
CSE 120

Principles of Operating 

Systems

Spring 2016

Deadlock



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 2

Deadlock

 Synchronization is a live gun – we can easily shoot ourselves in 

the foot

 Incorrect use of synchronization can block all processes

 You have likely been intuitively avoiding this situation already

 More generally, processes that allocate multiple resources 

generate dependencies on those resources

 Locks, semaphores, monitors, etc., just represent the resources that 

they protect

 If one process tries to allocate a resource that a second process 

holds, and vice-versa, they can never make progress

 We call this situation deadlock, and we’ll look at:

 Definition and conditions necessary for deadlock

 Representation of deadlock conditions

 Approaches to dealing with deadlock



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 3

Deadlock Definition

 Deadlock is a problem that can arise:

 When processes compete for access to limited resources

 When processes are incorrectly synchronized

 Definition:

 Deadlock exists among a set of processes if every process is 

waiting for an event that can be caused only by another 

process in the set.

lockA->Acquire();

…

lockB->Acquire();

lockB->Acquire();

…

lockA->Acquire();

Process 1 Process 2



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 4

Conditions for Deadlock

 Deadlock can exist if and only if the following four 

conditions hold simultaneously:

1. Mutual exclusion – At least one resource must be held in a 

non-sharable mode

2. Hold and wait – There must be one process holding one 

resource and waiting for another resource

3. No preemption – Resources cannot be preempted (critical 

sections cannot be aborted externally)

4. Circular wait – There must exist a set of processes [P1, P2, 

P3,…,Pn] such that P1 is waiting for P2, P2 for P3, etc.



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 5

Resource Allocation Graph

 Deadlock can be described using a resource allocation 

graph (RAG)

 The RAG consists of a set of vertices P={P1, P2, …, 

Pn} of processes and R={R1, R2, …, Rm} of resources

 A directed edge from a process to a resource, PiRi, means 

that Pi has requested Rj

 A directed edge from a resource to a process, RiPi, means 

that Rj has been allocated by Pi

 Each resource has a fixed number of units

 If the graph has no cycles, deadlock cannot exist

 If the graph has a cycle, deadlock may exist



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 6

RAG Example

A cycle…and 

deadlock!

Same cycle…but no 

deadlock.  Why?



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 7

A Simpler Case

 If all resources are single unit and all processes make 

single requests, then we can represent the resource 

state with a simpler waits-for graph (WFG)

 The WFG consists of a set of vertices P={P1, P2, …, 

Pn} of processes

 A directed edge PiPj means that Pi has requested a 

resource that Pj currently holds 

 If the graph has no cycles, deadlock cannot exist

 If the graph has a cycle, deadlock exists



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 8

Dealing With Deadlock

 There are four approaches for dealing with deadlock:

 Ignore it – how lucky do you feel?

 Prevention – make it impossible for deadlock to happen

 Avoidance – control allocation of resources

 Detection and Recovery – look for a cycle in dependencies



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 9

Deadlock Prevention

 Prevention – Ensure that at least one of the necessary 

conditions cannot happen

 Mutual exclusion

» Make resources sharable (not generally practical)

 Hold and wait

» Process cannot hold one resource when requesting another

» Process requests, releases all needed resources at once

 Preemption

» OS can preempt resource (costly)

 Circular wait

» Impose an ordering (numbering) on the resources and request 

them in order (popular implementation technique)



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 10

Deadlock Avoidance

 Avoidance

 Provide information in advance about what resources will be 

needed by processes to guarantee that deadlock will not 

happen

 System only grants resource requests if it knows that the 

process can obtain all resources it needs in future requests

 Avoids circularities (wait dependencies)

 Tough

 Hard to determine all resources needed in advance

 Good theoretical problem, not as practical to use



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 11

Banker’s Algorithm

 The Banker’s Algorithm is the classic approach to 

deadlock avoidance for resources with multiple units

1. Assign a credit limit to each customer (process)

 Maximum credit claim must be stated in advance

2. Reject any request that leads to a dangerous state

 A dangerous state is one where a sudden request by any 

customer for the full credit limit could lead to deadlock

 A recursive reduction procedure recognizes dangerous states

3. In practice, the system must keep resource usage well 

below capacity to maintain a resource surplus

 Rarely used in practice due to low resource utilization



October 28, 2014 CSE 120 – Lecture 8 – Scheduling and Deadlock 12

Banker’s Algorithm Simplified

3 3 3 3

OKOK

3 3

OK

3 3

UNSAFE



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 13

Detection and Recovery

 Detection and recovery

 If we don’t have deadlock prevention or avoidance, then 

deadlock may occur

 In this case, we need to detect deadlock and recover from it

 To do this, we need two algorithms

 One to determine whether a deadlock has occurred

 Another to recover from the deadlock

 Possible, but expensive (time consuming)

 Implemented in VMS

 Run detection algorithm when resource request times out



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 14

Deadlock Detection

 Detection

 Traverse the resource graph looking for cycles

 If a cycle is found, preempt resource (force a process to 

release)

 Expensive

 Many processes and resources to traverse

 Only invoke detection algorithm depending on

 How often or likely deadlock is

 How many processes are likely to be affected when it occurs



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 15

Deadlock Recovery

Once a deadlock is detected, we have two options…

1. Abort processes

 Abort all deadlocked processes

» Processes need to start over again

 Abort one process at a time until cycle is eliminated

» System needs to rerun detection after each abort

2. Preempt resources (force their release)

 Need to select process and resource to preempt

 Need to rollback process to previous state

 Need to prevent starvation



October 20, 2015 CSE 120 – Lecture 8 – Scheduling and Deadlock 16

Deadlock Summary

 Deadlock occurs when processes are waiting on each 

other and cannot make progress

 Cycles in Resource Allocation Graph (RAG)

 Deadlock requires four conditions

 Mutual exclusion, hold and wait, no resource preemption, 

circular wait

 Four approaches to dealing with deadlock:

 Ignore it – Living life on the edge

 Prevention – Make one of the four conditions impossible

 Avoidance – Banker’s Algorithm (control allocation)

 Detection and Recovery – Look for a cycle, preempt or abort



October 28, 2014 CSE 120 – Lecture 8 – Scheduling and Deadlock 17

Deadlock and Resources

 There are two kinds of resources: consumable and 
reusable
 Consumable resources are generated and destroyed by 

processes: e.g., a process waiting for a message from 
another process

 Reusable resources are allocated and released by processes: 
e.g., locks on files

 Deadlock with consumable resources is usually 
treated as a correctness issue (e.g., proofs) or with 
timeouts

 From here on, we only consider reusable resources



October 28, 2014 CSE 120 – Lecture 8 – Scheduling and Deadlock 18

Deadlock Prevention

Consider a database system in which a user submits 

commands that read and update tables. 

Tables that are read or updated need to be locked when 

accessed.

 How would you do each of the following?

 Don't enforce mutex?

 Don't allow hold and wait?

 Allow preemption?

 Don't allow circular waiting?


