Lecture 2:

Cloud Computing

Data Center Network Architecture

Cloud Computing, Common Needs

* Elasticity
* Resources only when needed, on-demand utility/ pay-petr-use

* Multi-tenancy

* Independent users result in need for security and isolation, while shring and amortizing
costs for efficiency.

* Resilience and Manageability

* Isolate failures, replication and migration.

Service Models

* Infrastructure as a Service (IaaS)
* Supply virtualized resources, e.g. S3 or EC2

* Platform as a service (PaaS)

* Letusers focus on what they are delivering, not the resources needed to deliver it, e.g.
Google’s AppEngine, Salesforce, Microsoft Azure, Amazon Web Services

* Software as a Service (SaaS)

* Software is delivered via the cloud, e.g. fee for use. Consider Google Apps, Microsoft
360, etc.

DC Networking vs L.ong Haul Network

Long haul: Speed of light is significant source of latency, unlikely to be resolved
soon

* With a DC, distances are short, the speed of light is less of a factor
* Serialization/Deserialization delay (bits/second) is a factor
Long haul: Shortest path 1s not uncommon and likely best

* Within a DC, tree-like topologies can concentrate traffic, generating bottle necks

DCs have unique concerns: Multiple tenants and elastic demand, resulting in need
for security and efficient provisioning and security.

From Many Comes One

* Scaling, Robustness, Availability improved when service is provide by many

. aggregating interchangeable parts, rather than queuing for one, or a small

number, of whole providers
* FEasier to add more parts
* FHasier to service parts

* FEasier to dial up and dial down

Virtualization is Key Enabler

* Use independent of physical resources

Multiple users per machine

* Jsolation

Migration

Virtual Heterogeneity or Homogeneity

Virtual CPUs, storage volumes, networks, etc.

Tiered Architecture

The old standby

Redundant “core” routers connect DC to Internet

“Aggregation” layer cross-connects to core routers and “Access” switches

* Hence Levels 2 and 3

“Access layer”, such as top of rack, connects to servers and cross-connects
to “Aggregation” layer

8 Payers?

Tiered Architecture Attributes

Redundancy at the top

Massive scale at the bottom

Manageable complexity

Fail soft for most important, higher level resources

Tiered Architecture Limitations

* Higher up gets over-subscribed since everything passes through

. * Opver-subscription increases with scale

* Most important paths are most over-subscribed

Level-2 vs Level-3

* Level 2 is faster, cheaper, and easier to manage

. * Level 3 scales better, because it is hierarchical

* Level 3 can manage potential congestion through routing

* Multipath routing via equal cost multipath

Fat Tree

Each layer has the same aggregate bandwidth

* Communication within a pod stays within a pod

Need to be careful about purely equal-cost paths or there will be reordering

Pre-bakes the paths to ensure diversity, while maintaining ordering

Fat Tree Details

K-ary fat free: three layers (core, aggregation, edge)

Each pod consists of (K/2)* servers and 2 layers of K/2 K-port switches.
Each edge switch connects (K/2) servers to (K/2) aggregator switches
Each aggregator switch connects (K/2) edge and (K/2) core switches

(K/2)? core switches, each ultimately connecting to K pods

* Providing K different roots, not 1. Trick is to pick different ones

K-port switches support K°/4 servers/host:
* (K/2 hosts/switch * K/2 switches per pod * K pods)

Fat Tree

Core

Aggregation

Edge

10.2.0.2 10.2.0.3

Pod 3

Pod 2

Pod 1

Pod 0

Path Diversity

* Path diversity is good, in that 1t distributed hot spots, enabling, for example,

equal cost.
. * But, if equal cost is only goal, there could be a lot or reordering. Ouch!

* Fat Tree uses a special IP addressing and forwarding scheme to address this
(pardon the pun), and additionally, allow intra-pod traffic to stay intra-pod

“Special IP” Addressing

“10.0.0.0/8” private addresses

Pod-level uses “10.pod.switch.1%
* pod,switch < K

Core-level uses "10.K./.7
* Kis the same K as elsewhere, the number of ports/switch

* View cores as logical square. 7, / denote position in square.

* Hosts use “10.pod.switch.ID" addresses
° 2<=1ID<=(K/2)
* K=1 is pod-level switch; ID > 2 is too many hosts
* 8-bits implies K < 256

Static Routing Via Two-Level Lookups

First level 1s prefix lookup

* Used to route down the topology to end host

Second level 1s a suffix lookup

* Used to route up towards core

Diffuses and spreads out traffic

* Maintains packet ordering by using the same ports for the same endhost

Lookup Tables

Prefix | Output port

02,0024 0

02.1.024] 1

0.0.0.0/0

— Suffix | Output port
0.0.0.2/8)
0.0.0.3/8 3

Flow Classification

Type of “diffusion optimization”
Mitigate local congestion

Assign traffic to ports based upon flow, not host.

* One host can have many flows, thus many assigned routings
Fairly distribute flows

(K/2)? shortest paths available — but doesn’t help if all pick same one, e.g. same root
of multi-rooted tree

Periodically reassign output port to free up corresponding input port

Flow Scheduling

* Also a “Diffusion Optimization”

* Detect and deconflict large, long-lived flows

* Threshholds for throughput and longevity

Fault tolerance

* Can reject flows by setting cost to infinity.
* Plenty of paths, if failure

* Maintain sessions across switches to monitor

