
CSE 120

Principles of Operating

Systems

Spring 2016

Semaphores and Monitors

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 2

Higher-Level Synchronization

 We looked at using locks to provide mutual exclusion

 Locks work, but they have limited semantics
 Just provide mutual exclusion

 Instead, we want synchronization mechanisms that
 Block waiters, leave interrupts enabled in critical sections

 Provide semantics beyond mutual exclusion

 Look at two common high-level mechanisms
 Semaphores: binary (mutex) and counting

 Monitors: mutexes and condition variables

 Use them to solve common synchronization problems

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 3

Semaphores

 Semaphores are an abstract data type that provide
mutual exclusion to critical sections
 Described by Dijkstra in THE system in 1968

 Semaphores can also be used as atomic counters
 More later

 Semaphores are “integers” that support two operations:
 Semaphore::Wait(): decrement, block until semaphore is open

» Also P(), after the Dutch word for “try to reduce” (also test, down)

 Semaphore::Signal: increment, allow another thread to enter

» Also V() after the Dutch word for increment, up

 That's it! No other operations – not even just reading its value

 Semaphore safety property: the semaphore value is
always greater than or equal to 0

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 4

Blocking in Semaphores

 Associated with each semaphore is a queue of waiting

processes

 When wait() is called by a thread:

 If semaphore is open, thread continues

 If semaphore is closed, thread blocks on queue

 Then signal() opens the semaphore:

 If a thread is waiting on the queue, the thread is unblocked

 If no threads are waiting on the queue, the signal is

remembered for the next thread

» In other words, signal() has “history” (c.f., condition vars later)

» This “history” is a counter

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 5

Semaphore Types

 Semaphores come in two types

 Mutex semaphore (or binary semaphore)

 Represents single access to a resource

 Guarantees mutual exclusion to a critical section

 Counting semaphore (or general semaphore)

 Represents a resource with many units available, or a

resource that allows certain kinds of unsynchronized

concurrent access (e.g., reading)

 Multiple threads can pass the semaphore

 Number of threads determined by the semaphore “count”

» mutex has count = 1, counting has count = N

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 6

Using Semaphores

 Use is similar to our locks, but semantics are different

struct Semaphore {

int value;

Queue q;

} S;

withdraw (account, amount) {

wait(S);

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

signal(S);

return balance;

}

wait(S);

balance = get_balance(account);

balance = balance – amount;

wait(S);

put_balance(account, balance);

signal(S);

wait(S);

…

signal(S);

…

signal(S);

Threads

block

It is undefined which

thread runs after a signal

critical

section

 To reference current thread: KThread.currentThread()

 KThread.sleep() assumes interrupts are disabled

 Note that interrupts are disabled only to enter/leave critical section

 How can it sleep with interrupts disabled?

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 7

Semaphores in Nachos

P () { // wait

Disable interrupts;

if (value == 0) {

add currentThread to waitQueue;

KThread.sleep(); // currentThread

}

value = value – 1;

Enable interrupts;

}

V () { // signal

Disable interrupts;

thread = get next on waitQueue;

thread.ready();

value = value + 1;

Enable interrupts;

}

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 8

Interrupts Disabled During

Context Switch

Semaphore::P () { // wait

Disable interrupts;

if (value == 0) {

add currentThread to waitQueue;

KThread.sleep(); // currentThread

}

value = value – 1;

Enable interrupts;

}

KThread::yield () {

Disable interrupts;

currentThread.ready(); // add to Q

runNextThread(); // context switch

Enable interrupts;

}

[Semaphore::P]

Disable interrupts;

if (value == 0) {

add currentThread to waitQueue;

Kthread.sleep();

[KThread::yield]

(Returns from runNextThread)

Enable interrupts;

[KThread::yield]

Disable interrupts;

currentThread.ready();

runNextThread();

[KThread::yield]

(Returns from runNextThread)

Enable interrupts;

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 9

Using Semaphores

 We’ve looked at a simple example for using

synchronization

 Mutual exclusion while accessing a bank account

 Now we’re going to use semaphores to look at more

interesting examples

 Readers/Writers

 Bounded Buffers

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 10

Readers/Writers Problem

 Readers/Writers Problem:
 An object is shared among several threads

 Some threads only read the object, others only write it

 We can allow multiple readers but only one writer

» Let #r be the number of readers, #w be the number of writers

» Safety: (#r ≥ 0) ∧ (0 ≤ #w ≤ 1) ∧ ((#r > 0) ⇒ (#w = 0))

 How can we use semaphores to control access to the
object to implement this protocol?

