 – Course Intro 10

 Midterm
 Covers first half of class

 Final
 Covers second half of class + selected material from first part

» I will be explicit about the material covered

 No makeup exams
 Unless absolute dire circumstances

 Crib sheet
 You can bring one double-sided 8.5x11” page of notes to

each exam to assist you in answering the questions

 Not a substitute for thinking

Grading

CSE 120 – Lecture 1 – Course Intro 11

 Homeworks: 15%

 Think of these collectively as a take-home midterm

 Midterm: 25%

 Final: 30%

 Projects: 30%

 Breakdown: 1.5%, 7.5%, 9%, 12%

How Not To Pass CSE 120

CSE 120 – Lecture 1 – Course Intro 12

 Do not come to lecture

 Lecture is far too early, the slides are online, and the material

is in the book anyway

 Lecture material is the basis for exams and directly relates to

the projects

 Do not do the homework

 It’s only 15% of the grade

 Excellent practice for the exams, and some homework

problems are exercises for helping with the project

 15% is actually a significant fraction of your grade (could be

difference between at least one letter grade)

How Not To Pass (2)

CSE 120 – Lecture 1 – Course Intro 13

 Do not ask questions in lecture, office hours, or online

 It’s scary, I don’t want to embarrass myself

 Asking questions is the best way to clarify lecture material at

the time it is being presented

 Office hours and email will help with homeworks, projects

 Wait until the last couple of days to start a project

 We’ll have to do the crunch anyways, why do it early?

 The projects cannot be done in the last few days

 Repeat: The projects cannot be done in the last few days

 Each quarter groups learn that starting early meant finishing

all of the projects on time…and some do not

 (p.s. The projects cannot be done in the last few days)

Class Web Page

CSE 120 – Lecture 1 – Course Intro 14

http://www.cse.ucsd.edu/classes/sp17/cse120-a/

 Serves many roles…

 Course syllabus and schedule (updated over quarter)

» Lectureslides

 Homework handouts

 Project handouts

 Supplemental readings on Unix, monitors, and threads

 e.g., seminal research paper describing the early Unix system

 FYI only, but you might find it interesting

 Concepts in paper might seem obvious and familiar, but they

were new at one time

http://www.cse.ucsd.edu/classes/sp16/cse120-a/

Questions

CSE 120 – Lecture 1 – Course Intro 15

 Before we start the material, any questions about the

class structure, contents, etc.?

Why Operating Systems?

CSE 120 – Lecture 1 – Course Intro 16

 Why are we making you sit here today, having to

suffer through a core course in operating systems?

 It’s not like everyone will become OS developers, after all

 Understand what you use

 Understanding how an OS works helps you develop apps

 System functionality, performance, efficiency, etc.

 Pervasive abstractions

 Concurrency: Threads and synchronization are common

modern programming abstractions (Java, .NET, etc.)

 Complex software systems

 Many of you will go on to work on large software projects

 OSes serve as examples of an evolution of complex systems

CSE 120 Course Material

CSE 120 – Lecture 1 – Course Intro 17

 This course addresses classic OS concepts

 Services provided by the OS

 OS implementation on modern hardware

 Co-evolution of hardware and software

 Techniques for implementing software systems that are

» Large andcomplex

» Long-lived and evolving

» Concurrent

» Performance-critical

 System software tends to be mysterious

 Virtual memory? Wazzat?

 Our goal is to reveal all mysteries

CSE 120 – Lecture 1 – Course Intro 18

CSE 120 – Lecture 1 – Course Intro 19

Fundamental OS Issues

CSE 120 – Lecture 1 – Course Intro 20

 The fundamental issues/questions in this course are:

 Structure: how is an operating system organized?

 Sharing: how are resources shared among users?

 Naming: how are resources named (by users and programs)?

 Protection: how are users/programs protected from each other?

 Security: how can information access/flow be restricted?

 Communication: how to exchange data?

 Reliability and fault tolerance: how to mask failures?

 Extensibility: how to add new features?

Fundamental OS Issues (2)

CSE 120 – Lecture 1 – Course Intro 21

 Concurrency: how to control parallel activities?

 Performance: how to make efficient use of resources, reduce

OS overhead?

