
CSE 120

Principles of Operating

Systems

Spring 2016

Lecture 11: Memory Management

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 2

Memory Management

Next few lectures are going to cover memory management

 Goals of memory management

 To provide a convenient abstraction for programming

 To allocate scarce memory resources among competing

processes to maximize performance with minimal overhead

 Mechanisms

 Physical and virtual addressing (1)

 Techniques: partitioning, paging, segmentation (1)

 Page table management, TLBs, VM tricks (2)

 Policies

 Page replacement algorithms (3)

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 3

Lecture Overview

 Virtual memory warm-and-fuzzy

 Survey techniques for implementing virtual memory

 Fixed and variable partitioning

 Paging

 Segmentation

 Focus on hardware support and lookup procedure

 Next lecture we’ll go into sharing, protection, efficient

implementations, and other VM tricks and features

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 4

Virtual Memory

 The abstraction that the OS provides for managing

memory is virtual memory (VM)

 Virtual memory enables a program to execute with less than its

complete data in physical memory

» A program can run on a machine with less memory than it “needs”

» Can also run on a machine with “too much” physical memory

 Many programs do not need all of their code and data at once

(or ever) – no need to allocate memory for it

 OS will adjust amount of memory allocated to a process based

upon its behavior

 VM requires hardware support and OS management algorithms

to pull it off

 Let’s go back to the beginning…

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 5

In the beginning…

 Rewind to the days of “second-generation” computers

 Programs use physical addresses directly

 OS loads job, runs it, unloads it

 Multiprogramming changes all of this

 Want multiple processes in memory at once

» Overlap I/O and CPU of multiple jobs

 Can do it a number of ways

» Fixed and variable partitioning, paging, segmentation

 Requirements

» Need protection – restrict which addresses jobs can use

» Fast translation – lookups need to be fast

» Fast change – updating memory hardware on context switch

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 6

Virtual Addresses

 To make it easier to manage the memory of processes

running in the system, we’re going to make them use

virtual addresses (logical addresses)

 Virtual addresses are independent of the actual physical

location of the data referenced

 OS determines location of data in physical memory

 Instructions executed by the CPU issue virtual addresses

 Virtual addresses are translated by hardware into physical

addresses (with help from OS)

 The set of virtual addresses that can be used by a

process comprises its virtual address space (VAS)

 VAS often larger than physical memory (64-bit addresses)

 But can also be smaller (32-bit VAS with 8 GB of memory)

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 7

Virtual Addresses

 Many ways to do this translation…
 Start with old, simple ways, progress to current techniques

mmuprocessor
physical

memory

virtual

addresses

physical

addresses

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 8

Fixed Partitions

 Physical memory is broken up into fixed partitions

 Hardware requirements: base register

 Physical address = virtual address + base register

 Base register loaded by OS when it switches to a process

 Size of each partition is the same and fixed

 How do we provide protection?

 Advantages

 Easy to implement, fast context switch

 Problems

 Internal fragmentation: memory in a partition not used by a

process is not available to other processes

 Partition size: one size does not fit all (very large processes)

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 9

Fixed Partitions

+

Virtual Address

Physical Memory

Base Register P1

P2

P3

P4

P5

P4’s Base

Offset

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 10

Variable Partitions

 Natural extension – physical memory is broken up into

variable sized partitions

 Hardware requirements: base register and limit register

 Physical address = virtual address + base register

 Why do we need the limit register? Protection

» If (physical address > base + limit) then exception fault

 Advantages

 No internal fragmentation: allocate just enough for process

 Problems

 External fragmentation: process creation and termination

produces empty holes scattered throughout memory

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 11

Variable Partitions

+

Virtual Address

Base Register

P2

P3<

Protection Fault

Yes?

No?

Limit Register

P1P3’s Base

P3’s Limit

Offset

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 12

Paging

 Paging solves the external fragmentation problem by

using fixed sized units in both physical and virtual

memory

Virtual Memory

Page 0

Page 1

Page 2

Page N-1

Physical Memory

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 13

Programmer/Process View

 Programmers (and processes) view memory as one

contiguous address space from 0 through N

 Virtual address space (VAS)

 In reality, pages are scattered throughout physical

storage

 The mapping is invisible to the program

 Protection is provided because a program cannot

reference memory outside of its VAS

 The address “0x1000” maps to different physical addresses in

different processes

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 14

Paging

 Translating addresses

 Virtual address has two parts: virtual page number and offset

 Virtual page number (VPN) is an index into a page table

 Page table determines page frame number (PFN)

 Physical address is PFN::offset (“::” means concatenate)

 Page tables

 Map virtual page number (VPN) to page frame number (PFN)

» VPN is the index into the table that determines PFN

 One page table entry (PTE) per page in virtual address space

» Or, one PTE per VPN

Physical Memory

Physical Address
Page Table

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 15

Page Lookups

Page frame

Virtual Address

Page frame Offset

(Also used by Nachos)

