
CSE 120

Principles of Operating

Systems

Spring 2016

Lecture 6: Synchronization

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 2

Administrivia

 Homework #2 out

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 3

Synchronization

 Threads cooperate in multithreaded programs

 To share resources, access shared data structures

» Threads accessing a memory cache in a Web server

 To coordinate their execution

» One thread executes relative to another (recall ping-pong)

 For correctness, we need to control this cooperation

 Threads interleave executions arbitrarily and at different rates

 Scheduling is not under program control

 We control cooperation using synchronization

 Synchronization enables us to restrict the possible

interleavings of thread executions

 Discuss in terms of threads, also applies to processes

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 4

Shared Resources

We initially focus on coordinating access to shared resources

 Basic problem

 If two concurrent threads (processes) are accessing a shared

variable, and that variable is read/modified/written by those

threads, then access to the variable must be controlled to avoid

erroneous behavior

 Over the next couple of lectures, we will look at

 Mechanisms to control access to shared resources

» Locks, mutexes, semaphores, monitors, condition variables, etc.

 Patterns for coordinating accesses to shared resources

» Bounded buffer, producer-consumer, etc.

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 5

Classic Example

 Suppose we have to implement a function to handle

withdrawals from a bank account:
withdraw (account, amount) {

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

return balance;

}

 Now suppose that you and your significant other share

a bank account with a balance of $1000.

 Then you each go to separate ATM machines and

simultaneously withdraw $100 from the account.

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 6

Example Continued

 We’ll represent the situation by creating a separate

thread for each person to do the withdrawals

 These threads run on the same bank machine:

 What’s the problem with this implementation?

 Think about potential schedules of these two threads

withdraw (account, amount) {

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

return balance;

}

withdraw (account, amount) {

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

return balance;

}

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 7

Interleaved Schedules

 The problem is that the execution of the two threads

can be interleaved:

 What is the balance of the account now?

 Is the bank happy with our implementation?

balance = get_balance(account);

balance = balance – amount;

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

put_balance(account, balance);

Execution

sequence

seen by CPU Context switch

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 8

Shared Resources

 The problem is that two concurrent threads (or

processes) accessed a shared resource (account)

without any synchronization

 Known as a race condition (memorize this buzzword)

 We need mechanisms to control access to these

shared resources in the face of concurrency

 So we can reason about how the program will operate

 Our example was updating a shared bank account

 Also necessary for synchronizing access to any

shared data structure

 Buffers, queues, lists, hash tables, etc.

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 9

When Are Resources

Shared?

 Local variables are not shared (private)

 Refer to data on the stack

 Each thread has its own stack

 Never pass/share/store a pointer to a local variable on the

stack for thread T1 to another thread T2

 Global variables and static objects are shared

 Stored in the static data segment, accessible by any thread

 Dynamic objects and other heap objects are shared

 Allocated from heap with malloc/free or new/delete

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)
Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Thread 1

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 10

How Interleaved Can It Get?

............... get_balance(account);

put_balance(account, balance);

put_balance(account, balance);

balance = balance – amount;

balance = balance – amount;

balance = get_balance(account);

balance =

How contorted can the interleavings be?

 We'll assume that the only atomic operations are
instructions (e.g., reads and writes of words)
 Some architectures don't even give you that!

 We'll assume that a context
switch can occur at any time

 We'll assume that you can
delay a thread as long as you
like as long as it's not delayed
forever

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 11

Mutual Exclusion

 We want to use mutual exclusion to synchronize
access to shared resources
 This allows us to have larger atomic blocks

 Code that uses mutual exclusion to synchronize its
execution is called a critical section
 Only one thread at a time can execute in the critical section

 All other threads are forced to wait on entry

 When a thread leaves a critical section, another can enter

 Example: sharing your bathroom with housemates

 What requirements would you place on a critical
section?

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 12

Critical Section Requirements

1) Mutual exclusion (mutex)

 If one thread is in the critical section, then no other is

2) Progress

 If some thread T is not in the critical section, then T cannot

prevent some other thread S from entering the critical section

 A thread in the critical section will eventually leave it

3) Bounded waiting (no starvation)

 If some thread T is waiting on the critical section, then T will

eventually enter the critical section

4) Performance

 The overhead of entering and exiting the critical section is

small with respect to the work being done within it

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 13

About Requirements

There are three kinds of requirements that we'll use

 Safety property: nothing bad happens

 Mutex

 Liveness property: something good happens

 Progress, Bounded Waiting

 Performance requirement

 Performance

 Properties hold for each run, while performance

depends on all the runs

 Rule of thumb: When designing a concurrent algorithm, worry

about safety first (but don't forget liveness!).