 Use three variables
 int readcount – number of threads reading object

 Semaphore mutex – control access to readcount

 Semaphore w_or_r – exclusive writing or reading

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 11

// number of readers

int readcount = 0;

// mutual exclusion to readcount

Semaphore mutex = 1;

// exclusive writer or reader

Semaphore w_or_r = 1;

writer {

wait(w_or_r); // lock out readers

Write;

signal(w_or_r); // up for grabs

}

Readers/Writers

reader {

wait(mutex); // lock readcount

readcount += 1; // one more reader

if (readcount == 1)

wait(w_or_r); // synch w/ writers

signal(mutex); // unlock readcount

Read;

wait(mutex); // lock readcount

readcount -= 1; // one less reader

if (readcount == 0)

signal(w_or_r); // up for grabs

signal(mutex); // unlock readcount}

}

 w_or_r provides mutex between readers and writers

 writer wait/signal, reader wait/signal when readcount goes

from 0 to 1 or from 1 to 0.

 If a writer is writing, where will readers be waiting?

 Once a writer exits, all readers can fall through

 Which reader gets to go first?

 Is it guaranteed that all readers will fall through?

 If readers and writers are waiting, and a writer exits,

who goes first?

 Why do readers use mutex?

 Why don't writers use mutex?

 What if the signal is above “if (readcount == 1)”?
October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 12

Readers/Writers Notes

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 13

Bounded Buffer

 Problem: There is a set of resource buffers shared by producer
and consumer threads

 Producer inserts resources into the buffer set

» Output, disk blocks, memory pages, processes, etc.

 Consumer removes resources from the buffer set

» Whatever is generated by the producer

 Producer and consumer execute at different rates

 No serialization of one behind the other

 Tasks are independent (easier to think about)

 The buffer set allows each to run without explicit handoff

 Safety:

 Sequence of consumed values is prefix of sequence of produced
values

 If nc is number consumed, np number produced, and N the size of
the buffer, then 0 np nc N

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 14

Bounded Buffer (2)

 0 np nc N and 0 (nc np) N N

 Use three semaphores:

 empty – count of empty buffers

» Counting semaphore

» empty = (nc np) + N

 full – count of full buffers

» Counting semaphore

» np - nc = full

 mutex – mutual exclusion to shared set of buffers

» Binary semaphore

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 15

producer {

while (1) {

Produce new resource;

wait(empty); // wait for empty buffer

wait(mutex); // lock buffer list

Add resource to an empty buffer;

signal(mutex); // unlock buffer list

signal(full); // note a full buffer

}

}

Bounded Buffer (3)

consumer {

while (1) {

wait(full); // wait for a full buffer

wait(mutex); // lock buffer list

Remove resource from a full buffer;

signal(mutex); // unlock buffer list

signal(empty); // note an empty buffer

Consume resource;

}

}

Semaphore mutex = 1; // mutual exclusion to shared set of buffers

Semaphore empty = N; // count of empty buffers (all empty to start)

Semaphore full = 0; // count of full buffers (none full to start)

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 16

Bounded Buffer (4)

 Why need the mutex at all?

 Where are the critical sections?

 What has to hold for deadlock to occur?

 empty = 0 and full = 0

 (nc np) + N = 0 and np - nc = 0

 N = 0

 What happens if operations on mutex and full/empty are switched
around?

