
CSE 120

Principles of Operating 

Systems

Spring 2016

Lecture 5: Scheduling



Administrivia

 Homework #1 due

 Homework #2 out

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 2



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 3

Scheduling Overview

 In discussing process management and 

synchronization, we talked about context switching 

among processes/threads on the ready queue

 But we have glossed over the details of exactly which 

thread is chosen from the ready queue

 Making this decision is called scheduling

 In this lecture, we’ll look at:

 Goals of scheduling

 Starvation

 Various well-known scheduling algorithms

 Standard Unix scheduling algorithm



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 4

Multiprogramming

 In a multiprogramming system, we try to increase CPU 

utilization and job throughput by overlapping I/O and 

CPU activities

 Doing this requires a combination of mechanisms and policy

 We have covered the mechanisms

 Context switching, how and when it happens

 Process queues and process states

 Now we’ll look at the policies

 Which process (thread) to run, for how long, etc.

 We’ll refer to schedulable entities as jobs (standard 

usage) – could be processes, threads, people, etc.



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 5

Scheduling Goals

 Scheduling works at two levels in an operating system
 To determine the multiprogramming level – the number of jobs 

loaded into primary memory

» Moving jobs to/from memory is often called swapping

 To decide what job to run next to guarantee “good service”

» Good service could be one of many different criteria

 These decisions are known as long-term and short-
term scheduling decisions, respectively
 Long-term scheduling happens relatively infrequently

» Significant overhead in swapping a process out to disk

 Short-term scheduling happens relatively frequently

» Want to minimize the overhead of scheduling

 Fast context switches, fast queue manipulation



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 6

Scheduling

 The scheduler (aka dispatcher) is the module that manipulates 

the queues, moving jobs to and fro

 The scheduling algorithm determines which jobs are chosen to 

run next and what queues they wait on

 In general, the scheduler runs:

 When a job switches from running to waiting

 When an interrupt occurs (e.g., I/O completes)

 When a job is created or terminated

 We’ll discuss scheduling algorithms in two contexts

 In preemptive systems the scheduler can interrupt a running job 

(involuntary context switch)

 In non-preemptive systems, the scheduler waits for a running job to 

explicitly block (voluntary context switch)



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 7

Scheduling Goals

 Scheduling algorithms can have many different goals:

 CPU utilization (%CPU)

 Job throughput (# jobs/time)

 Turnaround time (Tfinish – Tstart)

 Waiting time (Avg(Twait): avg time spent on wait queues)

 Response time (Avg(Tready): avg time spent on ready queue)

 Batch systems

 Strive for job throughput, turnaround time (supercomputers)

 Interactive systems

 Strive to minimize response time for interactive jobs (PC)



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 8

Starvation

Starvation is a scheduling “non-goal”:

 Starvation is a situation where a process is prevented 

from making progress because some other process 

has the resource it requires

 Resource could be the CPU, or a lock (recall readers/writers)

 Starvation usually a side effect of the sched. algorithm

 A high priority process always prevents a low priority process 

from running on the CPU

 One thread always beats another when acquiring a lock

 Starvation can be a side effect of synchronization

 Constant supply of readers always blocks out writers



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 9

FCFS/FIFO

 First-come first-served (FCFS), first-in first-out (FIFO)

 Jobs are scheduled in order of arrival to ready Q

 “Real-world” scheduling of people in lines (e.g., supermarket)

 Can be preemptive, or not.

 Jobs treated equally, no starvation

 Problem

 Average waiting time can be large if small jobs wait behind 

long ones (high turnaround time)

» You have a basket, but you’re stuck behind someone with a cart



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 10

Shortest Job First (SJF)

 Shortest Job First (SJF)

 Choose the job with the smallest expected CPU burst

» Person with smallest number of items to buy

 Provably optimal minimum average waiting time

AWT = (8 + (8+4)+(8+4+2))/3 = 11.33

AWT = (4 + (4+8)+(4+8+2))/3 = 10

AWT = (4+ (4+2)+(4+2+8))/3 = 8

AWT = (2 + (2+4)+(2+4+8))/3 = 7.33



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 11

Shortest Job First (SJF)

 Problems

 Impossible to know size of CPU burst

» Like choosing person in line without looking inside basket/cart 

 How can you make a reasonable guess?

