
Lecture 2:

Cloud Computing

Data Center Network Architecture

Cloud Computing, Common Needs

• Elasticity

• Resources only when needed, on-demand utility/pay-per-use

• Multi-tenancy

• Independent users result in need for security and isolation, while shring and amortizing

costs for efficiency.

• Resilience and Manageability

• Isolate failures, replication and migration.

Service Models

• Infrastructure as a Service (IaaS)

• Supply virtualized resources, e.g. S3 or EC2

• Platform as a service (PaaS)

• Let users focus on what they are delivering, not the resources needed to deliver it, e.g.
Google’s AppEngine, Salesforce, Microsoft Azure, Amazon Web Services

• Software as a Service (SaaS)

• Software is delivered via the cloud, e.g. fee for use. Consider GoogleApps, Microsoft
360, etc.

DC Networking vs Long Haul Network

• Long haul: Speed of light is significant source of latency, unlikely to be resolved
soon

• With a DC, distances are short, the speed of light is less of a factor

• Serialization/Deserialization delay (bits/second) is a factor

• Long haul: Shortest path is not uncommon and likely best

• Within a DC, tree-like topologies can concentrate traffic, generating bottle necks

• DCs have unique concerns: Multiple tenants and elastic demand, resulting in need
for security and efficient provisioning and security.

From Many Comes One

• Scaling, Robustness, Availability improved when service is provide by many

aggregating interchangeable parts, rather than queuing for one, or a small

number, of whole providers

• Easier to add more parts

• Easier to service parts

• Easier to dial up and dial down

Virtualization is Key Enabler

• Use independent of physical resources

• Multiple users per machine

• Isolation

• Migration

• Virtual Heterogeneity or Homogeneity

• Virtual CPUs, storage volumes, networks, etc.

Tiered Architecture

• The old standby

• Redundant “core” routers connect DC to Internet

• “Aggregation” layer cross-connects to core routers and “Access” switches

• Hence Levels 2 and 3

• “Access layer”, such as top of rack, connects to servers and cross-connects

to “Aggregation” layer

• Layer 2

Tiered Architecture Attributes

• Redundancy at the top

• Massive scale at the bottom

• Manageable complexity

• Fail soft for most important, higher level resources

Tiered Architecture Limitations

• Higher up gets over-subscribed since everything passes through

• Over-subscription increases with scale

• Most important paths are most over-subscribed

Level-2 vs Level-3

• Level 2 is faster, cheaper, and easier to manage

• Level 3 scales better, because it is hierarchical

• Level 3 can manage potential congestion through routing

• Multipath routing via equal cost multipath

Fat Tree

• Each layer has the same aggregate bandwidth

• Communication within a pod stays within a pod

• Need to be careful about purely equal-cost paths or there will be reordering

• Pre-bakes the paths to ensure diversity, while maintaining ordering

Fat Tree Details

• K-ary fat free: three layers (core, aggregation, edge)

• Each pod consists of (K/2)2 servers and 2 layers of K/2 K-port switches.

• Each edge switch connects (K/2) servers to (K/2) aggregator switches

• Each aggregator switch connects (K/2) edge and (K/2) core switches

• (K/2)2 core switches, each ultimately connecting to K pods

• Providing K different roots, not 1. Trick is to pick different ones

• K-port switches support K3/4 servers/host:

• (K/2 hosts/switch * K/2 switches per pod * K pods)

Fat Tree

Path Diversity

• Path diversity is good, in that it distributed hot spots, enabling, for example,

equal cost.

• But, if equal cost is only goal, there could be a lot or reordering. Ouch!

• Fat Tree uses a special IP addressing and forwarding scheme to address this

(pardon the pun), and additionally, allow intra-pod traffic to stay intra-pod

“Special IP” Addressing

• “10.0.0.0/8” private addresses

• Pod-level uses “10.pod.switch.1“

• pod,switch < K

• Core-level uses "10.K.j.i“

• K is the same K as elsewhere, the number of ports/switch

• View cores as logical square. i, j denote position in square.

• Hosts use “10.pod.switch.ID" addresses

• 2 <= ID <= (K/2)

• K=1 is pod-level switch; ID > 2 is too many hosts

• 8-bits implies K < 256

Static Routing Via Two-Level Lookups

• First level is prefix lookup

• Used to route down the topology to end host

• Second level is a suffix lookup

• Used to route up towards core

• Diffuses and spreads out traffic

• Maintains packet ordering by using the same ports for the same endhost

Lookup Tables

Flow Classification

• Type of “diffusion optimization”

• Mitigate local congestion

• Assign traffic to ports based upon flow, not host.

• One host can have many flows, thus many assigned routings

• Fairly distribute flows

• (K/2)2 shortest paths available – but doesn’t help if all pick same one, e.g. same root
of multi-rooted tree

• Periodically reassign output port to free up corresponding input port

Flow Scheduling

• Also a “Diffusion Optimization”

• Detect and deconflict large, long-lived flows

• Threshholds for throughput and longevity

Fault tolerance

• Can reject flows by setting cost to infinity.

• Plenty of paths, if failure

• Maintain sessions across switches to monitor

