
CSE 120

Principles of Operating

Systems

Spring 2016

Lecture 12: File Systems

May 26, 2016 CSE 120 – Lecture 12 – File Systems 2

File Systems

 First we’ll discuss properties of physical disks

 Structure

 Performance

 Scheduling

 Then we’ll discuss how we build file systems on them

 Files

 Directories

 Sharing

 Protection

 File System Layouts

 File Buffer Cache

 Read Ahead

May 26, 2016 CSE 120 – Lecture 12 – File Systems 3

Disks and the OS

 Disks are messy physical devices:

 Errors, bad blocks, missed seeks, etc.

 The job of the OS is to hide this mess from higher

level software

 Low-level device control (initiate a disk read, etc.)

 Higher-level abstractions (files, databases, etc.)

 The OS may provide different levels of disk access to

different clients

 Physical disk (surface, cylinder, sector)

 Logical disk (disk block #)

 Logical file (file block, record, or byte #)

May 26, 2016 CSE 120 – Lecture 12 – File Systems 4

Physical Disk Structure

 Disk components

 Platters

 Surfaces

 Tracks

 Sectors

 Cylinders

 Arm

 Heads

Arm

Heads

Track

Platter

Surface

Cylinder

Sector

May 26, 2016 CSE 120 – Lecture 12 – File Systems 5

Disk Interaction

 Specifying disk requests requires a lot of info:

 Cylinder #, surface #, track #, sector #, transfer size…

 Older disks required the OS to specify all of this

 The OS needed to know all disk parameters

 Modern disks are more complicated

 Not all sectors are the same size, sectors are remapped, etc.

 Current disks provide a higher-level interface (SCSI)

 The disk exports its data as a logical array of blocks [0…N]

» Disk maps logical blocks to cylinder/surface/track/sector

 Only need to specify the logical block # to read/write

 But now the disk parameters are hidden from the OS

May 26, 2016 CSE 120 – Lecture 12 – File Systems 6

Modern Disk Specifications

 Seagate Enterprise Performance 3.5" (server)

 capacity: 600 GB

 rotational speed: 15,000 RPM

 sequential read performance: 233 MB/s (outer) – 160 MB/s (inner)

 seek time (average): 2.0 ms

 Seagate Barracuda 3.5" (workstation)

 capacity: 3000 GB

 rotational speed: 7,200 RPM

 sequential read performance: 210 MB/s - 156 MB/s (inner)

 seek time (average): 8.5 ms

 Seagate Savvio 2.5" (smaller form factor)

 capacity: 2000 GB

 rotational speed: 7,200 RPM

 sequential read performance: 135 MB/s (outer) - ? MB/s (inner)

 seek time (average): 11 ms

May 26, 2016 CSE 120 – Lecture 12 – File Systems 7

Disk Performance

 Disk request performance depends upon three steps

 Seek – moving the disk arm to the correct cylinder

» Depends on how fast disk arm can move (increasing very slowly)

 Rotation – waiting for the sector to rotate under the head

» Depends on rotation rate of disk (increasing, but slowly)

 Transfer – transferring data from surface into disk controller

electronics, sending it back to the host

» Depends on density (increasing quickly)

 When the OS uses the disk, it tries to minimize the cost

of all of these steps

 Particularly seeks and rotation

Solid State Disks

 SSDs are a relatively new storage technology

 Memory that does not require power to remember state

 No physical moving parts faster than hard disks

 No seek and no rotation overhead

 But…more expensive, not as much capacity

 Generally speaking, file systems have remained

unchanged when using SSDs

 Some optimizations no longer necessary (e.g., layout policies,

disk head scheduling), but basically leave FS code as is

 Initially, SSDs have the same disk interface (SATA)

 Increasingly, SSDs used directly over the I/O bus (PCIe)

» Much higher performance

May 26, 2016 CSE 120 – Lecture 12 – File Systems 8

May 26, 2016 CSE 120 – Lecture 12 – File Systems 9

Disk Scheduling

 Because seeks are so expensive (milliseconds!), the
OS tries to schedule disk requests that are queued
waiting for the disk
 FCFS (do nothing)

» Reasonable when load is low

» Long waiting times for long request queues

 SSTF (shortest seek time first)

» Minimize arm movement (seek time), maximize request rate

» Favors middle blocks

 SCAN (elevator)

» Service requests in one direction until done, then reverse

 C-SCAN

» Like SCAN, but only go in one direction (typewriter)

May 26, 2016 CSE 120 – Lecture 12 – File Systems 10

Disk Scheduling (2)

 In general, unless there are request queues, disk

scheduling does not have much impact

 Important for servers, less so for PCs

 Modern disks often do the disk scheduling themselves

 Disks know their layout better than OS, can optimize better

 Ignores, undoes any scheduling done by OS

May 26, 2016 CSE 120 – Lecture 12 – File Systems 11

File Systems

 File systems

 Implement an abstraction (files) for secondary storage

 Organize files logically (directories)

 Permit sharing of data between processes, people, and

machines

 Protect data from unwanted access (security)

May 26, 2016 CSE 120 – Lecture 12 – File Systems 12

Files

 A file is data with some properties

 Contents, size, owner, last read/write time, protection, etc.

