
ZooKeeper

A highly available, scalable, distributed,
configuration, consensus, group

membership, leader election, naming, and
coordination service

Flavio Junqueira, Mahadev Konar, Andrew
Kornev, Benjamin Reed

Observations
1)Distributed systems always need some form of

coordination

2)Programmers cannot use locks correctly

3)Message based coordination can be hard to use in some
applications

Observations

Wishes

Observations

1)Simple, Robust, Good Performance

2)Tuned for Read dominant workloads

3)Familiar models and interfaces

4)Wait-Free: A slow/failed client will not interfere with the
requests of a fast client

5)Need to be able to wait efficiently

Design Starting Point

1)Ordered updates and strong persistence guarantees

2)Conditional updates

3)Watches for data changes

4)Ephemeral nodes

5)Generated file names

add what we do need:

Start with the File API and model strip out what
we don't need:

1)Partial writes/reads (takes with it open/close/seek)

2)Rename

Data Model

1)Hierarchal namespace
(like a file system)

2)Each znode has data
and children

3)data is read and
written in its entirety

/

services

users

apps

locks

servers

YaView

read-1

morestupidity

stupidname

ZooKeeper API

String create(path, data, acl, flags)

void delete(path, expectedVersion)

Stat setData(path, data, expectedVersion)

(data, Stat) getData(path, watch)

Stat exists(path, watch)

String[] getChildren(path, watch)

void sync(path)

Create Flags

1)Ephemeral: the znode
will be deleted when
the session that
created it times out or
it is explicitly deleted

2)Sequence: the the path
name will have a
monotonically
increasing counter
relative to the parent
appended

/

services

users

apps

locks

servers

YaView

s-1

morestupidity

stupidname

Ephemerals
created by
Session X

Sequence
appended
on create

ZooKeeper Service

ServerServer ServerServerServerServer

Leader

ZooKeeper Servers

Client ClientClientClientClientClient ClientClient

1)All servers store a copy of the data (in memory)

2)A leader is elected at startup

3)Followers service clients, all updates go through leader

4)Update responses are sent when a majority of servers
have persisted the change

HOD

1)A client submits a
request to start
jobtracker and a set of
tasktrackers to torque

2)The ip address and the
ports that the jobtracker
will bind to is not known
apriori

3)The tasktrackers need to
find the jobtracker

4)The client needs to find
the jobtracker

Torque

Client

JT TT

TT
TT

HOD with ZooKeeper

Torque

Client

JT TT

TT
TT

ZooKeeper

/
hod

create /hod/jt- Ephemeral|Sequence

/hod/jt-1

HOD with ZooKeeper

Torque

Client

JT
TT

TT

TT

ZooKeeper

/

jt-1
hod

When the client spawns the TT and JT tasks
in torque, it passes the path of the newly
create znode (/hod/jt-1) as a startup parameter.

The client and TT watch the znode for data
populated by JT. JT and TT watch the existence
of the znode and exit if it goes away.

getData /hod/jt-1 true

setData /hod/jt-1
<contact info>

Performance

Performance at Extremes

Servers 1% Writes 100% Writes

13 265115 4592
9 195178 5550

7 147810 6371

5 75308 8048

3 49827 10519

Numbers are operations per second

Status

1) Project started October 2006

2) Prototyped in Fall 2006

3) Initial implementation of production service March 2007

4) Code moved to zookeeper.sf.net and Apache License
November 2007

5) Java Quorum and Standalone servers

6) Java and C clients available

