
CSE 120

Principles of Operating

Systems

Spring 2016

Lecture 2: Architectural Support for

Operating Systems

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 2

Administrivia

 Project 0

 Good time to get started!

 Homework #1

 Out tonight!

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 3

Why Start With Architecture?

 Operating system functionality fundamentally depends

upon the architectural features of the computer
 Key goals of an OS are to enforce protection and resource

sharing

 If done well, applications can be oblivious to HW details

 Unfortunately for us, the OS is left holding the bag

 Architectural support can greatly simplify – or

complicate – OS tasks

 Early PC operating systems (DOS, MacOS) lacked virtual

memory in part because the architecture did not support it

 Early Sun 1 computers used two M68000 CPUs to implement

virtual memory (M68000 did not have VM hardware support)

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 4

Architectural Features for OS

 Features that directly support the OS include

 Protection (kernel/user mode)

 Protected instructions

 Memory protection

 System calls

 Interrupts and exceptions

 Timer (clock)

 I/O control and operation

 Synchronization

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 5

Types of Arch Support

 Manipulating privileged machine state

 Protected instructions

 Manipulate device registers, TLB entries, etc.

 Generating and handling “events”

 Interrupts, exceptions, system calls, etc.

 Respond to external events

 CPU requires software intervention to handle fault or trap

 Mechanisms to handle concurrency

 Interrupts, atomic instructions

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 6

Protected Instructions

 A subset of instructions of every CPU is restricted to

use only by the OS

 Known as protected (privileged) instructions

 Only the operating system can …

 Directly access I/O devices (disks, printers, etc.)

» Security, fairness (why?)

 Manipulate memory management state

» Page table pointers, page protection, TLB management, etc.

 Manipulate protected control registers

» Kernel mode, interrupt level

 Halt instruction (why?)

CSE 120 – Lecture 2 – Architectural Support for OSes 7

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 8

OS Protection

 How do we know if we can execute a protected

instruction?

 Architecture must support (at least) two modes of operation:

kernel mode and user mode

» VAX, x86 support four modes; earlier archs (Multics) even more

» Why? Protect the OS from itself (software engineering)

 Mode is indicated by a status bit in a protected control register

 User programs execute in user mode

 OS executes in kernel, privileged mode (OS == “kernel”)

 Protected instructions only execute in kernel mode

 CPU checks mode bit when protected instruction executes

 Setting mode bit must be a protected instruction

 Attempts to execute in user mode are detected and prevented

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 9

Memory Protection

 OS must be able to protect programs from each other

 OS must protect itself from user programs

 May or may not protect user programs from OS

 Raises question of whether programs should trust the OS

 Untrusted operating systems? (Intel SGX)

 Memory management hardware provides memory

protection mechanisms

 Base and limit registers

 Page table pointers, page protection, segmentation, TLB

 Manipulating memory management hardware uses

protected (privileged) operations

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 10

Events

 An event is an “unnatural” change in control flow

 Events immediately stop current execution

 Changes mode, context (machine state), or both

 The kernel defines a handler for each event type

 Event handlers always execute in kernel mode

 The specific types of events are defined by the machine

 Once the system is booted, all entry to the kernel

occurs as the result of an event

 In effect, the operating system is one big event handler

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 11

Categorizing Events

 Two kinds of events, interrupts and exceptions

 Exceptions are caused by executing instructions

 CPU requires software intervention to handle a fault or trap

 Interrupts are caused by an external event

 Device finishes I/O, timer expires, etc.

 Two reasons for events, unexpected and deliberate

 Unexpected events are, well, unexpected

 What is an example?

 Deliberate events are scheduled by OS or application

 Why would this be useful?

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 12

Categorizing Events (2)

 This gives us a convenient table:

 Terms may be used slightly differently by various OSes, CPU

architectures…

 Software interrupt – a.k.a. async system trap (AST), async or

deferred procedure call (APC or DPC)

 Will cover faults, system calls, and interrupts next

 Does anyone remember from CSE 141 what a software

interrupt is?

Unexpected Deliberate

Exceptions (sync) fault syscall trap

Interrupts (async) interrupt software interrupt

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 13

Faults

 Hardware detects and reports “exceptional” conditions

 Page fault, unaligned access, divide by zero

 Upon exception, hardware “faults” (verb)

 Must save state (PC, regs, mode, etc.) so that the faulting

process can be restarted

 Modern OSes use VM faults for many functions

 Debugging, distributed VM, garbage collection, copy-on-write

 Fault exceptions are a performance optimization

 Could detect faults by inserting extra instructions into code (at

a significant performance penalty)

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 14

Handling Faults

 Some faults are handled by “fixing” the exceptional

condition and returning to the faulting context

 Page faults cause the OS to place the missing page into

memory

 Fault handler resets PC of faulting context to re-execute

instruction that caused the page fault

 Some faults are handled by notifying the process

 Fault handler changes the saved context to transfer control to

a user-mode handler on return from fault

 Handler must be registered with OS

 Unix signals or Win user-mode Async Procedure Calls (APCs)

» SIGALRM, SIGHUP, SIGTERM, SIGSEGV, etc.