 The pattern of signal/wait on full/empty is a common construct often
called an interlock

 Producer-Consumer and Bounded Buffer are classic examples of
synchronization problems
 Synchronous send/receive in project #1 is another

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 17

Semaphore Questions

 Are there any problems that can be solved with

counting semaphores that cannot be solved with

mutex semaphores?

 Does it matter which thread is unblocked by a signal

operation?

 Hint: consider the following three processes sharing a

semaphore mutex that is initially 1:

while (1) { while (1) { while (1) }

wait(mutex); wait(mutex); wait(mutex);

// in critical section // in critical section // in critical section

signal(mutex); signal(mutex); signal(mutex);

} } }

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 18

Semaphore Summary

 Semaphores can be used to solve any of the

traditional synchronization problems

 However, they have some drawbacks

 They are essentially shared global variables

» Can potentially be accessed anywhere in program

 No connection between the semaphore and the data being

controlled by the semaphore

 Used both for critical sections (mutual exclusion) and

coordination (scheduling)

» Note that I had to use comments in the code to distinguish

 No control or guarantee of proper usage

 Sometimes hard to use and prone to bugs

 Another approach: Use programming language support

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 19

Monitors

 A monitor is a programming language construct that

controls access to shared data

 Synchronization code added by compiler, enforced at runtime

 Why is this an advantage?

 A monitor is a module that encapsulates

 Shared data structures

 Procedures that operate on the shared data structures

 Synchronization between concurrent threads that invoke the

procedures

 A monitor protects its data from unstructured access

 It guarantees that threads accessing its data through

its procedures interact only in legitimate ways

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 20

Monitor Semantics

 A monitor guarantees mutual exclusion

 Only one thread can execute any monitor procedure at any

time (the thread is “in the monitor”)

 If a second thread invokes a monitor procedure when a first

thread is already executing one, it blocks

» So the monitor has to have a wait queue…

 If a thread within a monitor blocks, another one can enter

 What are the implications in terms of parallelism in a

monitor?

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 21

Account Example

 Hey, that was easy!

 But what if a thread wants to wait inside the monitor?

» Such as “mutex(empty)” by reader in bounded buffer?

Monitor account {

double balance;

double withdraw(amount) {

balance = balance – amount;

return balance;

}

}

withdraw(amount)

balance = balance – amount;

withdraw(amount)

return balance (and exit)

withdraw(amount)

balance = balance – amount

return balance;

balance = balance – amount;

return balance;

Threads

block

waiting

to get

into

monitor

When first thread exits, another can

enter. Which one is undefined.

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 22

Monitors, Monitor Invariants

and Condition Variables

 A monitor invariant is a safety property associated with the
monitor, expressed over the monitored variables. It holds
whenever a thread enters or exits the monitor.

 A condition variable is associated with a condition needed for a
thread to make progress once it is in the monitor.

Monitor M {

... monitored variables

Condition c;

void enter_mon (...) {

if (extra property not true) wait(c); waits outside of the monitor's mutex

do what you have to do

if (extra property true) signal(c); brings in one thread waiting on condition

}

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 23

Condition Variables

 Condition variables support three operations:

 Wait – release monitor lock, wait for C/V to be signaled

» So condition variables have wait queues, too

 Signal – wakeup one waiting thread

 Broadcast – wakeup all waiting threads

 Condition variables are not boolean objects

 “if (condition_variable) then” … does not make sense

 “if (num_resources == 0) then wait(resources_available)” does

 An example will make this more clear

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 24

Monitor Bounded Buffer

Monitor bounded_buffer {

Resource buffer[N];

// Variables for indexing buffer

// monitor invariant involves these vars

Condition not_full; // space in buffer

Condition not_empty; // value in buffer

void put_resource (Resource R) {

while (buffer array is full)

wait(not_full);

Add R to buffer array;

signal(not_empty);

}

Resource get_resource() {

while (buffer array is empty)

wait(not_empty);

Get resource R from buffer array;

signal(not_full);

return R;

}

} // end monitor

 What happens if no threads are waiting when signal is called?

