CSE 120
Principles of Operating
Systems

Spring 2016

Lecture 12: File Systems

File Systems

o First we'll discuss properties of physical disks
+ Structure
+ Performance
+ Scheduling

o Then we’ll discuss how we build file systems on them
+ Files
+ Directories
+ Sharing
+ Protection
+ File System Layouts
+ File Buffer Cache
+ Read Ahead

May 26, 2016 CSE 120 — Lecture 12 — File Systems

Disks and the OS

o Disks are messy physical devices:
+ Errors, bad blocks, missed seeks, etc.

o The job of the OS is to hide this mess from higher
level software
+ Low-level device control (initiate a disk read, etc.)
+ Higher-level abstractions (files, databases, etc.)

o The OS may provide different levels of disk access to
different clients

+ Physical disk (surface, cylinder, sector)
+ Logical disk (disk block #)
+ Logical file (file block, record, or byte #)

May 26, 2016 CSE 120 — Lecture 12 — File Systems

Physical Disk Structure

o Disk components

+ Platters
+ Surfaces
o Tracks
s+ Sectors
+ Cylinders
¢ Arm

+ Heads

May 26, 2016

Arm

Heads

Track Sector
Surface
<\
Cylinder
\
Platter

CSE 120 — Lecture 12 — File Systems

Disk Interaction

o Specifying disk requests requires a lot of info:
+ Cylinder #, surface #, track #, sector #, transfer size...

o Older disks required the OS to specify all of this

+ The OS needed to know all disk parameters

o Modern disks are more complicated
+ Not all sectors are the same size, sectors are remapped, etc.

o Current disks provide a higher-level interface (SCSI)

+ The disk exports its data as a logical array of blocks [0...N]
» Disk maps logical blocks to cylinder/surface/track/sector

+ Only need to specify the logical block # to read/write
+ But now the disk parameters are hidden from the OS

May 26, 2016 CSE 120 — Lecture 12 — File Systems

Modern Disk Specifications

« Seagate Enterprise Performance 3.5" (server)

4

4

4

4

capacity: 600 GB

rotational speed: 15,000 RPM

sequential read performance: 233 MB/s (outer) — 160 MB/s (inner)
seek time (average): 2.0 ms

o Seagate Barracuda 3.5" (workstation)

*

*

*

*

capacity: 3000 GB

rotational speed: 7,200 RPM

sequential read performance: 210 MB/s - 156 MB/s (inner)
seek time (average): 8.5 ms

o Seagate Savvio 2.5" (smaller form factor)

*

*

*

*

capacity: 2000 GB

rotational speed: 7,200 RPM

sequential read performance: 135 MB/s (outer) - ? MB/s (inner)
seek time (average): 11 ms

May 26, 2016 CSE 120 — Lecture 12 — File Systems

Disk Performance

o Disk request performance depends upon three steps
+ Seek — moving the disk arm to the correct cylinder
» Depends on how fast disk arm can move (increasing very slowly)

+ Rotation — waiting for the sector to rotate under the head
» Depends on rotation rate of disk (increasing, but slowly)

+ Transfer — transferring data from surface into disk controller
electronics, sending it back to the host

» Depends on density (increasing quickly)

« When the OS uses the disk, it tries to minimize the cost
of all of these steps
+ Particularly seeks and rotation

May 26, 2016 CSE 120 — Lecture 12 — File Systems 7

Solid State Disks

o SSDs are a relatively new storage technology
+ Memory that does not require power to remember state

o No physical moving parts - faster than hard disks
+ No seek and no rotation overhead
+ But...more expensive, not as much capacity

o Generally speaking, file systems have remained
unchanged when using SSDs

+ Some optimizations no longer necessary (e.g., layout policies,
disk head scheduling), but basically leave FS code as is

+ Initially, SSDs have the same disk interface (SATA)

+ Increasingly, SSDs used directly over the 1/O bus (PCle)
» Much higher performance

