CSE 120
Principles of Operating
Systems

Spring 2016

Lecture 2: Architectural Support for
Operating Systems

Administrivia

o ProjectO
+ Good time to get started!

o HOomework #1
+ Out tonight!

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes

Why Start With Architecture?

o Operating system functionality fundamentally depends

upon the architectural features of the computer

+ Key goals of an OS are to enforce protection and resource
sharing

+ If done well, applications can be oblivious to HW details
+ Unfortunately for us, the OS is left holding the bag

o Architectural support can greatly simplify — or
complicate — OS tasks

+ Early PC operating systems (DOS, MacOS) lacked virtual
memory in part because the architecture did not support it

+ Early Sun 1 computers used two M68000 CPUs to implement
virtual memory (M68000 did not have VM hardware support)

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes 3

Architectural Features for 0S

o [Features that directly support the OS include
+ Protection (kernel/user mode)
+ Protected instructions
+ Memory protection
+ System calls
+ Interrupts and exceptions
+ Timer (clock)
+ 1/O control and operation
+ Synchronization

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes 4

Types of Arch Support

« Manipulating privileged machine state
+ Protected instructions
+ Manipulate device registers, TLB entries, etc.

o Generating and handling “events”
+ Interrupts, exceptions, system calls, etc.
+ Respond to external events
+ CPU requires software intervention to handle fault or trap

« Mechanisms to handle concurrency
+ Interrupts, atomic instructions

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes

Protected Instructions

o A subset of instructions of every CPU is restricted to
use only by the OS

+ Known as protected (privileged) instructions

o Only the operating system can ...
+ Directly access I/O devices (disks, printers, etc.)
» Security, fairness (why?)
+ Manipulate memory management state
» Page table pointers, page protection, TLB management, etc.
+ Manipulate protected control registers
» Kernel mode, interrupt level
+ Halt instruction (why?)

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes

INSTRUCTION SET REFERENCE, A-M

INVLPG—Invalidate TLB Entries

Opcode Instruction Op/ 64-Bit Compat/ Description

En Mode Leqg Mode
OF 01/7 INVLPG m M Valid Valid Invalidate TLB entries for page containing m.
NOTES:

* See the I1A-32 Architecture Compatibility section below.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (r) NA NA NA
Description

Invalidates any translation lookaside buffer (TLB) entries specified with the source operand. The source operand is
a memory address. The processor determines the page that contains that address and flushes all TLB entries for
that page.!

The INVLPG instruction is a privileged instruction. When the processor is running in protected mode, the CPL must
be 0 to execute this instruction.

The INVLPG instruction normally flushes TLB entries only for the specified page; however, in some cases, it may
flush more entries, even the entire TLB. The instruction is guaranteed to invalidates only TLB entries associated
with the current PCID. (If PCIDs are disabled — CR4.PCIDE = 0 — the current PCID is 000H.) The instruction also
invalidates any global TLB entries for the specified page, regardless of PCID.

For more details on operations that flush the TLB, see "MOV—Move to/from Control Registers” and Section

4.10.4.1, "Operations that Invalidate TLBs and Paging-Structure Caches,” of the Infel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.

This instruction’s operation is the same in all non-64-bit modes. It also operates the same in 64-bit mode, except
if the memory address is in non-canonical form. In this case, INVLPG is the same as a NOP.

|IA-32 Architecture Compatibility

The INVLPG instruction is implementation dependent, and its function may be implemented differently on different

OS Protection

« How do we know if we can execute a protected
Instruction?

+ Architecture must support (at least) two modes of operation:
kernel mode and user mode

» VAX, x86 support four modes; earlier archs (Multics) even more
» Why? Protect the OS from itself (software engineering)

+ Mode is indicated by a status bit in a protected control register
+ User programs execute in user mode
+ OS executes in kernel, privileged mode (OS == “kernel”)

o Protected instructions only execute in kernel mode
+ CPU checks mode bit when protected instruction executes
+ Setting mode bit must be a protected instruction
+ Attempts to execute in user mode are detected and prevented

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes 8

Memory Protection

« OS must be able to protect programs from each other
o OS must protect itself from user programs