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 14

Mechanisms For Building

Critical Sections

 Atomic read/write
 Can it be done?

 Locks
 Primitive, minimal semantics, used to build others

 Semaphores
 Basic, easy to get the hang of, but hard to program with

 Monitors
 High-level, requires language support, operations implicit

 Messages
 Simple model of communication and synchronization based

on atomic transfer of data across a channel

 Direct application to distributed systems

 Messages for synchronization are straightforward (once we
see how the others work)

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 15

Mutual Exclusion with Atomic

Read/Writes: First Try

while (true) {

while (turn != 1) ;

critical section

turn = 2;

outside of critical section

}

while (true) {

while (turn != 2) ;

critical section

turn = 1;

outside of critical section

}

int turn = 1;

This is called alternation

It satisfies mutex:

• If blue is in the critical section, then turn == 1 and if yellow is in the critical

section then turn == 2 (why?)

• (turn == 1) ≡ (turn != 2)

It violates progress: the thread could go into an infinite loop outside of the

critical section, which will prevent the yellow one from entering

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 16

Mutex with Atomic R/W:

Peterson's Algorithm

while (true) {

try1 = true;

turn = 2;

while (try2 && turn != 1) ;

critical section

try1 = false;

outside of critical section

}

while (true) {

try2 = true;

turn = 1;

while (try1 && turn != 2) ;

critical section

try2 = false;

outside of critical section

}

int turn = 1;

bool try1 = false, try2 = false;

• This satisfies all the requirements

• Here's why...

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 17

Mutex with Atomic R/W:

Peterson's Algorithm

while (true) {

{¬ try1 ∧ (turn == 1 ∨ turn == 2) }

1 try1 = true;

{ try1 ∧ (turn == 1 ∨ turn == 2) }

2 turn = 2;

{ try1 ∧ (turn == 1 ∨ turn == 2) }

3 while (try2 && turn != 1) ;

{ try1 ∧ (turn == 1 ∨ ¬ try2 ∨
(try2 ∧ (yellow at 6 or at 7)) }

critical section

4 try1 = false;

{¬ try1 ∧ (turn == 1 ∨ turn == 2) }

outside of critical section

}

while (true) {

{¬ try2 ∧ (turn == 1 ∨ turn == 2) }

5 try2 = true;

{ try2 ∧ (turn == 1 ∨ turn == 2) }

6 turn = 1;

{ try2 ∧ (turn == 1 ∨ turn == 2) }

7 while (try1 && turn != 2) ;

{ try2 ∧ (turn == 2 ∨ ¬ try1 ∨
(try1 ∧ (blue at 2 or at 3)) }

critical section

8 try2 = false;

{¬ try2 ∧ (turn == 1 ∨ turn == 2) }

outside of critical section

}

int turn = 1;

bool try1 = false, try2 = false;

(blue at 4) ∧ try1 ∧ (turn == 1 ∨ ¬ try2 ∨ (try2 ∧ (yellow at 6 or at 7))

∧ (yellow at 8) ∧ try2 ∧ (turn == 2 ∨ ¬ try1 ∨ (try1 ∧ (blur at 2 or at 3))

... ⇒ (turn == 1 ∧ turn == 2)

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 18

Locks

 A lock is an object in memory providing two operations

 acquire(): to enter a critical section

 release(): to leave a critical section

 Threads pair calls to acquire and release

 Between acquire/release, the thread holds the lock

 acquire does not return until any previous holder releases

 What can happen if the calls are not paired?

 Locks can spin (a spinlock) or block (a mutex)

 Can break apart Peterson's to implement a spinlock

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 19

Using Locks

 What happens when blue tries to acquire the lock?

 Why is the “return” outside the critical section? Is this ok?

 What happens when a third thread calls acquire?

withdraw (account, amount) {

acquire(lock);

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

release(lock);

return balance;

}

acquire(lock);

balance = get_balance(account);

balance = balance – amount;

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

release(lock);

acquire(lock);

put_balance(account, balance);

release(lock);

Critical

Section

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 20

 How do we implement locks? Here is one attempt:

 This is called a spinlock because a thread spins
waiting for the lock to be released

 Does this work?

