ZooKeeper

A highly available, scalable, distributed,
configuration, consensus, group
membership, leader election, naming, and
coordination service

Flavio Junqueira, Mahadev Konar, Andrew
Kornev, Benjamin Reed

Observations

1)Distributed systems always need some form of
coordination

2)Programmers cannot use locks correctly
3)Message based coordination can be hard to use in some

applications
Wishes

1)Simple, Robust, Good Performance
2)Tuned for Read dominant workloads

3)Familiar models and interfaces

4)Wait-Free: A slow/failed client will not interfere with the
requests of a fast client

5)Need to be able to wait efficiently

Design Starting Point

Start with the File API and model strip out what
we don't need:

1)Partial writes/reads (takes with it open/close/seek)

2)Rename

add what we do need:

1)Ordered updates and strong persistence guarantees
2)Conditional updates

3)Watches for data changes

4)Ephemeral nodes

5)Generated file names

Data Model

1)Hierarchal namespace
(like a file system)

2)Each znode has data
and children

3)data is read and
written in its entirety

services

YaView

dapps

USErs

L

SEervers

— locks

stupidname

morestupidity

read-1

ZooKeeper API

String create(path, data, acl, flags)

void delete(path, expectedVersion)

Stat setData(path, data, expectedVersion)
(data, Stat) getData(path, watch)

Stat exists(path, watch)

String[] getChildren(path, watch)

void sync(path)

Create Flags

1)Ephemeral: the znode
will be deleted when
the session that
created it times out or
it is explicitly deleted

2)Sequence: the the path
name will have a
monotonically
Increasing counter
relative to the parent
appended

Ephemerals

services

created by

Session X

L YaView] \

dapps

USErs

SErvelns

gstu pidname

"morestupidity

— locks

Sequence
appended
on create

Z00oKeeper Servers

Server Server erver Server Server

Client Client Client Client Client Client Client Client

1)AIl servers store a copy of the data (in memory)

2)A leader is elected at startup
3)Followers service clients, all updates go through leader

4)Update responses are sent when a majority of servers
have persisted the change

HOD

1)A client submits a
request to start
jobtracker and a set of
tasktrackers to torque

2)The ip address and the
ports that the jobtracker
will bind to is not known
apriori

3)The tasktrackers need to
find the jobtracker

4)The client needs to find
the jobtracker

Client

T

HOD with ZooKeeper

Torque

Client ZooKeeper

CIT | ~create /hod/jt- Ephemeralle_q'yi nce
) . |~ Yhod
/hod/jt-1

>4

HOD with ZooKeeper

Torque
setData /hod/jt-
<contact info>
Client ZooKeeper
getData /hod/jt-t{r \\/

\—hod\
-1

Requests per second

Performance

910 clients
50000

3 servers
5 BErVers
7 servers
9 servers
13 senrvers

40000

30000

20000

10000

0 10 20 30 40 50 60 70 80 90 100
Percentage of request that are writes

Performance at Extremes

Servers 1% Writes 100% W rites

13 265115 4592
9 195178 5550
4 147810 6371
5 75308 8048
3 49827 10519

Numbers are operations per second

1)

2)

3)

4)

5)

6)

Status

Project started October 2006
Prototyped in Fall 2006
Initial implementation of production service March 2007

Code moved to zookeeper.sf.net and Apache License
November 2007

Java Quorum and Standalone servers
Java and C clients available