Page number Offset

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 16

Paging Example

 Pages are 4K

 VPN is 20 bits (220 VPNs), offset is 12 bits

 Virtual address is 0x7468

 Virtual page is 0x7, offset is 0x468

 Page table entry 0x7 contains 0x2

 Page frame number is 0x2

 Seventh virtual page is at address 0x2000 (2nd physical page)

 Physical address = 0x2000 + 0x468 = 0x2468

Page Tables

 Page tables completely define the mapping between

virtual pages and physical pages for an address space

 Each process has an address space, so each process

has a page table

 Page tables are data structures maintained in the OS

November 3, 2015 17

Virtual Memory

Page 0

Page 1

Page 2

Page N-1

Physical Memory

Page Table

3

0

2

Page N-1

Page Table Entry

(PTE)

0

3

2

N-1

 Valid/referenced bit to distinguish mapped/unmapped

regions

 Picture of address space with example mappings

using the various bits

May 7, 2009 CSE 120 – Lecture 9 – Memory Management 18

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 19

Page Table Entries (PTEs)

 Page table entries control mapping

 The Modify bit says whether or not the page has been written

» It is set when a write to the page occurs

 The Reference bit says whether the page has been accessed

» It is set when a read or write to the page occurs

 The Valid bit says whether or not the PTE can be used

» It is checked each time the virtual address is used

 The Protection bits say what operations are allowed on page

» Read, write, execute

 The page frame number (PFN) determines physical page

R VM Prot Page Frame Number

1 1 1 2 20

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 20

Paging Advantages

 Easy to allocate memory

 Memory comes from a free list of fixed size chunks

 Allocating a page is just removing it from the list

 External fragmentation not a problem

 Easy to swap out chunks of a program

 All chunks are the same size

 Use valid bit to detect references to swapped pages

 Pages are a convenient multiple of the disk block size

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 21

Paging Limitations

 Can still have internal fragmentation

 Process may not use memory in multiples of a page

 Memory reference overhead

 2 references per address lookup (page table, then memory)

 Solution – use a hardware cache of lookups (more later)

 Memory required to hold page table can be significant

 Need one PTE per page

 32 bit address space w/ 4KB pages = 220 PTEs

 4 bytes/PTE = 4MB/page table

 25 processes = 100MB just for page tables!

 Solution – page the page tables (more later)

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 22

Segmentation

 Segmentation is a technique that partitions memory

into logically related data units

 Module, procedure, stack, data, file, etc.

 Virtual addresses become <segment #, offset>

» x86 stores segment #s in registers (CS, DS, SS, ES, FS, GS)

 Units of memory from programmer’s perspective

 Natural extension of variable-sized partitions

 Variable-sized partitions = 1 segment/process

 Segmentation = many segments/process

 Hardware support

 Multiple base/limit pairs, one per segment (segment table)

 Segments named by #, used to index into table

November 3, 2015 CSE 120 – Lecture 3 – Processes 23

Linear Address Space

Stack

0x00000000

0xFFFFFFFF

Code

(Text Segment)

Static Data

(Data Segment)

HeapAddress

Space

Base & Limit

November 3, 2015 CSE 120 – Lecture 3 – Processes 24

Segmented Address Space

Stack

0x00000000

Code

(Text Segment)

Static Data

(Data Segment)

Heap

Segment

Descriptor

Table

0x00000000

0x00000000

0x00000000

Base & Limit

Base & Limit

Base & Limit

Yes?

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 25

Segment Lookups

limit base

+<

Protection Fault

Segment # Offset

Virtual Address

Segment Table

No?

Physical Memory

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 26

Segment Table

 Extensions
 Can have one segment table per process

» Segment #s are then process-relative (why do this?)

 Can easily share memory

» Put same translation into base/limit pair

» Can share with different protections (same base/limit, diff prot)

 Problems
 Cross-segment addresses

» Segments need to have same #s for pointers to them to be
shared among processes

 Large segment tables

» Keep in main memory, use hardware cache for speed

 Large segments

» Internal fragmentation, paging to/from disk is expensive

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 27

Segmentation and Paging

 Can combine segmentation and paging

 The x86 supports segments and paging

 Use segments to manage logically related units

 Module, procedure, stack, file, data, etc.

 Segments vary in size, but usually large (multiple pages)

 Use pages to partition segments into fixed size chunks

 Makes segments easier to manage within physical memory

» Segments become “pageable” – rather than moving segments

into and out of memory, just move page portions of segment

 Need to allocate page table entries only for those pieces of

the segments that have themselves been allocated

 Tends to be complex…

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 28

Summary

 Virtual memory

 Processes use virtual addresses

 OS + hardware translates virtual address into physical

addresses

 Various techniques

 Fixed partitions – easy to use, but internal fragmentation

 Variable partitions – more efficient, but external fragmentation

 Paging – use small, fixed size chunks, efficient for OS

 Segmentation – manage in chunks from user’s perspective

 Combine paging and segmentation to get benefits of both

November 3, 2015 CSE 120 – Lecture 9 – Memory Management 29

Next time…

 Chapters 19, 20