 Can potentially starve

 Flavors

 Can be either preemptive or non-preemptive

 Preemptive SJF is called shortest remaining time first (SRTF)



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 12

Priority Scheduling

 Priority Scheduling

 Choose next job based on priority

» Airline checkin for first class passengers

 Can implement SJF, priority = 1/(expected CPU burst)

 Also can be either preemptive or non-preemptive

 Problem

 Starvation – low priority jobs can wait indefinitely

 Solution 

 “Age” processes

» Increase priority as a function of waiting time

» Decrease priority as a function of CPU consumption



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 13

Round Robin (RR)

 Round Robin

 Excellent for timesharing

 Ready queue is treated as a circular queue (FIFO)

 Each job is given a time slice called a quantum

 A job executes for the duration of the quantum, or until it 

blocks or is interrupted

 No starvation

 Can be preemptive or non-preemptive

 Problem

 Context switches are frequent and need to be very fast



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 14

Combining Algorithms

 Scheduling algorithms can be combined

 Have multiple queues

 Use a different algorithm for each queue

 Move processes among queues

 Example: Multiple-level feedback queues (MLFQ)

 Multiple queues representing different job types

» Interactive, CPU-bound, batch, system, etc.

 Queues have priorities, jobs on same queue scheduled RR

 Jobs can move among queues based upon execution history

» Feedback: Switch from interactive to CPU-bound behavior



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 15

Unix Scheduler

 The canonical Unix scheduler uses a MLFQ
 3-4 classes spanning ~170 priority levels

» Timesharing: first 60 priorities

» System: next 40 priorities

» Real-time: next 60 priorities

» Interrupt: next 10 (Solaris)

 Priority scheduling across queues, RR within a queue
 The process with the highest priority always runs

 Processes with the same priority are scheduled RR

 Processes dynamically change priority
 Increases over time if process blocks before end of quantum

 Decreases over time if process uses entire quantum



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 16

Motivation of Unix Scheduler

 The idea behind the Unix scheduler is to reward 

interactive processes over CPU hogs

 Interactive processes (shell, editor, etc.) typically run 

using short CPU bursts

 They do not finish quantum before waiting for more input

 Want to minimize response time

 Time from keystroke (putting process on ready queue) to 

executing keystroke handler (process running)

 Don’t want editor to wait until CPU hog finishes quantum

 This policy delays execution of CPU-bound jobs

 But that’s ok



Scheduling Overhead

 Operating systems aim to minimize overhead

 Context switching takes non-zero time, so it is pure overhead

 Overhead includes context switch + choosing next process

 Modern time-sharing OSes (Unix, Windows, …) time-

slice processes in ready list

 A process runs for its quantum, OS context switches to 

another, next process runs, etc.

 A CPU-bound process will use its entire quantum (e.g., 10ms)

 An IO-bound process will use part (e.g., 1ms), then issue IO

 The IO-bound process goes on a wait queue, the OS switches 

to the next process to run, the IO-bound process goes back 

on the ready list when the IO completes

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 17



Utilization

 CPU utilization is the fraction of time the system is 

doing useful work (e.g., not context switching or idle)

 If the system has

 Quantum of 10ms + context-switch overhead of 0.1ms

 3 CPU-bound processes + round-robin scheduling

 In steady-state, time is spent as follows:

 10ms + 0.1ms + 10ms + 0.1ms + 10ms + 0.1ms

 CPU utilization = time doing useful work / total time

 CPU utilization = (3*10ms) / (3*10ms + 3*0.1ms) = 30/30.3

 If one process is IO-bound, it will not use full quantum

 10ms + 0.1ms + 10ms + 0.1ms + 1ms + 0.1ms

 CPU util = (2*10 + 1) / (2*10 + 1 + 3*0.1) = 21/21.3

October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 18



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 19

Scheduling Summary

 Scheduler (dispatcher) is the module that gets invoked 

when a context switch needs to happen 

 Scheduling algorithm determines which process runs, 

where processes are placed on queues

 Many potential goals of scheduling algorithms

 Utilization, throughput, wait time, response time, etc.

 Various algorithms to meet these goals

 FCFS/FIFO, SJF, Priority, RR

 Can combine algorithms

 Multiple-level feedback queues

 Unix example



Thread Scheduling

 Discussed scheduling in the context of processes, but 

thread scheduling is analogous

 Process scheduling and thread scheduling are 

essentially the same for kernel supported threads

 User-level thread facilities have analogous user-level 

thread scheduler

February 1, 2007 CSE 120 – Lecture 8 – Scheduling and Deadlock 20