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 25

Monitor Queues

Monitor bounded_buffer {

Condition not_full;

…other variables…

Condition not_empty;

void put_resource () {

…wait(not_full)…

…signal(not_empty)…

}

Resource get_resource () {

…

}

}

Waiting to enter

Waiting on

condition variables

Executing inside

the monitor

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 26

Condition Vars != Semaphores

 Condition variables != semaphores

 Although their operations have the same names, they have

entirely different semantics (such is life, worse yet to come)

 However, they each can be used to implement the other

 Access to the monitor is controlled by a lock

 wait() blocks the calling thread, and gives up the lock

» To call wait, the thread has to be in the monitor (hence has lock)

» Semaphore::wait just blocks the thread on the queue

 signal() causes a waiting thread to wake up

» If there is no waiting thread, the signal is lost

» Semaphore::signal increases the semaphore count, allowing

future entry even if no thread is waiting

» Condition variables have no history

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 27

Signal Semantics

 There are two flavors of monitors that differ in the

scheduling semantics of signal()

 Hoare monitors (original)

» signal() immediately switches from the caller to a waiting thread

» The condition that the waiter was anticipating is guaranteed to

hold when waiter executes

» Signaler must restore monitor invariants before signaling

 Mesa monitors (Mesa, Java)

» signal() places a waiter on the ready queue, but signaler

continues inside monitor

» Condition is not necessarily true when waiter runs again

 Returning from wait() is only a hint that something changed

 Must recheck conditional case

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 28

Hoare vs. Mesa Monitors

 Hoare
if (empty)

wait(condition);

 Mesa
while (empty)

wait(condition);

 Tradeoffs

 Mesa monitors easier to use, more efficient

» Fewer context switches, easy to support broadcast

 Hoare monitors leave less to chance

» Easier to reason about the program

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 29

Monitor Readers and Writers

Using Mesa monitor semantics.

 Will have four methods: StartRead, StartWrite,

EndRead and EndWrite

 Monitored data: nr (number of readers) and nw

(number of writers) with the monitor invariant

(nr ≥ 0) ∧ (0 ≤ nw ≤ 1) ∧ ((nr > 0) ⇒ (nw = 0))

 Two conditions:

 canRead: nw = 0

 canWrite: (nr = 0) ∧ (nw = 0)

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 30

Monitor Readers and Writers

Monitor RW {

int nr = 0, nw = 0;

Condition canRead, canWrite;

void StartRead () {

while (nw != 0) do wait(canRead);

nr++;

}

void EndRead () {

nr--;

}

void StartWrite {

while (nr != 0 || nw != 0) do wait(canWrite);

nw++;

}

void EndWrite () {

nw--;

}

} // end monitor

 Write with just wait()

 Will be safe, maybe not live – why?

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 31

Monitor Readers and Writers

Monitor RW {

int nr = 0, nw = 0;

Condition canRead, canWrite;

void StartRead () {

while (nw != 0) do wait(canRead);

nr++;

}

void EndRead () {

nr--;

if (nr == 0) signal(canWrite);

}

void StartWrite () {

while (nr != 0 || nw != 0) do wait(canWrite);

nw++;

}

void EndWrite () {

nw--;

broadcast(canRead);

signal(canWrite);

}

} // end monitor

 add signal() and broadcast()

can we put a signal here?

can we put a signal here?

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 32

Monitor Readers and Writers

 Is there any priority between readers and writers?

 What if you wanted to ensure that a waiting writer

would have priority over new readers?

Condition Variables

 Condition variables support three operations:

• Wait – add calling thread to the condition variable’s

queue and put the thread to sleep

• Signal – remove a thread, if any, from the condition

variable’s queue and wake it up

• Broadcast – remove and wake-up all threads in the

condition variables queue

Typical Use

Mutex mx;

GetLock (condition cv, mutex mx) {

mutex_acquire (mx);

while (LOCKED)

wait (cv,mx)

;

lock=LOCKED;

mutex_release (mx);

}

Typical Use (cont.)

