
CSE 120

Principles of Operating

Systems

Spring 2016

Lecture 4: Threads

October 6, 2015 CSE 120 – Lecture 4 – Threads 2

Processes

 Recall that a process includes many things
 An address space (defining all the code and data pages)

 OS resources (e.g., open files) and accounting information

 Execution state (PC, SP, regs, etc.)

 Creating a new process is costly because of all of the
data structures that must be allocated and initialized
 Recall struct proc in Solaris

 …which does not even include page tables, perhaps TLB
flushing, etc.

 Communicating between processes is costly because
most communication goes through the OS
 Overhead of system calls and copying data

October 6, 2015 CSE 120 – Lecture 4 – Threads 3

Concurrent Programs

 Recall our Web server example that forks off copies of

itself to handle multiple simultaneous requests

 Or any parallel program that executes on a multiprocessor

 To execute these programs we need to

 Create several processes that execute in parallel

 Cause each to map to the same address space to share data

» They are all part of the same computation

 Have the OS schedule these processes in parallel (logically or

physically)

 This situation is very inefficient

 Space: PCB, page tables, etc.

 Time: create data structures, fork and copy addr space, etc.

October 6, 2015 CSE 120 – Lecture 4 – Threads 4

Rethinking Processes

 What is similar in these cooperating processes?

 They all share the same code and data (address space)

 They all share the same privileges

 They all share the same resources (files, sockets, etc.)

 What don’t they share?

 Each has its own execution state: PC, SP, and registers

 Key idea: Why don’t we separate the concept of a

process from its execution state?

 Process: address space, privileges, resources, etc.

 Execution state: PC, SP, registers

 Exec state also called thread of control, or thread

October 6, 2015 CSE 120 – Lecture 4 – Threads 5

Threads

 Modern OSes (Windows, Unix, OS X) separate the

concepts of processes and threads

 The thread defines a sequential execution stream within a

process (PC, SP, registers)

 The process defines the address space and general process

attributes (everything but threads of execution)

 A thread is bound to a single process

 Processes, however, can have multiple threads

 Threads become the unit of scheduling

 Processes are now the containers in which threads execute

 Processes become static, threads are the dynamic entities

October 6, 2015 CSE 120 – Lecture 4 – Threads 6

Threads in a Process

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

October 6, 2015 CSE 120 – Lecture 4 – Threads 7

Thread Design Space

One Thread/Process
Many Address Spaces

(Early Unix)

One Thread/Process
One Address Space

(MSDOS)

Many Threads/Process
Many Address Spaces (Mach,

Unix, Windows, OS X)

Many Threads/Process
One Address Space

(Pilot, Java)

Address Space

Thread

October 6, 2015 CSE 120 – Lecture 4 – Threads 8

Process/Thread Separation

 Separating threads and processes makes it easier to

support multithreaded applications

 Concurrency does not require creating new processes

 Concurrency (multithreading) can be very useful

 Improving program structure

 Handling concurrent events (e.g., Web requests)

 Writing parallel programs

 So multithreading is even useful on a uniprocessor

 Although today even cell phones are multicore

October 6, 2015 CSE 120 – Lecture 4 – Threads 9

Threads: Concurrent Servers

 Using fork() to create new processes to handle

requests in parallel is overkill for such a simple task

 Recall our forking Web server:

while (1) {

int sock = accept();

if ((child_pid = fork()) == 0) {

Handle client request

Close socket and exit

} else {

Close socket

}

}

October 6, 2015 CSE 120 – Lecture 4 – Threads 10

Threads: Concurrent Servers

 Instead, we can create a new thread for each request

web_server() {

while (1) {

int sock = accept();

thread_fork(handle_request, sock);

}

}

handle_request(int sock) {

Process request

close(sock);

}

October 6, 2015 CSE 120 – Lecture 4 – Threads 11

Kernel-Level Threads

 We have taken the execution aspect of a process and

separated it out into threads

 To make concurrency cheaper

 As such, the OS now manages threads and processes

 All thread operations are implemented in the kernel

 The OS schedules all of the threads in the system

 OS-managed threads are called kernel-level threads

or lightweight processes

 Windows: threads

 Solaris: lightweight processes (LWP)

 POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM

October 6, 2015 CSE 120 – Lecture 4 – Threads 12

Kernel Thread Limitations

 Kernel-level threads make concurrency much cheaper

than processes

 Much less state to allocate and initialize

 However, for fine-grained concurrency, kernel-level

threads still suffer from overhead

 Thread operations still require system calls

» Ideally, want thread operations to be as fast as a procedure call

 Kernel-level threads have to be general to support the needs

of all programmers, languages, runtimes, etc.

 For such fine-grained concurrency, need even

“cheaper” threads

October 6, 2015 CSE 120 – Lecture 4 – Threads 13

User-Level Threads

 To make threads cheap and fast, they need to be

implemented at user level

 Kernel-level threads are managed by the OS

 User-level threads are managed entirely by the run-time

system (user-level library)

 User-level threads are small and fast

 A thread is simply represented by a PC, registers, stack, and

small thread control block (TCB)

 Creating a new thread, switching between threads, and

synchronizing threads are done via procedure call

» No kernel involvement

 User-level thread operations 100x faster than kernel threads

 pthreads: PTHREAD_SCOPE_PROCESS

Small and Fast…

 Nachos thread class

October 6, 2015 CSE 120 – Lecture 4 – Threads 14

public class KThread {

int status;

String name;

Runnable target;

TCB tcb;

int id;

<Methods>

};

