
CSE 120

Principles of Operating

Systems

Spring 2016

Lecture 4: Threads

October 6, 2015 CSE 120 – Lecture 4 – Threads 2

Processes

 Recall that a process includes many things
 An address space (defining all the code and data pages)

 OS resources (e.g., open files) and accounting information

 Execution state (PC, SP, regs, etc.)

 Creating a new process is costly because of all of the
data structures that must be allocated and initialized
 Recall struct proc in Solaris

 …which does not even include page tables, perhaps TLB
flushing, etc.

 Communicating between processes is costly because
most communication goes through the OS
 Overhead of system calls and copying data

October 6, 2015 CSE 120 – Lecture 4 – Threads 3

Concurrent Programs

 Recall our Web server example that forks off copies of

itself to handle multiple simultaneous requests

 Or any parallel program that executes on a multiprocessor

 To execute these programs we need to

 Create several processes that execute in parallel

 Cause each to map to the same address space to share data

» They are all part of the same computation

 Have the OS schedule these processes in parallel (logically or

physically)

 This situation is very inefficient

 Space: PCB, page tables, etc.

 Time: create data structures, fork and copy addr space, etc.

October 6, 2015 CSE 120 – Lecture 4 – Threads 4

Rethinking Processes

 What is similar in these cooperating processes?

 They all share the same code and data (address space)

 They all share the same privileges

 They all share the same resources (files, sockets, etc.)

 What don’t they share?

 Each has its own execution state: PC, SP, and registers

 Key idea: Why don’t we separate the concept of a

process from its execution state?

 Process: address space, privileges, resources, etc.

 Execution state: PC, SP, registers

 Exec state also called thread of control, or thread

October 6, 2015 CSE 120 – Lecture 4 – Threads 5

Threads

 Modern OSes (Windows, Unix, OS X) separate the

concepts of processes and threads

 The thread defines a sequential execution stream within a

process (PC, SP, registers)

 The process defines the address space and general process

attributes (everything but threads of execution)

 A thread is bound to a single process

 Processes, however, can have multiple threads

 Threads become the unit of scheduling

 Processes are now the containers in which threads execute

 Processes become static, threads are the dynamic entities

October 6, 2015 CSE 120 – Lecture 4 – Threads 6

Threads in a Process

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

October 6, 2015 CSE 120 – Lecture 4 – Threads 7

Thread Design Space

One Thread/Process
Many Address Spaces

(Early Unix)

One Thread/Process
One Address Space

(MSDOS)

Many Threads/Process
Many Address Spaces (Mach,

Unix, Windows, OS X)

Many Threads/Process
One Address Space

(Pilot, Java)

Address Space

Thread

October 6, 2015 CSE 120 – Lecture 4 – Threads 8

Process/Thread Separation

 Separating threads and processes makes it easier to

support multithreaded applications

 Concurrency does not require creating new processes

 Concurrency (multithreading) can be very useful

 Improving program structure

 Handling concurrent events (e.g., Web requests)

 Writing parallel programs

 So multithreading is even useful on a uniprocessor

 Although today even cell phones are multicore

October 6, 2015 CSE 120 – Lecture 4 – Threads 9

Threads: Concurrent Servers

 Using fork() to create new processes to handle

requests in parallel is overkill for such a simple task

 Recall our forking Web server:

while (1) {

int sock = accept();

if ((child_pid = fork()) == 0) {

Handle client request

Close socket and exit

} else {

Close socket

}

}

October 6, 2015 CSE 120 – Lecture 4 – Threads 10

Threads: Concurrent Servers

 Instead, we can create a new thread for each request

web_server() {

while (1) {

int sock = accept();

thread_fork(handle_request, sock);

}

}

handle_request(int sock) {

Process request

close(sock);

}

October 6, 2015 CSE 120 – Lecture 4 – Threads 11

Kernel-Level Threads

 We have taken the execution aspect of a process and

separated it out into threads

 To make concurrency cheaper

 As such, the OS now manages threads and processes

 All thread operations are implemented in the kernel

 The OS schedules all of the threads in the system

 OS-managed threads are called kernel-level threads

or lightweight processes

 Windows: threads

 Solaris: lightweight processes (LWP)

 POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM

October 6, 2015 CSE 120 – Lecture 4 – Threads 12

Kernel Thread Limitations

 Kernel-level threads make concurrency much cheaper

than processes

 Much less state to allocate and initialize

 However, for fine-grained concurrency, kernel-level

threads still suffer from overhead

 Thread operations still require system calls

» Ideally, want thread operations to be as fast as a procedure call

 Kernel-level threads have to be general to support the needs

of all programmers, languages, runtimes, etc.

 For such fine-grained concurrency, need even

“cheaper” threads

October 6, 2015 CSE 120 – Lecture 4 – Threads 13

User-Level Threads

 To make threads cheap and fast, they need to be

implemented at user level

 Kernel-level threads are managed by the OS

 User-level threads are managed entirely by the run-time

system (user-level library)

 User-level threads are small and fast

 A thread is simply represented by a PC, registers, stack, and

small thread control block (TCB)

 Creating a new thread, switching between threads, and

synchronizing threads are done via procedure call

» No kernel involvement

 User-level thread operations 100x faster than kernel threads

 pthreads: PTHREAD_SCOPE_PROCESS

Small and Fast…

 Nachos thread class

October 6, 2015 CSE 120 – Lecture 4 – Threads 14

public class KThread {

int status;

String name;

Runnable target;

TCB tcb;

int id;

<Methods>

};