« May or may not protect user programs from OS
+ Raises question of whether programs should trust the OS
+ Untrusted operating systems? (Intel SGX)
« Memory management hardware provides memory
protection mechanisms
+ Base and limit registers
+ Page table pointers, page protection, segmentation, TLB

o Manipulating memory management hardware uses
protected (privileged) operations

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes

Events

o An eventis an “unnatural” change in control flow
+ Events immediately stop current execution
+ Changes mode, context (machine state), or both

o The kernel defines a handler for each event type
+ Event handlers always execute in kernel mode
+ The specific types of events are defined by the machine

o Once the system is booted, all entry to the kernel
occurs as the result of an event
+ In effect, the operating system is one big event handler

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes

10

Categorizing Events

o Two kinds of events, interrupts and exceptions

o EXceptions are caused by executing instructions
+ CPU requires software intervention to handle a fault or trap

o Interrupts are caused by an external event
+ Device finishes I/O, timer expires, etc.

o Two reasons for events, unexpected and deliberate

« Unexpected events are, well, unexpected
+ What is an example?

o Deliberate events are scheduled by OS or application
+ Why would this be useful?

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes 11

Categorizing Events (2)

o This gives us a convenient table:

Unexpected Deliberate
Exceptions (sync) | fault syscall trap
Interrupts (async) | interrupt software interrupt

+ Terms may be used slightly differently by various OSes, CPU
architectures...

+ Software interrupt — a.k.a. async system trap (AST), async or
deferred procedure call (APC or DPC)

« Wil cover faults, system calls, and interrupts next

+ Does anyone remember from CSE 141 what a software
Interrupt is?

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes

Faults

o Hardware detects and reports “exceptional” conditions
+ Page fault, unaligned access, divide by zero

o Upon exception, hardware “faults” (verb)

+ Must save state (PC, regs, mode, etc.) so that the faulting
process can be restarted

o Modern OSes use VM faults for many functions
+ Debugging, distributed VM, garbage collection, copy-on-write

o Fault exceptions are a performance optimization

+ Could detect faults by inserting extra instructions into code (at
a significant performance penalty)

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes 13

Handling Faults

o Some faults are handled by “fixing” the exceptional
condition and returning to the faulting context

+ Page faults cause the OS to place the missing page into
memory

+ Fault handler resets PC of faulting context to re-execute
Instruction that caused the page fault
o Some faults are handled by notifying the process

+ Fault handler changes the saved context to transfer control to
a user-mode handler on return from fault

+ Handler must be registered with OS

+ Unix signals or Win user-mode Async Procedure Calls (APCs)
» SIGALRM, SIGHUP, SIGTERM, SIGSEGV, etc.

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes 14

Handling Faults (2)

o The kernel may handle unrecoverable faults by killing
the user process
+ Program fault with no registered handler
+ Halt process, write process state to file, destroy process
+ In Unix, the default action for many signals (e.g., SIGSEGV)

o What about faults in the kernel?
+ Dereference NULL, divide by zero, undefined instruction

+ These faults considered fatal, operating system crashes

+ Unix panic, Windows “Blue screen of death”
» Kernel is halted, state dumped to a core file, machine locked up

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes 15

System Calls

o For a user program to do something “privileged” (e.g.,
1/O) it must call an OS procedure
+ Known as crossing the protection boundary, or protected
procedure call, or protected control transfer
o« CPU ISA provides a system call instruction that:
+ Causes an exception, which vectors to a kernel handler
+ Passes a parameter determining the system routine to call

+ Saves caller state (PC, regs, mode) so it can be restored
» Why save mode?

+ Returning from system call restores this state

o Requires architectural support to:
+ Verify input parameters (e.g., valid addresses for buffers)
+ Restore saved state, reset mode, resume execution

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes

16

Thumb Instruction Details

A6.7.136 SVC (formerly SWI)

Generates a supervisor call. See Exceptions in the ARM Architecture Reference Manual.

Use 1t as a call to an operating system to provide a service.

Encoding T1 All versions of the Thumb ISA
SVC<o> #<immBs

151413121110 9 B 7 &6 5 4 3 2 1 0
1101|1111 imm§

imm3Z2 = ZerobExtend(imm§, 32);
S/ imm3Z2 is for assembly/disassembly, and is ignored by hardware. SVC handlers in some
// systems interpret immE in software, for example to determine the reguired service.