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 15

Handling Faults (2)

 The kernel may handle unrecoverable faults by killing

the user process

 Program fault with no registered handler

 Halt process, write process state to file, destroy process

 In Unix, the default action for many signals (e.g., SIGSEGV)

 What about faults in the kernel?

 Dereference NULL, divide by zero, undefined instruction

 These faults considered fatal, operating system crashes

 Unix panic, Windows “Blue screen of death”

» Kernel is halted, state dumped to a core file, machine locked up

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 16

System Calls

 For a user program to do something “privileged” (e.g.,
I/O) it must call an OS procedure
 Known as crossing the protection boundary, or protected

procedure call, or protected control transfer

 CPU ISA provides a system call instruction that:
 Causes an exception, which vectors to a kernel handler

 Passes a parameter determining the system routine to call

 Saves caller state (PC, regs, mode) so it can be restored

» Why save mode?

 Returning from system call restores this state

 Requires architectural support to:
 Verify input parameters (e.g., valid addresses for buffers)

 Restore saved state, reset mode, resume execution

CSE 120 – Lecture 2 – Architectural Support for OSes 17

CSE 120 – Lecture 2 – Architectural Support for OSes 18

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 19

System Call

Kernel mode

Firefox: read()

User mode

read() kernel routine

Trap to

kernel mode,

save state

Trap handler

Find read

handler in

vector table

Restore state,

return to user

level, resume

execution

CSE 120 – Lecture 2 – Architectural Support for OSes 20

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 21

System Call Questions

 What would happen if the kernel did not save state?

 What if the kernel executes a system call?

 What if a user program returns from a system call?

 How to reference kernel objects as arguments or

results to/from system calls?

 A naming issue

 Use integer object handles or descriptors

» E.g., Unix file descriptors, Windows HANDLEs

» Only meaningful as parameters to other system calls

 Also called capabilities (more later when we do protection)

 Why not use kernel addresses to name kernel objects?

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 22

Interrupts

 Interrupts signal asynchronous events

 I/O hardware interrupts

 Software and hardware timers

 Two flavors of interrupts

 Precise: CPU transfers control only on instruction boundaries

 Imprecise: CPU transfers control in the middle of instruction

execution

» What the heck does that mean?

 OS designers like precise interrupts, CPU designers like

imprecise interrupts

» Why?

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 23

Timer

 The timer is critical for an operating system

 It is the fallback mechanism by which the OS reclaims

control over the machine

 Timer is set to generate an interrupt after a period of time

» Setting timer is a privileged instruction

 When timer expires, generates an interrupt

 Handled by kernel, which controls resumption context

» Basis for OS scheduler (more later…)

 Prevents infinite loops

 OS can always regain control from erroneous or malicious

programs that try to hog CPU

 Also used for time-based functions (e.g., sleep())

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 24

I/O Control

 I/O issues

 Initiating an I/O

 Completing an I/O

 Initiating an I/O

 Special instructions

 Memory-mapped I/O

» Device registers mapped into address space

» Writing to address sends data to I/O device

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 25

I/O Completion

 Interrupts are the basis for asynchronous I/O

 OS initiates I/O

 Device operates independently of rest of machine

 Device sends an interrupt signal to CPU when done

 OS maintains a vector table containing a list of addresses of

kernel routines to handle various events

 CPU looks up kernel address indexed by interrupt number,

context switches to routine

 If you have ever installed earlier versions of Windows,

you now know what IRQs are for

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 26

I/O Example

1. Ethernet receives packet, writes packet into memory

2. Ethernet signals an interrupt

3. CPU stops current operation, switches to kernel mode,

saves machine state (PC, mode, etc.) on kernel stack

4. CPU reads address from vector table indexed by

interrupt number, branches to address (Ethernet

device driver)

5. Ethernet device driver processes packet (reads

descriptors to find packet in memory)

6. Upon completion, restores saved state from stack

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 27

Interrupt Questions

 Interrupts halt the execution of a process and transfer

control (execution) to the operating system

 Can the OS be interrupted? (Consider why there might be

different IRQ levels)

 Interrupts are used by devices to have the OS do stuff

 What is an alternative approach to using interrupts?

 What are the drawbacks of that approach?

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 28

Synchronization

 Interrupts cause difficult problems

 An interrupt can occur at any time

 A handler can execute that interferes with code that was

interrupted

 OS must be able to synchronize concurrent execution

 Need to guarantee that short instruction sequences

execute atomically

 Disable interrupts – turn off interrupts before sequence,

execute sequence, turn interrupts back on

 Special atomic instructions – read/modify/write a memory

address, test and conditionally set a bit based upon previous

value

» XCHG instruction on x86

September 29, 2015 CSE 120 – Lecture 2 – Architectural Support for OSes 29

Summary

 Protection

 User/kernel modes

 Protected instructions

 System calls

 Used by user-level processes to access OS functions

 Access what is “in” the OS

 Exceptions

 Unexpected event during execution (e.g., divide by zero)

 Interrupts

 Timer, I/O

