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File Systems

o First we'll discuss properties of physical disks
+ Structure
+ Performance
+ Scheduling

o Then we’ll discuss how we build file systems on them
+ Files
+ Directories
+ Sharing
+ Protection
+ File System Layouts
+ File Buffer Cache
+ Read Ahead
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Disks and the OS

o Disks are messy physical devices:
+ Errors, bad blocks, missed seeks, etc.

o The job of the OS is to hide this mess from higher
level software
+ Low-level device control (initiate a disk read, etc.)
+ Higher-level abstractions (files, databases, etc.)

o The OS may provide different levels of disk access to
different clients

+ Physical disk (surface, cylinder, sector)
+ Logical disk (disk block #)
+ Logical file (file block, record, or byte #)
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Physical Disk Structure

o Disk components

+ Platters
+ Surfaces
o Tracks
s+ Sectors
+ Cylinders
¢ Arm

+ Heads
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Disk Interaction

o Specifying disk requests requires a lot of info:
+ Cylinder #, surface #, track #, sector #, transfer size...

o Older disks required the OS to specify all of this

+ The OS needed to know all disk parameters

o Modern disks are more complicated
+ Not all sectors are the same size, sectors are remapped, etc.

o Current disks provide a higher-level interface (SCSI)

+ The disk exports its data as a logical array of blocks [0...N]
» Disk maps logical blocks to cylinder/surface/track/sector

+ Only need to specify the logical block # to read/write
+ But now the disk parameters are hidden from the OS
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Modern Disk Specifications

« Seagate Enterprise Performance 3.5" (server)

4

4

4

4

capacity: 600 GB

rotational speed: 15,000 RPM

sequential read performance: 233 MB/s (outer) — 160 MB/s (inner)
seek time (average): 2.0 ms

o Seagate Barracuda 3.5" (workstation)

*

*

*

*

capacity: 3000 GB

rotational speed: 7,200 RPM

sequential read performance: 210 MB/s - 156 MB/s (inner)
seek time (average): 8.5 ms

o Seagate Savvio 2.5" (smaller form factor)

*

*

*

*

capacity: 2000 GB

rotational speed: 7,200 RPM

sequential read performance: 135 MB/s (outer) - ? MB/s (inner)
seek time (average): 11 ms
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Disk Performance

o Disk request performance depends upon three steps
+ Seek — moving the disk arm to the correct cylinder
» Depends on how fast disk arm can move (increasing very slowly)

+ Rotation — waiting for the sector to rotate under the head
» Depends on rotation rate of disk (increasing, but slowly)

+ Transfer — transferring data from surface into disk controller
electronics, sending it back to the host

» Depends on density (increasing quickly)

« When the OS uses the disk, it tries to minimize the cost
of all of these steps
+ Particularly seeks and rotation
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Solid State Disks

o SSDs are a relatively new storage technology
+ Memory that does not require power to remember state

o No physical moving parts - faster than hard disks
+ No seek and no rotation overhead
+ But...more expensive, not as much capacity

o Generally speaking, file systems have remained
unchanged when using SSDs

+ Some optimizations no longer necessary (e.g., layout policies,
disk head scheduling), but basically leave FS code as is

+ Initially, SSDs have the same disk interface (SATA)

+ Increasingly, SSDs used directly over the 1/O bus (PCle)
» Much higher performance
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Disk Scheduling

o Because seeks are so expensive (milliseconds!), the
OS tries to schedule disk requests that are queued
waiting for the disk

+ FCFS (do nothing)

» Reasonable when load is low
» Long waiting times for long request queues

+ SSTF (shortest seek time first)
» Minimize arm movement (seek time), maximize request rate
» Favors middle blocks

+ SCAN (elevator)
» Service requests in one direction until done, then reverse

+ C-SCAN
» Like SCAN, but only go in one direction (typewriter)
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Disk Scheduling (2)

o In general, unless there are request queues, disk
scheduling does not have much impact
+ Important for servers, less so for PCs

o Modern disks often do the disk scheduling themselves
+ Disks know their layout better than OS, can optimize better
+ Ignores, undoes any scheduling done by OS
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File Systems

o File systems

*

*

*

Implement an abstraction (files) for secondary storage
Organize files logically (directories)

Permit sharing of data between processes, people, and
machines

Protect data from unwanted access (security)
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Files

o A file is data with some properties
+ Contents, size, owner, last read/write time, protection, etc.

o A file can also have a type
+ Understood by the file system
» Block, character, device, portal, link, etc.

