
Cloud Computing

Lecture 2: Leaf-Spine and PortLand Networks

Leaf and Spine

Spanning Trees: Ewwww!

Layer 2: SPB or Trill

Layer 3: OSPF

Leaf and Spine

• Type of Clos network

• Essentially folded, but still N-to-N connections

• Derived from old phone company architecture, invented in 1950s.

• All paths are same length from edge to edge

• Great for switch vendors

• Need to pick path, as can choose any middle router

• Very redundant

• Can implement at layer-2 or layer-3

Networking over time

• Flat – Gee whiz! We have a LAN!

• Ut-Oh! Too many addresses to remember what to do with them all, never mind to
manage each one individually

• Hierarchical – Look ma’! Global scale!

• Ut-Oh! Hierarchy requires management. Creates hot spots and fragments address space.
IP addresses limit migration. Forwarding is painful.

• Fat Tree – Many roots means many paths, relieves hot spots

• Still hierarchical. Still fragment. Still needs managing. Etc.

Goals

• Connectivity – inside, outside, no loops, etc.

• Efficiency – short paths, no hot spots, etc.

• Self configuring – Humans effort can’t be scaled in this way

• Robust – Consequences of failure aren’t disproportional; Failure is
recoverable

• VMs and Migration – Network structure doesn’t compartmentalize VMs

• Commodity hardware – Certainly facilitates adoption

Implications

• Connectivity – Scale and hierarchy requires big routing/forwarding tables or
impossibly large flat space. Routing protocols adapt to change slowly, leaving
temporary inconsistency, e.g. loops, from failure and other changes.

• Efficiency – Look toward fat trees, clos networks

• Self-configuring – Look toward a discovery protocol, p2p or coordinated

• Robust – Rapidly learn changed, avoid single points of failure w/high responsibility

• Migration – Want a flat address space to avoid compartmentalization. Trying to fix
above IP layer is a mess as it all comes back down and has to find its way.

• Commodity hardware – Services provided in off-switch software

Key Idea

• Minimize use of distributed state, because coordination for recovery or

change takes time

• Maximize use of central state for lower volume services, because it can

change/recover faster, and won’t bottleneck at low volume

Portland Solution

• Use commodity switches and off-load services into software on commodity
server

• Start With Fat Tree for a topology without hot spots

• Use layer-2 to avoid routing, forwarding, and related complexity

• Separate host identifier from host location

• IP addresses identify host, but not location, just and ID

• Use “Pseudo MAC Address” to identify location at Level-2

PortLand Addresses

• Normally MAC addresses are arbitrary – no clue about location

• IP normally is hierarchical, but here we are using it only as a host identifier

• If MAC addresses are not tied to location, switch tables grow linearly with growth of

network, i.e. O(n)

• PortLand uses hierarchical MAC addresses, called “Pseudo MAC” or PMAC

addresses to provide for switch location

• <pod:port:position:vmid>

PortLand PMAC Addresses

PMAC: <pod.position.port.vmid> 48 bits: <16-bits.8-bits.8-bits.16-bits>

0 0 0

0

1 1 1

1

Position

2 3

Portland PMAC Addresses

VM Migration

• Flat address space.

• IP address unchanged after migration, higher level doesn’t see state change

• After migration IP<->PMAC changes, as PMAC is location dependent

• VM sends gratuitous ARP with new mapping.

• Fabric Manager receives ARP and sends invalidation to old switch

• Old switch sets flow table to software, causing ARP to be sent to any stray packets

• Forwarding the packet is optional, as retransmit (if reliable) will fix delivery

Location Discovery: Configuring Switch IDs

• Humans = Not right Answer

• Discovery = Right Answer

• Send messages to neighbors – Get Tree Level

• Hosts don’t reply, so edge only hears back from above

• Aggregate hears back from both levels

• Core hears back only from aggregate

• Contact Fabric Manager with tree level to get ID

• Fabric Manager is service running on commodity host

• Assigns ID

Name Resolution: MACPMACIP

• End hosts continue to use Actual MAC (AMAC) addresses

• Switches convert PMAC<->AMAC for the host

• Edge switch responsible for creating PMAC:AMAC mapping and telling Fabric
Manager

• Software on commodity server, can be replicated, etc. Simplicity is a virtue.

• Mappings timed out of Fabric Manager’s cache, if not used.

• ARPs are for PMACs

• First ask fabric manager which keeps cache. Then, if needed, broadcast.

No loops, No Spanning Trees

• Forwarding can only go up the tree.

• Cycles not possible.

Failure

• Keep-alives like the link discovery messages

• Miss a keep alive? Tattle to the Fabric Manager

• Fabric manager tells effected switches, which adjust own tables.

• O(N) vs O(N2) for traditional routing algorithms (Fabric Manager tells every

switch vs every switch tells every switch)

Looking Back

• Connectivity – Hosts can talk! No possibility of loops

• Efficiency – Much less memory needed in switches, O(N) fault handlingh

• Self configuring – Discovery protocol + ARP

• Robust – Failure handling coordinated by FM

• VMs and Migration – Each has own IP address, each has own MAC address

• Commodity hardware – Nothing magic.