May 26, 2016 CSE 120 — Lecture 12 — File Systems 8

Disk Scheduling

o Because seeks are so expensive (milliseconds!), the
OS tries to schedule disk requests that are queued
waiting for the disk

+ FCFS (do nothing)

» Reasonable when load is low
» Long waiting times for long request queues

+ SSTF (shortest seek time first)
» Minimize arm movement (seek time), maximize request rate
» Favors middle blocks

+ SCAN (elevator)
» Service requests in one direction until done, then reverse

+ C-SCAN
» Like SCAN, but only go in one direction (typewriter)

May 26, 2016 CSE 120 — Lecture 12 — File Systems

Disk Scheduling (2)

o In general, unless there are request queues, disk
scheduling does not have much impact
+ Important for servers, less so for PCs

o Modern disks often do the disk scheduling themselves
+ Disks know their layout better than OS, can optimize better
+ Ignores, undoes any scheduling done by OS

May 26, 2016 CSE 120 — Lecture 12 — File Systems 10

File Systems

o File systems

*

*

*

Implement an abstraction (files) for secondary storage
Organize files logically (directories)

Permit sharing of data between processes, people, and
machines

Protect data from unwanted access (security)

May 26, 2016 CSE 120 — Lecture 12 — File Systems 11

Files

o A file is data with some properties
+ Contents, size, owner, last read/write time, protection, etc.

o A file can also have a type
+ Understood by the file system
» Block, character, device, portal, link, etc.

+ Understood by other parts of the OS or runtime libraries
» Executable, dll, source, object, text, etc.

o Afile’s type can be encoded in its name or contents

+ Windows encodes type in name
» .com, .exe, .bat, .dll, .jpg, etc.

+ Unix encodes type in contents
» Magic numbers, initial characters (e.qg., #! for shell scripts)

May 26, 2016 CSE 120 — Lecture 12 — File Systems

12

Basic File Operations

Unix

creat(name)
open(name, how)
read(fd, buf, len)
write(fd, buf, len)
sync(fd)

seek(fd, pos)
close(fd)
unlink(name)

May 26, 2016

Windows

CreateFile(name, CREATE)
CreateFile(name, OPEN)
ReadFile(handle, ...)
WriteFile(handle, ...)
FlushFileBuffers(handle, ...)
SetFilePointer(handle, ...)
CloseHandle(handle, ...)
DeleteFile(name)
CopyFile(name)
MoveFile(name)

CSE 120 — Lecture 12 — File Systems

File Access Methods

o Some file systems provide different access methods
that specify different ways for accessing data in a file
+ Sequential access — read bytes one at a time, in order
+ Direct access — random access given block/byte number

+ Record access — file is array of fixed- or variable-length
records, read/written sequentially or randomly by record #

+ Indexed access — file system contains an index to a particular
field of each record in a file, reads specify a value for that field
and the system finds the record via the index (DBS)

o What file access method does Unix, Windows provide?
o Older systems provide the more complicated methods

May 26, 2016 CSE 120 — Lecture 12 — File Systems 14

Directories

o Directories serve two purposes
+ For users, they provide a structured way to organize files

+ For the file system, they provide a convenient naming
Interface that allows the implementation to separate logical file
organization from physical file placement on the disk

o Most file systems support multi-level directories
+ Naming hierarchies (/, /usr, /usr/locall, ...)

o Most file systems support the notion of a current
directory
+ Relative names specified with respect to current directory
+ Absolute names start from the root of directory tree

May 26, 2016 CSE 120 — Lecture 12 — File Systems 15

Directory Internals

o A directory is a list of entries
+ <name, location>
+ Name is just the name of the file or directory
+ Location depends upon how file is represented on disk

o Listis usually unordered (effectively random)
+ Entries usually sorted by program that reads directory

o Directories typically stored in files
+ Only need to manage one kind of secondary storage unit