ReleaseLock (condition cv, mutex mx)

{

mutex_acquire (mx);

lock = UNLOCKED;

signal (cv);

mutex_release (mx);

}

CV Implementation – Data

Struct.

struct condition {

proc next; /* doubly linked list implementation of */

proc prev; /* queue for blocked threads */

mutex listLock; /*protects queue */

};

CV – Wait Implementation

void wait (condition *cv, mutex *mx)

{

mutex_acquire(&cv->listLock); /* protect the queue */

enqueue(&cv->next, &cv->prev, thr_self()); /* enqueue */

mutex_release (&cv->listLock); /* we're done with the list */

/* The suspend and mutex_release operation must be atomic */

mutex_release(mx);

thr_suspend (self); /* Sleep 'til someone wakes us */

mutex_acquire(mx); /* Woke up – our turn, get resource lock */

return;

}

CV – Signal Implementation

void signal (condition *cv)

{

thread_id tid;

mutex_acquire(cv->listlock); /* protect the queue */

tid = dequeue(&cv->next, &c->prev);

mutex_release(listLock);

if (tid>0)

thr_continue (tid);

return;

}

/* Note: This did not release mx */

CV Implementation -

Broadcast

void broadcast (condition *cv)

{

thread_id tid;

mutex_acquire(c->listLock); /* protect the queue */

while (&cv->next) /* queue is not empty */

{

tid = dequeue(&c->next, &c->prev); /* wake one */

thr_continue (tid); /* Make it runnable */

}

mutex_release (c->listLock); /* done with the queue */

}

/* Note: This did not release mx */

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 40

Condition Vars & Locks

 Condition variables are also used without monitors in

conjunction with blocking locks

 This is what you are implementing in Project 1

 A monitor is “just like” a module whose state includes

a condition variable and a lock

 Difference is syntactic; with monitors, compiler adds the code

 It is “just as if” each procedure in the module calls

acquire() on entry and release() on exit

 But can be done anywhere in procedure, at finer granularity

 With condition variables, the module methods may

wait and signal on independent conditions

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 41

Using Cond Vars & Locks

 Alternation of two threads (ping-pong)

 Each executes the following:

Lock lock;

Condition cond;

void ping_pong () {

acquire(lock);

while (1) {

printf(“ping or pong\n”);

signal(cond, lock);

wait(cond, lock);

}

release(lock);

}

Must acquire lock before you can

wait (similar to needing interrupts

disabled to call Sleep in Nachos)

Wait atomically releases lock

and blocks until signal()

Wait atomically acquires lock

before it returns

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 42

Monitors and Java

 A lock and condition variable are in every Java object

 No explicit classes for locks or condition variables

 Every object is/has a monitor

 At most one thread can be inside an object’s monitor

 A thread enters an object’s monitor by

» Executing a method declared “synchronized”

 Can mix synchronized/unsynchronized methods in same class

» Executing the body of a “synchronized” statement

 Supports finer-grained locking than an entire procedure

 Identical to the Modula-2 “LOCK (m) DO” construct

 The compiler generates code to acquire the object’s lock at

the start of the method and release it just before returning

» The lock itself is implicit, programmers do not worry about it

Monitors and Java

 Every object can be treated as a condition variable

 Half of Object’s methods are for synchronization!

 Take a look at the Java Object class:

 Object::wait(*) is Condition::wait()

 Object::notify() is Condition::signal()

 Object::notifyAll() is Condition::broadcast()

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 43

October 13, 2015 CSE 120 – Lecture 6 – Semaphores and Monitors 44

Summary

 Semaphores
 wait()/signal() implement blocking mutual exclusion

 Also used as atomic counters (counting semaphores)

 Can be inconvenient to use

 Monitors
 Synchronizes execution within procedures that manipulate

encapsulated data shared among procedures

» Only one thread can execute within a monitor at a time

 Relies upon high-level language support

 Condition variables
 Used by threads as a synchronization point to wait for events

 Inside monitors, or outside with locks

