Cloud Computing

Lecture 2: Leaf-Spine and Portlland Networks

!

Ewwww

Spanning Trees
: SPB or Trill
: OSPF

Layer 2
Layer 3

1nc

Leat and Sp

AN
s

DR
e
43
oo it

Leat and Spine

Type of Clos network

* Essentially folded, but still N-to-N connections

* Derived from old phone company architecture, invented in 1950s.

All paths are same length from edge to edge

Great for switch vendors

Need to pick path, as can choose any middle router
Very redundant

Can implement at layer-2 or layer-3

Networking over time

* Flat — Gee whiz! We have a LAN!
. * Ut-Oh! Too many addresses to remember what to do with them all, never mind to

manage each one individually

* Hierarchical — I.ook ma’! Global scale!

* Ut-Oh! Hierarchy requires management. Creates hot spots and fragments address space.
IP addresses limit migration. Forwarding 1s painful.

* Fat Tree — Many roots means many paths, relieves hot spots

* Still hierarchical. Still fragment. Still needs managing. Etc.

Goals

* Connectivity — inside, outside, no loops, etc.

* Etficiency — short paths, no hot spots, etc.

* Self configuring — Humans effort can’t be scaled in this way

* Robust — Consequences of failure aren’t disproportional; Failure 1s
recoverable

* VMs and Migration — Network structure doesn’t compartmentalize VMs

* Commodity hardware — Certainly facilitates adoption

Implications

* Connectivity — Scale and hierarchy requires big routing/forwarding tables or
impossibly large flat space. Routing protocols adapt to change slowly, leaving
temporary inconsistency, e.g. loops, from failure and other changes.

* Efficiency — Look toward fat trees, clos networks
* Self-configuring — ook toward a discovery protocol, p2p or coordinated
* Robust — Rapidly learn changed, avoid single points of failure w/high responsibility

* Migration — Want a flat address space to avoid compartmentalization. Trying to fix
above IP layer 1s a mess as it all comes back down and has to find its way.

* Commodity hardware — Services provided in off-switch software

Key Idea

* Minimize use of distributed state, because coordination for recovery or

. change takes time
* Maximize use of central state for lower volume services, because it can

change/recover faster, and won’t bottleneck at low volume

Portland Solution

* Use commodity switches and off-load services into software on commodity
server

Start With Fat Tree for a topology without hot spots

Use layer-2 to avoid routing, forwarding, and related complexity

Separate host identifier from host location

* IP addresses identify host, but not location, just and ID
* Use “Pseudo MAC Address” to identify location at Level-2

Portl.and Addresses

* Normally MAC addresses are arbitrary — no clue about location

. * IP normally is hierarchical, but here we are using it only as a host identifier

* If MAC addresses are not tied to location, switch tables grow linearly with growth of
network, 1.e. O(n)

* Portland uses hierarchical MAC addresses, called “Pseudo MAC” or PMAC

addresses to provide for switch location

* <pod:port:position:vmid>

Position

|6 lé Core
L 4 \'éll-l Q ’ ’ . Aggregation
% ' ngaoo
LS P @@@@ &&&&
Pod 0 Pod 1
PMAC: <pod.position.port.vmid> 48 bits: <16-bits.8-bits.8-bits.16-bits>

e SO @ e
PO SoEP S50 90P
00:00:00:02:00:01 %:01:02)%" 90 0 ;01;03%01

Pod 0

Portland PMAC Addresses

-
-
"
-
’.
..
'..‘
-
-
..
.'
"
.""

Pod | Pod 3

Core

VM Migration

Flat address space.

IP address unchanged after migration, higher level doesn’t see state change
After migration IP<->PMAC changes, as PMAC is location dependent
VM sends gratuitous ARP with new mapping;

Fabric Manager receives ARP and sends invalidation to old switch

Old switch sets flow table to software, causing ARP to be sent to any stray packets

* FPorwarding the packet is optional, as retransmit (if reliable) will fix delivery

Location Discovery: Contiguring Switch IDs

Humans = Not right Answer

Discovery = Right Answer

Send messages to neighbors — Get Tree Level

* Hosts don’t reply, so edge only hears back from above
* Aggregate hears back from both levels

* Core hears back only from aggregate

Contact Fabric Manager with tree level to get 1D

* TFabric Manager is service running on commodity host

* Assigns ID

Name Resolution: MAC=2PMAC=21P ,

* End hosts continue to use Actual MAC (AMAC) addresses

* Switches convert PMAC<->AMAC for the host
. * Edge switch responsible for creating PMAC:AMAC mapping and telling Fabric
Manager

* Software on commodity server, can be replicated, etc. Simplicity 1s a virtue.

* Mappings timed out of Fabric Manager’s cache, if not used.

* ARPs are for PMACs

* Tirst ask fabric manager which keeps cache. Then, if needed, broadcast.

No loops, No Spanning Trees

* Forwarding can only go up the tree.

* Cycles not possible.

Failure

Keep-alives like the link discovery messages

Miss a keep aliver Tattle to the Fabric Manager

* Fabric manager tells effected switches, which adjust own tables.

ON) vs O(N?) for traditional routing algorithms (Fabric Manager tells every
switch vs every switch tells every switch)

Looking Back

* Connectivity — Hosts can talk! No possibility of loops

* Efficiency — Much less memory needed in switches, O(N) fault handlingh

* Selt contiguring — Discovery protocol + ARP
* Robust — Failure handling coordinated by FM
* VMs and Migration — Each has own IP address, each has own MAC address

* Commodity hardware — Nothing magic.