 Scale and growth: how to handle increased demand?

 Compatibility: can we ever do anything new?

 Distribution: how to coordinate remote operations?

 Accountability: how to charge for/restrict use of resources?

 And the principles in this course are the design

methods, approaches, and solutions to these issues

March 30, 2009 CSE 120 – Lecture 1 – Course Intro 22

What is an Operating System?

CSE 120 – Lecture 1 – Course Intro 23

 How would you answer?

 (Yes, I know that’s why you’re taking the course…)

 (Note: There are many answers…)

What is an operating system?

 The operating system is the software layer between

user applications and the hardware

 The OS is “all the code that you didn’t have to write” to

implement your application

Operating System

Hardware

Applications

CSE 120 – Lecture 1 – Course Intro 24

The OS and Hardware

CSE 120 – Lecture 1 – Course Intro 25

 The OS abstracts/controls/mediates access to

hardware resources

 Computation (CPUs)

 Volatile storage (memory) and persistent storage (disk, etc.)

 Communication (network, modem, etc.)

 Input/output devices (keyboard, display, printer, camera, etc.)

 The OS defines a set of logical resources (objects)

and a set of well-defined operations on those objects

(interfaces)

 Physical resources (CPU and memory)

 Logical resources (files, programs, names)

 Sounds like OO…

The OS and Hardware (2)

CSE 120 – Lecture 1 – Course Intro 26

 Benefits to applications

 Simpler (no tweaking device registers)

 Device independent (all network cards look the same)

 Portable (across Win95/98/ME/NT/2000/XP/Vista/7/8/10/…)

 Transportable (same program across different OSes (Java))

The OS and Applications

CSE 120 – Lecture 1 – Course Intro 27

 The OS defines a logical, well-defined environment…

 Virtual machine (each program thinks it owns the computer)

 …for users and programs to safely coexist, cooperate,

share resources

 Concurrent execution of multiple programs (timeslicing)

 Communication among multiple programs (pipes, cut & paste)

 Shared implementations of common facilities

» No need to implement the file system more than once

 Mechanisms and policies to manage/share/protect resources

» File permissions (mechanism) and groups (policies)

Other Questions to Ponder

CSE 120 – Lecture 1 – Course Intro 28

 What is part of an OS? What is not?

 Is the windowing system part of an OS?

 Is the Web browser part of an OS?

Other Questions to Ponder

CSE 120 – Lecture 1 – Course Intro 29

 What is part of an OS? What is not?

 Is the windowing system part of an OS?

 Is the Web browser part of an OS?

 Popular OSes today are Windows, Linux, and OS X

 How different/similar do you think these OSes are?

 How would you go about answering that question?

 OSes change all of the time

 Consider the series of releases of Windows, Linux, OS X…

 What are the drivers of OS change?

 What are the most compelling issues facing OSes today?

Pondering Cont’d

CSE 120 – Lecture 1 – Course Intro 30

 How many lines of code in an OS?

 Win7 (2009): 40M

 OS X (2006): 86M

 Linux (2011): 15M

 What is largest kernel component?

 What does this mean (for you)?

 OSes are useful for learning about software complexity

 OS is just one example of many complex software systems

» Chrome (2015): 17M

» Apache (2015):1.7M

» JDK (2015):6M

» Unreal Engine 3: 2M

 If you become a developer, you will face complexity

For next class…

CSE 120 – Lecture 1 – Course Intro 31

 Browse the course web
http://www.cse.ucsd.edu/classes/sp17/cse120-a/

 Read Chapters 1 and 2

 Start exploring Nachos documentation

 Start thinking about partners for project groups

 Let the fun begin!

http://www.cse.ucsd.edu/classes/sp16/cse120-a/

September 23, 2004 CSE 120 – Lecture 1 – Course Intro 32

OS Metaphors

 Service provider

 The OS provides a standard set of facilities/services that

enable programs to be simple and portable

 Executive/bureaucrat/big brother/juggler

 The OS controls access to shared resources, and allocates

resources for the greater good

 Caretaker

 The OS monitors and recovers from exceptional conditions

 Cop/security guard

 The OS mediates access to resources, granting or denying

requests to use resources