May 26, 2016 CSE 120 — Lecture 12 — File Systems

16

Basic Directory Operations

Unix Windows
o Directories implemented in files « Explicit dir operations
+ Use file ops to create dirs + CreateDirectory(name)

« C runtime library provides a + RemoveDirectory(name)
higher-level abstraction for « Very different method for
reading directories reading directory entries

+ opendir(name) + FindFirstFile(pattern)
+ readdir(DIR) + FindNextFile()

+ Seekdir(DIR)
+ Closedir(DIR)

May 26, 2016 CSE 120 — Lecture 12 — File Systems 17

Path Name Translation

o Let's say you want to open “/one/two/three”

o What does the file system do?
+ Open directory “/" (well known, can always find)
+ Search for the entry “one”, get location of “one” (in dir entry)
+ Open directory “one”, search for “two”, get location of “two”
+ Open directory “two”, search for “three”, get location of “three”
+ Open file “three”

o Systems spend a lot of time walking directory paths
+ This is why open is separate from read/write

+ OS will cache prefix lookups for performance
» [alb, [a/bb, /a/bbb, etc., all share “/a” prefix

May 26, 2016 CSE 120 — Lecture 12 — File Systems 18

File Sharing

o File sharing has been around since timesharing
+ Easy to do on a single machine
+ PCs, workstations, and networks get us there (mostly)

o File sharing is important for getting work done
+ Basis for communication and synchronization

« Two key issues when sharing files

+ Semantics of concurrent access
» What happens when one process reads while another writes?
» What happens when two processes open a file for writing?
» What are we going to use to coordinate?

+ Protection

May 26, 2016 CSE 120 — Lecture 12 — File Systems 19

Protection

o File systems implement a protection system
+ Who can access a file
+ How they can access it

o More generally...
+ Objects are “what”, subjects are “who”, actions are “how”

« A protection system dictates whether a given action
performed by a given subject on a given object should
be allowed

+ You can read and/or write your files, but others cannot
+ You can read “/etc/motd”, but you cannot write it

May 26, 2016 CSE 120 — Lecture 12 — File Systems 20

Representing Protection

Access Control Lists (ACL) Capabilities
o [For each object, maintain a list o [For each subject, maintain a list

of subjects and their permitted of objects and their permitted

actions actions

_Objects
Z \\
Jone \| /two | [three
_ Alice rw Y- rw
Subjects 1
Bob (w _,' - r Capability
, . -3
<] §harlle ‘\w Sl w3

May 26, 2016 CSE 120 — Lecture 12 — File Systems 21

Setuid
+ Show setuid bit

Root/sudo/administrator
Pic of Is -

May 26, 2016 CSE 120 — Lecture 12 — File Systems

22

ACLs and Capabilities

o The approaches differ only in how the table is
represented

+ What approach does Unix use in the FS?
o Capabilities are easier to transfer

+ They are like keys, can handoff, does not depend on subject
o In practice, ACLs are easier to manage

+ Object-centric, easy to grant, revoke

+ To revoke capabilities, have to keep track of all subjects that
have the capability — a challenging problem

o ACLs have a problem when objects are heavily shared
+ The ACLs become very large
+ Use groups (e.g., Unix)

May 26, 2016 CSE 120 — Lecture 12 — File Systems 23

File System Layout

How do file systems use the disk to store files?

o File systems define a block size (e.g., 4KB)
+ Disk space is allocated in granularity of blocks

o A "Master Block” determines location of root directory
+ Always at a well-known disk location
+ Often replicated across disk for reliability

o A free map determines which blocks are free, allocated
+ Usually a bitmap, one bit per block on the disk
+ Also stored on disk, cached in memory for performance

o Remaining disk blocks used to store files (and dirs)
+ There are many ways to do this

May 26, 2016 CSE 120 — Lecture 12 — File Systems 24

Disk Layout Strategies

o Files span multiple disk blocks

o How do you find all of the blocks for a file?