+ Understood by other parts of the OS or runtime libraries
» Executable, dll, source, object, text, etc.

o Afile’s type can be encoded in its name or contents

+ Windows encodes type in name
» .com, .exe, .bat, .dll, .jpg, etc.

+ Unix encodes type in contents
» Magic numbers, initial characters (e.qg., #! for shell scripts)
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Basic File Operations

Unix

creat(name)
open(name, how)
read(fd, buf, len)
write(fd, buf, len)
sync(fd)

seek(fd, pos)
close(fd)
unlink(name)
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Windows

CreateFile(name, CREATE)
CreateFile(name, OPEN)
ReadFile(handle, ...)
WriteFile(handle, ...)
FlushFileBuffers(handle, ...)
SetFilePointer(handle, ...)
CloseHandle(handle, ...)
DeleteFile(name)
CopyFile(name)
MoveFile(name)
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File Access Methods

o Some file systems provide different access methods
that specify different ways for accessing data in a file
+ Sequential access — read bytes one at a time, in order
+ Direct access — random access given block/byte number

+ Record access — file is array of fixed- or variable-length
records, read/written sequentially or randomly by record #

+ Indexed access — file system contains an index to a particular
field of each record in a file, reads specify a value for that field
and the system finds the record via the index (DBS)

o What file access method does Unix, Windows provide?
o Older systems provide the more complicated methods
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Directories

o Directories serve two purposes
+ For users, they provide a structured way to organize files

+ For the file system, they provide a convenient naming
Interface that allows the implementation to separate logical file
organization from physical file placement on the disk

o Most file systems support multi-level directories
+ Naming hierarchies (/, /usr, /usr/locall, ...)

o Most file systems support the notion of a current
directory
+ Relative names specified with respect to current directory
+ Absolute names start from the root of directory tree
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Directory Internals

o A directory is a list of entries
+ <name, location>
+ Name is just the name of the file or directory
+ Location depends upon how file is represented on disk

o Listis usually unordered (effectively random)
+ Entries usually sorted by program that reads directory

o Directories typically stored in files
+ Only need to manage one kind of secondary storage unit
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Basic Directory Operations

Unix Windows
o Directories implemented in files « Explicit dir operations
+ Use file ops to create dirs + CreateDirectory(name)

« C runtime library provides a + RemoveDirectory(name)
higher-level abstraction for « Very different method for
reading directories reading directory entries

+ opendir(name) + FindFirstFile(pattern)
+ readdir(DIR) + FindNextFile()

+ Seekdir(DIR)
+ Closedir(DIR)
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Path Name Translation

o Let's say you want to open “/one/two/three”

o What does the file system do?
+ Open directory “/" (well known, can always find)
+ Search for the entry “one”, get location of “one” (in dir entry)
+ Open directory “one”, search for “two”, get location of “two”
+ Open directory “two”, search for “three”, get location of “three”
+ Open file “three”

o Systems spend a lot of time walking directory paths
+ This is why open is separate from read/write

+ OS will cache prefix lookups for performance
» [alb, [a/bb, /a/bbb, etc., all share “/a” prefix
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File Sharing

o File sharing has been around since timesharing
+ Easy to do on a single machine
+ PCs, workstations, and networks get us there (mostly)

o File sharing is important for getting work done
+ Basis for communication and synchronization

« Two key issues when sharing files

+ Semantics of concurrent access
» What happens when one process reads while another writes?
» What happens when two processes open a file for writing?
» What are we going to use to coordinate?