 A file can also have a type

 Understood by the file system

» Block, character, device, portal, link, etc.

 Understood by other parts of the OS or runtime libraries

» Executable, dll, source, object, text, etc.

 A file’s type can be encoded in its name or contents

 Windows encodes type in name

» .com, .exe, .bat, .dll, .jpg, etc.

 Unix encodes type in contents

» Magic numbers, initial characters (e.g., #! for shell scripts)

May 26, 2016 CSE 120 – Lecture 12 – File Systems 13

Basic File Operations

Unix

 creat(name)

 open(name, how)

 read(fd, buf, len)

 write(fd, buf, len)

 sync(fd)

 seek(fd, pos)

 close(fd)

 unlink(name)

Windows

 CreateFile(name, CREATE)

 CreateFile(name, OPEN)

 ReadFile(handle, …)

 WriteFile(handle, …)

 FlushFileBuffers(handle, …)

 SetFilePointer(handle, …)

 CloseHandle(handle, …)

 DeleteFile(name)

 CopyFile(name)

 MoveFile(name)

May 26, 2016 CSE 120 – Lecture 12 – File Systems 14

File Access Methods

 Some file systems provide different access methods

that specify different ways for accessing data in a file

 Sequential access – read bytes one at a time, in order

 Direct access – random access given block/byte number

 Record access – file is array of fixed- or variable-length

records, read/written sequentially or randomly by record #

 Indexed access – file system contains an index to a particular

field of each record in a file, reads specify a value for that field

and the system finds the record via the index (DBs)

 What file access method does Unix, Windows provide?

 Older systems provide the more complicated methods

May 26, 2016 CSE 120 – Lecture 12 – File Systems 15

Directories

 Directories serve two purposes

 For users, they provide a structured way to organize files

 For the file system, they provide a convenient naming

interface that allows the implementation to separate logical file

organization from physical file placement on the disk

 Most file systems support multi-level directories

 Naming hierarchies (/, /usr, /usr/local/, …)

 Most file systems support the notion of a current

directory

 Relative names specified with respect to current directory

 Absolute names start from the root of directory tree

May 26, 2016 CSE 120 – Lecture 12 – File Systems 16

Directory Internals

 A directory is a list of entries

 <name, location>

 Name is just the name of the file or directory

 Location depends upon how file is represented on disk

 List is usually unordered (effectively random)

 Entries usually sorted by program that reads directory

 Directories typically stored in files

 Only need to manage one kind of secondary storage unit

May 26, 2016 CSE 120 – Lecture 12 – File Systems 17

Basic Directory Operations

Unix

 Directories implemented in files

 Use file ops to create dirs

 C runtime library provides a

higher-level abstraction for

reading directories

 opendir(name)

 readdir(DIR)

 seekdir(DIR)

 closedir(DIR)

Windows

 Explicit dir operations

 CreateDirectory(name)

 RemoveDirectory(name)

 Very different method for

reading directory entries

 FindFirstFile(pattern)

 FindNextFile()

May 26, 2016 CSE 120 – Lecture 12 – File Systems 18

Path Name Translation

 Let’s say you want to open “/one/two/three”

 What does the file system do?

 Open directory “/” (well known, can always find)

 Search for the entry “one”, get location of “one” (in dir entry)

 Open directory “one”, search for “two”, get location of “two”

 Open directory “two”, search for “three”, get location of “three”

 Open file “three”

 Systems spend a lot of time walking directory paths

 This is why open is separate from read/write

 OS will cache prefix lookups for performance

» /a/b, /a/bb, /a/bbb, etc., all share “/a” prefix

May 26, 2016 CSE 120 – Lecture 12 – File Systems 19

File Sharing

 File sharing has been around since timesharing

 Easy to do on a single machine

 PCs, workstations, and networks get us there (mostly)

 File sharing is important for getting work done

 Basis for communication and synchronization

 Two key issues when sharing files

 Semantics of concurrent access

» What happens when one process reads while another writes?

» What happens when two processes open a file for writing?

» What are we going to use to coordinate?

 Protection

May 26, 2016 CSE 120 – Lecture 12 – File Systems 20

Protection

 File systems implement a protection system

 Who can access a file

 How they can access it

 More generally…

 Objects are “what”, subjects are “who”, actions are “how”

 A protection system dictates whether a given action

performed by a given subject on a given object should

be allowed

 You can read and/or write your files, but others cannot

 You can read “/etc/motd”, but you cannot write it

May 26, 2016 CSE 120 – Lecture 12 – File Systems 21

Representing Protection

Access Control Lists (ACL)

 For each object, maintain a list

of subjects and their permitted

actions

Capabilities

 For each subject, maintain a list

of objects and their permitted

actions

/one /two /three

Alice rw - rw

Bob w - r

Charlie w r rw

Subjects

Objects

ACL

Capability

 Setuid

 Show setuid bit

 Root/sudo/administrator

 Pic of ls -l

May 26, 2016 CSE 120 – Lecture 12 – File Systems 22

May 26, 2016 CSE 120 – Lecture 12 – File Systems 23

ACLs and Capabilities

 The approaches differ only in how the table is
represented
 What approach does Unix use in the FS?

