
CSE 120

Principles of Operating

Systems

Spring 2016

Lecture 2: Architectural Support for

Operating Systems

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 2

Administrivia

 Project 0

 Good time to get started!

 Homework #1

 Out tonight!

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 3

Why Start With Architecture?

 Operating system functionality fundamentally depends

upon the architectural features of the computer
 Key goals of an OS are to enforce protection and resource

sharing

 If done well, applications can be oblivious to HW details

 Unfortunately for us, the OS is left holding the bag

 Architectural support can greatly simplify – or

complicate – OS tasks

 Early PC operating systems (DOS, MacOS) lacked virtual

memory in part because the architecture did not support it

 Early Sun 1 computers used two M68000 CPUs to implement

virtual memory (M68000 did not have VM hardware support)

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 4

Architectural Features for OS

 Features that directly support the OS include

 Protection (kernel/user mode)

 Protected instructions

 Memory protection

 System calls

 Interrupts and exceptions

 Timer (clock)

 I/O control and operation

 Synchronization

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 5

Types of Arch Support

 Manipulating privileged machine state

 Protected instructions

 Manipulate device registers, TLB entries, etc.

 Generating and handling “events”

 Interrupts, exceptions, system calls, etc.

 Respond to external events

 CPU requires software intervention to handle fault or trap

 Mechanisms to handle concurrency

 Interrupts, atomic instructions

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 6

Protected Instructions

 A subset of instructions of every CPU is restricted to

use only by the OS

 Known as protected (privileged) instructions

 Only the operating system can …

 Directly access I/O devices (disks, printers, etc.)

» Security, fairness (why?)

 Manipulate memory management state

» Page table pointers, page protection, TLB management, etc.

 Manipulate protected control registers

» Kernel mode, interrupt level

 Halt instruction (why?)

CSE 120 – Lecture 2 – Architectural Support for OSes 7

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 8

OS Protection

 How do we know if we can execute a protected

instruction?

 Architecture must support (at least) two modes of operation:

kernel mode and user mode

» VAX, x86 support four modes; earlier archs (Multics) even more

» Why? Protect the OS from itself (software engineering)

 Mode is indicated by a status bit in a protected control register

 User programs execute in user mode

 OS executes in kernel, privileged mode (OS == “kernel”)

 Protected instructions only execute in kernel mode

 CPU checks mode bit when protected instruction executes

 Setting mode bit must be a protected instruction

 Attempts to execute in user mode are detected and prevented

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 9

Memory Protection

 OS must be able to protect programs from each other

 OS must protect itself from user programs

 May or may not protect user programs from OS

 Raises question of whether programs should trust the OS

 Untrusted operating systems? (Intel SGX)

 Memory management hardware provides memory

protection mechanisms

 Base and limit registers

 Page table pointers, page protection, segmentation, TLB

 Manipulating memory management hardware uses

protected (privileged) operations

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 10

Events

 An event is an “unnatural” change in control flow

 Events immediately stop current execution

 Changes mode, context (machine state), or both

 The kernel defines a handler for each event type

 Event handlers always execute in kernel mode

 The specific types of events are defined by the machine

 Once the system is booted, all entry to the kernel

occurs as the result of an event

 In effect, the operating system is one big event handler

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 11

Categorizing Events

 Two kinds of events, interrupts and exceptions

 Exceptions are caused by executing instructions

 CPU requires software intervention to handle a fault or trap

 Interrupts are caused by an external event

 Device finishes I/O, timer expires, etc.

 Two reasons for events, unexpected and deliberate

 Unexpected events are, well, unexpected

 What is an example?

 Deliberate events are scheduled by OS or application

 Why would this be useful?

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 12

Categorizing Events (2)

 This gives us a convenient table:

 Terms may be used slightly differently by various OSes, CPU

architectures…

 Software interrupt – a.k.a. async system trap (AST), async or

deferred procedure call (APC or DPC)

 Will cover faults, system calls, and interrupts next

 Does anyone remember from CSE 141 what a software

interrupt is?

Unexpected Deliberate

Exceptions (sync) fault syscall trap

Interrupts (async) interrupt software interrupt

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 13

Faults

 Hardware detects and reports “exceptional” conditions

 Page fault, unaligned access, divide by zero

 Upon exception, hardware “faults” (verb)

 Must save state (PC, regs, mode, etc.) so that the faulting

process can be restarted

 Modern OSes use VM faults for many functions

 Debugging, distributed VM, garbage collection, copy-on-write

 Fault exceptions are a performance optimization

 Could detect faults by inserting extra instructions into code (at

a significant performance penalty)

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 14

Handling Faults

 Some faults are handled by “fixing” the exceptional

condition and returning to the faulting context

 Page faults cause the OS to place the missing page into

memory

 Fault handler resets PC of faulting context to re-execute

instruction that caused the page fault

 Some faults are handled by notifying the process

 Fault handler changes the saved context to transfer control to

a user-mode handler on return from fault

 Handler must be registered with OS

 Unix signals or Win user-mode Async Procedure Calls (APCs)

» SIGALRM, SIGHUP, SIGTERM, SIGSEGV, etc.