1. Contiguous allocation
» Like memory
» Fast, simplifies directory access
» Inflexible, causes fragmentation, needs compaction
2. Linked structure
» Each block points to the next, directory points to the first
» Good for sequential access, bad for all others
3. Indexed structure (indirection, hierarchy)
» An “index block” contains pointers to many other blocks
» Handles random better, still good for sequential
» May need multiple index blocks (linked together)

May 26, 2016 CSE 120 — Lecture 12 — File Systems 25

Unix Inodes

o Unix inodes implement an indexed structure for files

+ Also store metadata info (protection, timestamps, length, ref count...)
o Each inode contains 15 block pointers

+ First 12 are direct blocks (e.g., 4 KB blocks)

+ Then single, double, and triple indirect

__~
4—H
(Metadata) /. 7(—:/'.
0 1 _ i
1 1 o —
-l
19 o — / .
13 2)
14 (3) —> > > -

\

|

ik

May 26, 2016 CSE 120 — Lecture 12 — File Systems 26

Unix Inodes and Path Search

o Unix Inodes are not directories

o Inodes describe where on the disk the blocks for a file
are placed
+ Directories are files, so inodes also describe where the blocks
for directories are placed on the disk
o Directory entries map file names to inodes
+ To open “/one”, use Master Block to find inode for “/” on disk
+ Open “/", look for entry for “one”
+ This entry gives the disk block number for the inode for “one”
+ Read the inode for “one” into memory
+ The inode says where first data block is on disk
+ Read that block into memory to access the data in the file

May 26, 2016 CSE 120 — Lecture 12 — File Systems 27

File Buffer Cache

o Applications exhibit significant locality for reading and
writing files
« ldea: Cache file blocks in memory to capture locality
+ Called the file buffer cache
+ Cache is system wide, used and shared by all processes
+ Reading from the cache makes a disk perform like memory
+ Even a small cache can be very effective

e ISsues

+ The file buffer cache competes with VM (tradeoff here)
+ Like VM, it has limited size
+ Need replacement algorithms again (LRU usually used)

May 26, 2016 CSE 120 — Lecture 12 — File Systems

Caching Writes

o On a write, some applications assume that data
makes it through the buffer cache and onto the disk
+ As aresult, writes are often slow even with caching

o OSes typically do write back caching

Maintain a queue of uncommitted blocks

Periodically flush the queue to disk (30 second threshold)

If blocks changed many times in 30 secs, only need one I/O
If blocks deleted before 30 secs (e.g., /tmp), no I/Os needed

o Unreliable, but practical
+ On a crash, all writes within last 30 secs are lost

+ Modern OSes do this by default; too slow otherwise
+ System calls (Unix: fsync) enable apps to force data to disk

L 4
L 4
L 4
L 4

May 26, 2016 CSE 120 — Lecture 12 — File Systems

29

Read Ahead

o Many file systems implement “read ahead”

*

*

*

*

*

FS predicts that the process will request next block
FS goes ahead and requests it from the disk

This can happen while the process is computing on previous
block

» Overlap 1/0 with execution
When the process requests block, it will be in cache
Compliments the disk cache, which also is doing read ahead

o For sequentially accessed files can be a big win
+ Unless blocks for the file are scattered across the disk
+ File systems try to prevent that, though (during allocation)

May 26, 2016 CSE 120 — Lecture 12 — File Systems

Summary

o Files
+ Operations, access methods

o Directories
+ Operations, using directories to do path searches

o Sharing

o Protection
+ ACLs vs. capabillities

o File System Layouts
+ Unix inodes

« File Buffer Cache
+ Strategies for handling writes

« Read Ahead

May 26, 2016 CSE 120 — Lecture 12 — File Systems

31

Next time...

« Read Chapters 11.8, 12.7

May 26, 2016 CSE 120 — Lecture 12 — File Systems

32