 Capabilities are easier to transfer
 They are like keys, can handoff, does not depend on subject

 In practice, ACLs are easier to manage
 Object-centric, easy to grant, revoke

 To revoke capabilities, have to keep track of all subjects that
have the capability – a challenging problem

 ACLs have a problem when objects are heavily shared
 The ACLs become very large

 Use groups (e.g., Unix)

May 26, 2016 CSE 120 – Lecture 12 – File Systems 24

File System Layout

How do file systems use the disk to store files?

 File systems define a block size (e.g., 4KB)

 Disk space is allocated in granularity of blocks

 A “Master Block” determines location of root directory

 Always at a well-known disk location

 Often replicated across disk for reliability

 A free map determines which blocks are free, allocated

 Usually a bitmap, one bit per block on the disk

 Also stored on disk, cached in memory for performance

 Remaining disk blocks used to store files (and dirs)

 There are many ways to do this

May 26, 2016 CSE 120 – Lecture 12 – File Systems 25

Disk Layout Strategies

 Files span multiple disk blocks

 How do you find all of the blocks for a file?

1. Contiguous allocation

» Like memory

» Fast, simplifies directory access

» Inflexible, causes fragmentation, needs compaction

2. Linked structure

» Each block points to the next, directory points to the first

» Good for sequential access, bad for all others

3. Indexed structure (indirection, hierarchy)

» An “index block” contains pointers to many other blocks

» Handles random better, still good for sequential

» May need multiple index blocks (linked together)

May 26, 2016 CSE 120 – Lecture 12 – File Systems 26

Unix Inodes

 Unix inodes implement an indexed structure for files

 Also store metadata info (protection, timestamps, length, ref count…)

 Each inode contains 15 block pointers

 First 12 are direct blocks (e.g., 4 KB blocks)

 Then single, double, and triple indirect

…

0

12
13
14

1
…

… …

(Metadata)

(1)

(2)

(3)

May 26, 2016 CSE 120 – Lecture 12 – File Systems 27

Unix Inodes and Path Search

 Unix inodes are not directories

 Inodes describe where on the disk the blocks for a file

are placed

 Directories are files, so inodes also describe where the blocks

for directories are placed on the disk

 Directory entries map file names to inodes

 To open “/one”, use Master Block to find inode for “/” on disk

 Open “/”, look for entry for “one”

 This entry gives the disk block number for the inode for “one”

 Read the inode for “one” into memory

 The inode says where first data block is on disk

 Read that block into memory to access the data in the file

May 26, 2016 CSE 120 – Lecture 12 – File Systems 28

File Buffer Cache

 Applications exhibit significant locality for reading and

writing files

 Idea: Cache file blocks in memory to capture locality

 Called the file buffer cache

 Cache is system wide, used and shared by all processes

 Reading from the cache makes a disk perform like memory

 Even a small cache can be very effective

 Issues

 The file buffer cache competes with VM (tradeoff here)

 Like VM, it has limited size

 Need replacement algorithms again (LRU usually used)

May 26, 2016 CSE 120 – Lecture 12 – File Systems 29

Caching Writes

 On a write, some applications assume that data
makes it through the buffer cache and onto the disk
 As a result, writes are often slow even with caching

 OSes typically do write back caching
 Maintain a queue of uncommitted blocks

 Periodically flush the queue to disk (30 second threshold)

 If blocks changed many times in 30 secs, only need one I/O

 If blocks deleted before 30 secs (e.g., /tmp), no I/Os needed

 Unreliable, but practical
 On a crash, all writes within last 30 secs are lost

 Modern OSes do this by default; too slow otherwise

 System calls (Unix: fsync) enable apps to force data to disk

May 26, 2016 CSE 120 – Lecture 12 – File Systems 30

Read Ahead

 Many file systems implement “read ahead”

 FS predicts that the process will request next block

 FS goes ahead and requests it from the disk

 This can happen while the process is computing on previous

block

» Overlap I/O with execution

 When the process requests block, it will be in cache

 Compliments the disk cache, which also is doing read ahead

 For sequentially accessed files can be a big win

 Unless blocks for the file are scattered across the disk

 File systems try to prevent that, though (during allocation)

May 26, 2016 CSE 120 – Lecture 12 – File Systems 31

Summary

 Files
 Operations, access methods

 Directories
 Operations, using directories to do path searches

 Sharing

 Protection
 ACLs vs. capabilities

 File System Layouts
 Unix inodes

 File Buffer Cache
 Strategies for handling writes

 Read Ahead

May 26, 2016 CSE 120 – Lecture 12 – File Systems 32

Next time…

 Read Chapters 11.8, 12.7