October 6, 2015 CSE 120 – Lecture 4 – Threads 15

U/L Thread Limitations

 But, user-level threads are not a perfect solution

 As with everything else, they are a tradeoff

 User-level threads are invisible to the OS

 They are not well integrated with the OS

 As a result, the OS can make poor decisions

 Scheduling a process with idle threads

 Blocking a process whose thread initiated an I/O, even though

the process has other threads that can execute

 Unscheduling a process with a thread holding a lock

 Solving this requires communication between the

kernel and the user-level thread manager

October 6, 2015 CSE 120 – Lecture 4 – Threads 16

Kernel vs. User Threads

 Kernel-level threads

 Integrated with OS (informed scheduling)

 Slower to create, manipulate, synchronize

 User-level threads

 Faster to create, manipulate, synchronize

 Not integrated with OS (uninformed scheduling)

 Understanding the differences between kernel and

user-level threads is important

 For programming (correctness, performance)

 For test-taking

October 6, 2015 CSE 120 – Lecture 4 – Threads 17

Kernel and User Threads

 Or use both kernel and user-level threads

 Can associate a user-level thread with a kernel-level thread

 Or, multiplex user-level threads on top of kernel-level threads

 Java Virtual Machine (JVM) (also C#)

 Java threads are user-level threads

 On older Unix, only one “kernel thread” per process

» Multiplex all Java threads on this one kernel thread

 On modern OSes

» Can multiplex Java threads on multiple kernel threads

» Can have more Java threads than kernel threads

» Why?

October 6, 2015 CSE 120 – Lecture 4 – Threads 18

User and Kernel Threads

Multiplexing user-level threads

on a single kernel thread for

each process

Multiplexing user-level threads

on multiple kernel threads for

each process

October 6, 2015 CSE 120 – Lecture 4 – Threads 19

Implementing Threads

 Implementing threads has a number of issues

 Interface

 Context switch

 Preemptive vs. non-preemptive

 Scheduling

 Synchronization (next lecture)

 Focus on user-level threads

 Kernel-level threads are similar to original process

management and implementation in the OS

 What you will be dealing with in Nachos

 Not only will you be using threads in Nachos, you will be

implementing more thread functionality

October 6, 2015 CSE 120 – Lecture 4 – Threads 20

Sample Thread Interface

 thread_fork(procedure_t) [KThread::fork]

 Create a new thread of control

 Also thread_create(), thread_setstate()

 thread_stop() [KThread::sleep]

 Stop the calling thread; also thread_block

 thread_start(thread_t) [KThread::ready]

 Start the given thread

 thread_yield() [KThread::yield]

 Voluntarily give up the processor

 thread_exit() [KThread::finish]

 Terminate the calling thread; also thread_destroy

October 6, 2015 CSE 120 – Lecture 4 – Threads 21

Thread Scheduling

 The thread scheduler determines when a thread runs

 It uses queues to keep track of what threads are doing

 Just like the OS and processes

 But it is implemented at user-level in a library

 Run queue: Threads currently running (usually one)

 Ready queue: Threads ready to run

 Are there wait queues?

 How would you implement thread_sleep(time)?

October 6, 2015 CSE 120 – Lecture 4 – Threads 22

Non-Preemptive Scheduling

 Threads voluntarily give up the CPU with thread_yield

 What is the output of running these two threads?

while (1) {

printf(“ping\n”);

thread_yield();

}

while (1) {

printf(“pong\n”);

thread_yield();

}

Ping Thread Pong Thread

October 6, 2015 CSE 120 – Lecture 4 – Threads 23

thread_yield()

 Wait a second. How does thread_yield() work?

 The semantics of thread_yield are that it gives up the

CPU to another thread

 In other words, it context switches to another thread

 So what does it mean for thread_yield to return?

 It means that another thread called thread_yield!

 Execution trace of ping/pong
 printf(“ping\n”);

 thread_yield();

 printf(“pong\n”);

 thread_yield();

 …

October 6, 2015 CSE 120 – Lecture 4 – Threads 24

Implementing thread_yield()

thread_yield() {

thread_t old_thread = current_thread;

current_thread = get_next_thread();

append_to_queue(ready_queue, old_thread);

context_switch(old_thread, current_thread);

return;

}

 The magic step is invoking context_switch()

 Why do we need to call append_to_queue()?

As old thread

As new thread

October 6, 2015 CSE 120 – Lecture 4 – Threads 25

Thread Context Switch

 The context switch routine does all of the magic

 Saves context of the currently running thread (old_thread)

» Push all machine state onto its stack

 Restores context of the next thread

» Pop all machine state from the next thread’s stack

 The next thread becomes the current thread

 Return to caller as new thread

 This is all done in assembly language

 It works at the level of the procedure calling convention, so it

cannot be implemented using procedure calls

October 6, 2015 CSE 120 – Lecture 4 – Threads 26

Preemptive Scheduling

 Non-preemptive threads have to voluntarily give up CPU

 A long-running thread will take over the machine

 Only voluntary calls to thread_yield(), thread_stop(), or

thread_exit() causes a context switch

 Preemptive scheduling causes an involuntary context

switch

 Need to regain control of processor asynchronously

 Use timer interrupt

 Timer interrupt handler forces current thread to “call” thread_yield

» How do you do this?

October 6, 2015 CSE 120 – Lecture 4 – Threads 27

Threads Summary

 The operating system as a large multithreaded program

 Each process executes as a thread within the OS

 Multithreading is also very useful for applications

 Efficient multithreading requires fast primitives

 Processes are too heavyweight

 Solution is to separate threads from processes

 Kernel-level threads much better, but still significant overhead

 User-level threads even better, but not well integrated with OS

 Now, how do we get our threads to correctly cooperate

with each other?

 Synchronization…

October 6, 2015 CSE 120 – Lecture 4 – Threads 28

Next time…

 Read Chapters 28, 29