October 6, 2015 CSE 120 – Lecture 4 – Threads 15

U/L Thread Limitations

 But, user-level threads are not a perfect solution

 As with everything else, they are a tradeoff

 User-level threads are invisible to the OS

 They are not well integrated with the OS

 As a result, the OS can make poor decisions

 Scheduling a process with idle threads

 Blocking a process whose thread initiated an I/O, even though

the process has other threads that can execute

 Unscheduling a process with a thread holding a lock

 Solving this requires communication between the

kernel and the user-level thread manager

October 6, 2015 CSE 120 – Lecture 4 – Threads 16

Kernel vs. User Threads

 Kernel-level threads

 Integrated with OS (informed scheduling)

 Slower to create, manipulate, synchronize

 User-level threads

 Faster to create, manipulate, synchronize

 Not integrated with OS (uninformed scheduling)

 Understanding the differences between kernel and

user-level threads is important

 For programming (correctness, performance)

 For test-taking

October 6, 2015 CSE 120 – Lecture 4 – Threads 17

Kernel and User Threads

 Or use both kernel and user-level threads

 Can associate a user-level thread with a kernel-level thread

 Or, multiplex user-level threads on top of kernel-level threads

 Java Virtual Machine (JVM) (also C#)

 Java threads are user-level threads

 On older Unix, only one “kernel thread” per process

» Multiplex all Java threads on this one kernel thread

 On modern OSes

» Can multiplex Java threads on multiple kernel threads

» Can have more Java threads than kernel threads

» Why?

October 6, 2015 CSE 120 – Lecture 4 – Threads 18

User and Kernel Threads

Multiplexing user-level threads

on a single kernel thread for

each process

Multiplexing user-level threads

on multiple kernel threads for

each process

October 6, 2015 CSE 120 – Lecture 4 – Threads 19

Implementing Threads

 Implementing threads has a number of issues

 Interface

 Context switch

 Preemptive vs. non-preemptive

 Scheduling

 Synchronization (next lecture)

 Focus on user-level threads

 Kernel-level threads are similar to original process

management and implementation in the OS

 What you will be dealing with in Nachos

 Not only will you be using threads in Nachos, you will be

implementing more thread functionality

October 6, 2015 CSE 120 – Lecture 4 – Threads 20

Sample Thread Interface

 thread_fork(procedure_t) [KThread::fork]

 Create a new thread of control

 Also thread_create(), thread_setstate()

 thread_stop() [KThread::sleep]

 Stop the calling thread; also thread_block

 thread_start(thread_t) [KThread::ready]

 Start the given thread

 thread_yield() [KThread::yield]

 Voluntarily give up the processor

 thread_exit() [KThread::finish]

 Terminate the calling thread; also thread_destroy

October 6, 2015 CSE 120 – Lecture 4 – Threads 21

Thread Scheduling

 The thread scheduler determines when a thread runs

 It uses queues to keep track of what threads are doing

 Just like the OS and processes

 But it is implemented at user-level in a library

 Run queue: Threads currently running (usually one)

 Ready queue: Threads ready to run

 Are there wait queues?

 How would you implement thread_sleep(time)?

October 6, 2015 CSE 120 – Lecture 4 – Threads 22

Non-Preemptive Scheduling

 Threads voluntarily give up the CPU with thread_yield

 What is the output of running these two threads?

while (1) {

printf(“ping\n”);

thread_yield();

}

while (1) {

printf(“pong\n”);

thread_yield();

}

Ping Thread Pong Thread

October 6, 2015 CSE 120 – Lecture 4 – Threads 23

thread_yield()

 Wait a second. How does thread_yield() work?

 The semantics of thread_yield are that it gives up the

CPU to another thread

 In other words, it context switches to another thread

 So what does it mean for thread_yield to return?

 It means that another thread called thread_yield!

 Execution trace of ping/pong
 printf(“ping\n”);

 thread_yield();

 printf(“pong\n”);

 thread_yield();

 …

October 6, 2015 CSE 120 – Lecture 4 – Threads 24

Implementing thread_yield()

thread_yield() {

thread_t old_thread = current_thread;

current_thread = get_next_thread();

append_to_queue(ready_queue, old_thread);

context_switch(old_thread, current_thread);

return;

}

 The magic step is invoking context_switch()

 Why do we need to call append_to_queue()?

As old thread

As new thread

October 6, 2015 CSE 120 – Lecture 4 – Threads 25

Thread Context Switch

 The context switch routine does all of the magic

 Saves context of the currently running thread (old_thread)

» Push all machine state onto its stack

 Restores context of the next thread

» Pop all machine state from the next thread’s stack

 The next thread becomes the current thread

 Return to caller as new thread

 This is all done in assembly language

 It works at the level of the procedure calling convention, so it

cannot be implemented using procedure calls

October 6, 2015 CSE 120 – Lecture 4 – Threads 26

Preemptive Scheduling

 Non-preemptive threads have to voluntarily give up CPU

 A long-running thread will take over the machine

 Only voluntary calls to thread_yield(), thread_stop(), or

thread_exit() causes a context switch

 Preemptive scheduling causes an involuntary context

switch

 Need to regain control of processor asynchronously

 Use timer interrupt

 Timer interrupt handler forces current thread to “call” thread_yield

» How do you do this?

October 6, 2015 CSE 120 – Lecture 4 – Threads 27

Threads Summary

 The operating system as a large multithreaded program

 Each process executes as a thread within the OS

 Multithreading is also very useful for applications

 Efficient multithreading requires fast primitives

 Processes are too heavyweight

 Solution is to separate threads from processes

 Kernel-level threads much better, but still significant overhead

 User-level threads even better, but not well integrated with OS

 Now, how do we get our threads to correctly cooperate

with each other?

 Synchronization…

October 6, 2015 CSE 120 – Lecture 4 – Threads 28

Next time…

 Read Chapters 28, 29