Implementing Locks (1)

struct lock {

int held = 0;

}

void acquire (lock) {

while (lockheld);

lockheld = 1;

}

void release (lock) {

lockheld = 0;

}

busy-wait (spin-wait)

for lock to be released

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 21

Implementing Locks (2)

 No. Two independent threads may both notice that a

lock has been released and thereby acquire it.

struct lock {

int held = 0;

}

void acquire (lock) {

while (lockheld);

lock->held = 1;

}

void release (lock) {

lockheld = 0;

}

A context switch can occur

here, causing a race condition

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 22

Implementing Locks (3)

 The problem is that the implementation of locks has

critical sections, too

 How do we stop the recursion?

 The implementation of acquire/release must be atomic

 An atomic operation is one which executes as though it could

not be interrupted

 Code that executes “all or nothing”

 How do we make them atomic?

 Need help from hardware

 Atomic instructions (e.g., test-and-set)

 Disable/enable interrupts (prevents context switches)

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 23

Atomic Instructions:

Test-And-Set

 The semantics of test-and-set are:
 Record the old value

 Set the value to indicate available

 Return the old value

 Hardware executes it atomically!

 When executing test-and-set on “flag”
 What is value of flag afterwards if it was initially False? True?

 What is the return result if flag was initially False? True?

bool test_and_set (bool *flag) {

bool old = *flag;

*flag = True;

return old;

}

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 24

Using Test-And-Set

 Here is our lock implementation with test-and-set:

 When will the while return? What is the value of held?

 What about multiprocessors?

struct lock {

int held = 0;

}

void acquire (lock) {

while (test-and-set(&lockheld));

}

void release (lock) {

lockheld = 0;

}

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 25

Problems with Spinlocks

 The problem with spinlocks is that they are wasteful

 If a thread is spinning on a lock, then the thread holding the

lock cannot make progress (on a uniprocessor)

 How did the lock holder give up the CPU in the first

place?

 Lock holder calls yield or sleep

 Involuntary context switch

 Only want to use spinlocks as primitives to build

higher-level synchronization constructs

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 26

Disabling Interrupts

 Another implementation of acquire/release is to

disable interrupts:

 Note that there is no state associated with the lock

 Can two threads disable interrupts simultaneously?

struct lock {

}

void acquire (lock) {

disable interrupts;

}

void release (lock) {

enable interrupts;

}

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 27

On Disabling Interrupts

 Disabling interrupts blocks notification of external

events that could trigger a context switch (e.g., timer)

 This is what Nachos uses as its primitive

 In a “real” system, this is only available to the kernel

 Why?

 What could user-level programs use instead?

 Disabling interrupts is insufficient on a multiprocessor

 Interrupts are only disabled on a per-core basis

 Back to atomic instructions

 Like spinlocks, only want to disable interrupts to

implement higher-level synchronization primitives

 Don’t want interrupts disabled between acquire and release

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 28

Summarize Where We Are

 Goal: Use mutual exclusion to protect critical sections

of code that access shared resources

 Method: Use locks (spinlocks or disable interrupts)

 Problem: Critical sections can be long

acquire(lock)

…

Critical section

…

release(lock)

Disabling Interrupts:

 Should not disable interrupts

for long periods of time

 Can miss or delay important

events (e.g., timer, I/O)

Spinlocks:

 Threads waiting to acquire

lock spin in test-and-set loop

 Wastes CPU cycles

 Longer the CS, the longer

the spin

 Greater the chance for lock

holder to be interrupted

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 29

Higher-Level Synchronization

 Spinlocks and disabling interrupts are useful only for

very short and simple critical sections

 Wasteful otherwise

 These primitives are “primitive” – don’t do anything besides

mutual exclusion

 Need higher-level synchronization primitives that:

 Block waiters

 Leave interrupts enabled within the critical section

 All synchronization requires atomicity

 So we’ll use our “atomic” locks as primitives to

implement them

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 30

Implementing Locks (4)

 Block waiters, interrupts enabled in critical sections

struct lock {

int held = 0;

queue Q;

}

void acquire (lock) {

Disable interrupts;

while (lockheld) {

put current thread on lock Q;

block current thread;

}

lockheld = 1;

Enable interrupts;

}

void release (lock) {

Disable interrupts;

if (Q) remove waiting thread;

unblock waiting thread;

lockheld = 0;

Enable interrupts;

}

acquire(lock)

…

Critical section

…

release(lock)

Interrupts Enabled

Interrupts Disabled

Interrupts Disabled

October 8, 2015 CSE 120 – Lecture 5 – Synchronization 31

Next time…

 Read Chapters 30, 31