+ Protection
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Protection

o File systems implement a protection system
+ Who can access a file
+ How they can access it

o More generally...
+ Objects are “what”, subjects are “who”, actions are “how”

« A protection system dictates whether a given action
performed by a given subject on a given object should
be allowed

+ You can read and/or write your files, but others cannot
+ You can read “/etc/motd”, but you cannot write it
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Representing Protection

Access Control Lists (ACL) Capabilities
o [For each object, maintain a list o [For each subject, maintain a list

of subjects and their permitted of objects and their permitted

actions actions

_Objects
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, . -3
<] §harlle ‘\w Sl w3
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Setuid
+ Show setuid bit

Root/sudo/administrator
Pic of Is -
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ACLs and Capabilities

o The approaches differ only in how the table is
represented

+ What approach does Unix use in the FS?
o Capabilities are easier to transfer

+ They are like keys, can handoff, does not depend on subject
o In practice, ACLs are easier to manage

+ Object-centric, easy to grant, revoke

+ To revoke capabilities, have to keep track of all subjects that
have the capability — a challenging problem

o ACLs have a problem when objects are heavily shared
+ The ACLs become very large
+ Use groups (e.g., Unix)
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File System Layout

How do file systems use the disk to store files?

o File systems define a block size (e.g., 4KB)
+ Disk space is allocated in granularity of blocks

o A "Master Block” determines location of root directory
+ Always at a well-known disk location
+ Often replicated across disk for reliability

o A free map determines which blocks are free, allocated
+ Usually a bitmap, one bit per block on the disk
+ Also stored on disk, cached in memory for performance

o Remaining disk blocks used to store files (and dirs)
+ There are many ways to do this
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Disk Layout Strategies

o Files span multiple disk blocks

o How do you find all of the blocks for a file?

1. Contiguous allocation
» Like memory
» Fast, simplifies directory access
» Inflexible, causes fragmentation, needs compaction
2. Linked structure
» Each block points to the next, directory points to the first
» Good for sequential access, bad for all others
3. Indexed structure (indirection, hierarchy)
» An “index block” contains pointers to many other blocks
» Handles random better, still good for sequential
» May need multiple index blocks (linked together)
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Unix Inodes

o Unix inodes implement an indexed structure for files

+ Also store metadata info (protection, timestamps, length, ref count...)
o Each inode contains 15 block pointers

+ First 12 are direct blocks (e.g., 4 KB blocks)

+ Then single, double, and triple indirect
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Unix Inodes and Path Search

o Unix Inodes are not directories

o Inodes describe where on the disk the blocks for a file
are placed
+ Directories are files, so inodes also describe where the blocks
for directories are placed on the disk
o Directory entries map file names to inodes
+ To open “/one”, use Master Block to find inode for “/” on disk
+ Open “/", look for entry for “one”
+ This entry gives the disk block number for the inode for “one”
+ Read the inode for “one” into memory
+ The inode says where first data block is on disk
+ Read that block into memory to access the data in the file
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File Buffer Cache

o Applications exhibit significant locality for reading and
writing files
« ldea: Cache file blocks in memory to capture locality
+ Called the file buffer cache
+ Cache is system wide, used and shared by all processes
+ Reading from the cache makes a disk perform like memory
+ Even a small cache can be very effective

e ISsues

+ The file buffer cache competes with VM (tradeoff here)
+ Like VM, it has limited size
+ Need replacement algorithms again (LRU usually used)

May 26, 2016 CSE 120 — Lecture 12 — File Systems



Caching Writes

o On a write, some applications assume that data
makes it through the buffer cache and onto the disk
+ As aresult, writes are often slow even with caching

o OSes typically do write back caching

Maintain a queue of uncommitted blocks

Periodically flush the queue to disk (30 second threshold)

If blocks changed many times in 30 secs, only need one I/O
If blocks deleted before 30 secs (e.g., /tmp), no I/Os needed

o Unreliable, but practical
+ On a crash, all writes within last 30 secs are lost

+ Modern OSes do this by default; too slow otherwise
+ System calls (Unix: fsync) enable apps to force data to disk

L 4
L 4
L 4
L 4
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Read Ahead

o Many file systems implement “read ahead”

*

*

*

*

*

FS predicts that the process will request next block
FS goes ahead and requests it from the disk

This can happen while the process is computing on previous
block

» Overlap 1/0 with execution
When the process requests block, it will be in cache
Compliments the disk cache, which also is doing read ahead

o For sequentially accessed files can be a big win
+ Unless blocks for the file are scattered across the disk
+ File systems try to prevent that, though (during allocation)
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Summary

o Files
+ Operations, access methods

o Directories
+ Operations, using directories to do path searches

o Sharing

o Protection
+ ACLs vs. capabillities

o File System Layouts
+ Unix inodes

« File Buffer Cache
+ Strategies for handling writes

« Read Ahead
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Next time...

« Read Chapters 11.8, 12.7
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