INSTRUCTION SET REFERENCE, A-M

INT n/INTO/INT 3—Call to Interrupt Procedure

Opcode Instruction Op/ 6&4-Bit Compat/ Description
En Mode Leg Mode
CC INT 3 NP Valid Valid Interrupt 3—trap to debugger.
CD ib INT imm8& | Walid Valid Interrupt vector specified by immediate byte.
CE INTO NP Invalid Valid Interrupt 4—if overflow flagis 1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
I imm8 NA NA NA
Description

The INT n instruction generates a call to the interrupt or exception handler specified with the destination operand
(see the section titled "Interrupts and Exceptions” in Chapter & of the Intel® 64 and IA-32 Architectures Software
Developer's Manual, Volume 1). The destination operand specifies a vector from 0 to 255, encoded as an 8-bit
unsigned intermediate value. Each vector provides an index to a gate descriptor in the IDT. The first 32 vectors are
reserved by Intel for system use. Some of these vectors are used for internally generated exceptions.

The INT n instruction is the general mnemonic for executing a software-generated call to an interrupt handler. The
INTO instruction is a special mnemonic for calling overflow exception (#0F), exception 4. The overflow interrupt
checks the OF flag in the EFLAGS register and calls the overflow interrupt handler if the OF flag is set to 1. (The
INTO instruction cannot be used in 64-bit mode.)

The INT 3 instruction generates a special one byte opcode (CC) that is intended for calling the debug exception
handler. (This one byte form is valuable because it can be used to replace the first byte of any instruction with a
breakpoint, including other one byte instructions, without over-writing other code). To further support its function
as a debug breakpoint, the interrupt generated with the CC opcode also differs from the regular software interrupts
as follows:

System Call

Firefox: read() é\

Trap to
kernel mode,

User mode save state

v

Kernel mode
Restore state,

return to user

_ level, resume
Find read execution

handler in
vector table

Trap handler

v

_/

read() kernel routine

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes 19

LINUX System Call Quick Reference

Jialong He
Juwlong_he'agfoot com
hitpffaww. bigfoot comd~jialong_he

Introduction

System call is the services provided by Lime kemel. In C programming, it often uses functions defined in libe
which prowides a wrapper for many system calls. Manual page section 2 provides more information about
system calls. To get an overview, use “man 2 intro™ in a command shell.

It 15 also possible to invoke syscall{) function directly. Each system call has a function number defined m
<syscall. bz or <unistd.h> Internally, system call s invokded by software interrupt (80 to transfer control to
the kernel. System call table 15 defined in Limux kernel source file “ archfi386/kernel/entry. 5™,

System Call Example

$include <syscall h>
$include <unistd.h>
#include <stdio.h>
$#include <sys/types.h>

int main(weid) {

long ID1, ID2;

e —————————————————————

/* direct system call o3

f* 8Y¥5 getpid (func no. is 20} */f
R

1Dl = syscall (5Y5_getpid):

printf ("syacall (5Y5_getpid)=%1d%n®, ID1):

f*_____________________________*f
/* "libe" wrapped system call */f
/¥ BYS getpid (Func Mo. iz 20) */

j*_____________________________*f
in2 = getpid(}):
printf ("getpid()=%1ld\n", ID2}:

return (0) ;

System Call Quick Reference

MNo Func Name Description Source

1 exit terminate the current process kermeliexit.c

2 fork create a child process arch/iiStkermeliprocess.c
3 read read from a file descriptor fafread write.c

4 write write to a file descriptor frdread write.c

5 open open a file or device fsapen.c

6 close close a file descriptor fafopen.c

T waitpid want for process termmation kermelfexit.c

10
11
12
13
14

16
18
19
20
21
22
23
24

26

27
28
9
30
33
34
36
37
38
39
40
41
42
43

i
-
=
]

£

create a file or device {"man 2 open” for
mformation)

make a new name for a file
delete 2 name and possibly the file it refers to
exouts Program

change working directory

get time in scconds

create a spectl or ordinary file
change permissionsof a file
change ownership of a file

gt file status

reposition readiwnite file offset
pet process identification
mount filesystems

unmount filesvstems

set real user 1D

eet real user [D

set system time and date

allows o parent process to control the execution of
a chald process

set an alarm clock for delivery of a signal
get file status

suspend process until signal

set file secess and modification times
check user's permissions for a file
change process priority