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 15

Handling Faults (2)

 The kernel may handle unrecoverable faults by killing

the user process

 Program fault with no registered handler

 Halt process, write process state to file, destroy process

 In Unix, the default action for many signals (e.g., SIGSEGV)

 What about faults in the kernel?

 Dereference NULL, divide by zero, undefined instruction

 These faults considered fatal, operating system crashes

 Unix panic, Windows “Blue screen of death”

» Kernel is halted, state dumped to a core file, machine locked up

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 16

System Calls

 For a user program to do something “privileged” (e.g.,
I/O) it must call an OS procedure
 Known as crossing the protection boundary, or protected

procedure call, or protected control transfer

 CPU ISA provides a system call instruction that:
 Causes an exception, which vectors to a kernel handler

 Passes a parameter determining the system routine to call

 Saves caller state (PC, regs, mode) so it can be restored

» Why save mode?

 Returning from system call restores this state

 Requires architectural support to:
 Verify input parameters (e.g., valid addresses for buffers)

 Restore saved state, reset mode, resume execution

CSE 120 – Lecture 2 – Architectural Support for OSes 17

CSE 120 – Lecture 2 – Architectural Support for OSes 18

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 19

System Call

Kernel mode

Firefox: read()

User mode

read() kernel routine

Trap to

kernel mode,

save state

Trap handler

Find read

handler in

vector table

Restore state,

return to user

level, resume

execution

CSE 120 – Lecture 2 – Architectural Support for OSes 20

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 21

System Call Questions

 What would happen if the kernel did not save state?

 What if the kernel executes a system call?

 What if a user program returns from a system call?

 How to reference kernel objects as arguments or

results to/from system calls?

 A naming issue

 Use integer object handles or descriptors

» E.g., Unix file descriptors, Windows HANDLEs

» Only meaningful as parameters to other system calls

 Also called capabilities (more later when we do protection)

 Why not use kernel addresses to name kernel objects?

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 22

Interrupts

 Interrupts signal asynchronous events

 I/O hardware interrupts

 Software and hardware timers

 Two flavors of interrupts

 Precise: CPU transfers control only on instruction boundaries

 Imprecise: CPU transfers control in the middle of instruction

execution

» What the heck does that mean?

 OS designers like precise interrupts, CPU designers like

imprecise interrupts

» Why?

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 23

Timer

 The timer is critical for an operating system

 It is the fallback mechanism by which the OS reclaims

control over the machine

 Timer is set to generate an interrupt after a period of time

» Setting timer is a privileged instruction

 When timer expires, generates an interrupt

 Handled by kernel, which controls resumption context

» Basis for OS scheduler (more later…)

 Prevents infinite loops

 OS can always regain control from erroneous or malicious

programs that try to hog CPU

 Also used for time-based functions (e.g., sleep())

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 24

I/O Control

 I/O issues

 Initiating an I/O

 Completing an I/O

 Initiating an I/O

 Special instructions

 Memory-mapped I/O

» Device registers mapped into address space

» Writing to address sends data to I/O device

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 25

I/O Completion

 Interrupts are the basis for asynchronous I/O

 OS initiates I/O

 Device operates independently of rest of machine

 Device sends an interrupt signal to CPU when done

 OS maintains a vector table containing a list of addresses of

kernel routines to handle various events

 CPU looks up kernel address indexed by interrupt number,

context switches to routine

 If you have ever installed earlier versions of Windows,

you now know what IRQs are for

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 26

I/O Example

1. Ethernet receives packet, writes packet into memory

2. Ethernet signals an interrupt

3. CPU stops current operation, switches to kernel mode,

saves machine state (PC, mode, etc.) on kernel stack

4. CPU reads address from vector table indexed by

interrupt number, branches to address (Ethernet

device driver)

5. Ethernet device driver processes packet (reads

descriptors to find packet in memory)

6. Upon completion, restores saved state from stack

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 27

Interrupt Questions

 Interrupts halt the execution of a process and transfer

control (execution) to the operating system

 Can the OS be interrupted? (Consider why there might be

different IRQ levels)

 Interrupts are used by devices to have the OS do stuff

 What is an alternative approach to using interrupts?

 What are the drawbacks of that approach?

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 28

Synchronization

 Interrupts cause difficult problems

 An interrupt can occur at any time

 A handler can execute that interferes with code that was

interrupted

 OS must be able to synchronize concurrent execution

 Need to guarantee that short instruction sequences

execute atomically

 Disable interrupts – turn off interrupts before sequence,

execute sequence, turn interrupts back on

 Special atomic instructions – read/modify/write a memory

address, test and conditionally set a bit based upon previous

value

» XCHG instruction on x86

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 29

Summary

 Protection

 User/kernel modes

 Protected instructions

 System calls

 Used by user-level processes to access OS functions

 Access what is “in” the OS

 Exceptions

 Unexpected event during execution (e.g., divide by zero)

 Interrupts

 Timer, I/O