update the super block

send signal to a process

change the name or location of a file
create a directory

remove a directory

duplicate an open file descriptor
create an interprocess channel

get process times

change the amount of space allocated for the
calling process's data segment

set real group 1D

get real group 1D

ANSI C signal handling
get effective user [

get effectrve group 1D

fsapen.c

fa/namei.c

fafnamei.c
archiiStdkernepracess.c
fafopen.c

kermeliiime.c

fainamei.c

faopen.c

fs‘open.c

fastat.c

fdread write.c
kermelfsched.c

fafsuper.c

fusuper.c

kernelfsys.c
kermelfsched.c
kermeliiime.c
archyiiStderneljprace

kernelfsched c

fsfstat.c
archiiStdkernelfrys_i386.c
fsapen.c

fafopen.c

kermelfsched.c

fwthuffer.c

kernelfsignal.c

fainamei.c

fa/namei.c

fainamei.c

i
arch/iiStkernelfsys_i386.c
kernelfsys.c

AR ap.C

kernelfsys.c

kermelfsched.c
kernelsignal.c
kermelfsched.c
kermelfsched.c

System Call Questions

o What would happen if the kernel did not save state?
o What if the kernel executes a system call?
o What if a user program returns from a system call?

o How to reference kernel objects as arguments or
results to/from system calls?
+ A naming issue

+ Use integer object handles or descriptors
» E.g., Unix file descriptors, Windows HANDLES
» Only meaningful as parameters to other system calls

+ Also called capabilities (more later when we do protection)
+ Why not use kernel addresses to name kernel objects?

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes

21

Interrupts

 Interrupts signal asynchronous events
+ 1/0 hardware interrupts
+ Software and hardware timers

o Two flavors of interrupts
+ Precise: CPU transfers control only on instruction boundaries

+ Imprecise: CPU transfers control in the middle of instruction
execution
» What the heck does that mean?
+ OS designers like precise interrupts, CPU designers like
Imprecise interrupts
» Why?

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes 22

Timer

o The timer is critical for an operating system

o« lItis the fallback mechanism by which the OS reclaims
control over the machine

+ Timer is set to generate an interrupt after a period of time
» Setting timer is a privileged instruction

+« When timer expires, generates an interrupt
+ Handled by kernel, which controls resumption context
» Basis for OS scheduler (more later...)
o Prevents infinite loops

+ OS can always regain control from erroneous or malicious
programs that try to hog CPU

« Also used for time-based functions (e.g., sleep())

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes 23

1/0 Control

o 1/Oissues
+ Initiating an I/O
+ Completing an I/O

o Initiating an I/O

+ Special instructions

+ Memory-mapped I/O
» Device registers mapped into address space
» Writing to address sends data to I/O device

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes

24

1/0 Completion

 Interrupts are the basis for asynchronous 1/O

*

*

*

*

« If you have ever installed earlier versions of Windows,

OS initiates 1/O
Device operates independently of rest of machine
Device sends an interrupt signal to CPU when done

OS maintains a vector table containing a list of addresses of
kernel routines to handle various events

CPU looks up kernel address indexed by interrupt number,
context switches to routine

you now know what IRQs are for

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes

25

1/0 Example

1. Ethernet receives packet, writes packet into memory
2. Ethernet signals an interrupt

3. CPU stops current operation, switches to kernel mode,
saves machine state (PC, mode, etc.) on kernel stack

4. CPU reads address from vector table indexed by
Interrupt number, branches to address (Ethernet
device driver)

5. Ethernet device driver processes packet (reads
descriptors to find packet in memory)

6. Upon completion, restores saved state from stack

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes 26

Interrupt Questions

o Interrupts halt the execution of a process and transfer
control (execution) to the operating system

+ Can the OS be interrupted? (Consider why there might be
different IRQ levels)

o Interrupts are used by devices to have the OS do stuff
+ What is an alternative approach to using interrupts?
+ What are the drawbacks of that approach?

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes 27

Synchronization

 Interrupts cause difficult problems

+ An interrupt can occur at any time

+ A handler can execute that interferes with code that was
Interrupted

« OS must be able to synchronize concurrent execution

o Need to guarantee that short instruction sequences

execute atomically

+ Disable interrupts — turn off interrupts before sequence,
execute sequence, turn interrupts back on

+ Special atomic instructions — read/modify/write a memory
address, test and conditionally set a bit based upon previous
value

» XCHG instruction on x86

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes 28

Summary

o Protection
+ User/kernel modes
+ Protected instructions

o System calls
+ Used by user-level processes to access OS functions
+ Access what is “in” the OS

o EXxceptions
+ Unexpected event during execution (e.g., divide by zero)

o Interrupts
+ Timer, 1/O

September 29, 2015 CSE 120 — Lecture 2 — Architectural Support for OSes

29

