The Tail At Scale

Dean and Barroso, CACM 2013, Pages 74-80

Presented by: Gregory Kesden, CSE-291, Fall 2016




What Is “The Tail”’?

Most requests are answered promptly
Some requests are slower

As response times get faster, the difference between the fast and the slow grows

* And there are many reasons for slow, some simple, and some dynamic and resulting from
Interactions.

There 1s a lot of mass near “fast”, but a really long tail from there

If a request isn’t answered promptly, the likelthood of it taking just a little longer
and much, much longer get much closetr.

* There is a lot of probability mass across a very thing tail, if it 1s long enough




Why Variability Exists?

Shared (local) Resources, e.g. processor, disk, etc
Background daemons
Global Resource sharing, e.g. network, DFSs, authentication, etc
Queueing
* A dynamic phenomena, especially when multi-level

* Consider a simple example, such as synchronization at a busy network switch and last vs random drop.
Burst vs Steady-state processor operation (heat shedding limits)
Energy saving state transitions

Garbage collection




Parallelism

* Can hide latency
- ° Make multiple queries, take fastest
* Of course, expensive

* (Can make 1t dramatically worse

* If need to wait for slowest result
* Make 1000 queries, depend upon slowest
* 0.001 can be bad, and the result is bad.




Service Classes

* Interactive before batch requests, etc

* Often means higher-level queuing, rather than relying upon provided queues,
e.g. within OS, etc.




Synchronizing Background Activities

* Considering highly parallel operations

® - One slow result slows all, even if “rare”
. * Unsynchronized disruptions are constantly disrupting something somewhere
* And that slows down everything
* Synchronized disruptions affect all systems at the same time
* Short period of bad response, rather than long period

* 'The rest of the time the path is clear

* Basically stacks the disruptions in a few actions, rather than spreading across many, because the penalty
is the same for an action, regardless of how many are concentrated within it.




Work-Arounds: Replication

* Especially for read-only (or read-rare or loosely synchronized), where

. synchronization isn’t an issue -
* More throughput, reduces queuing, limits impact of bad node
* Can be selective, e.g. hot items

* Heat up to high water mark

* (Cool off to low water mark




Work-Arounds: Hedge

* Parallel requests
s ke insE
8 Expenistve
* Alternately, reissue only after delay

* If past the “sweet spot” then ask again

* 2x sweet spot 1s better than much of long tail

* Can cancel prior request when issued or when succeeded




Work-Arounds: Micro-partitions

* Breaking up big units of work
. * Avoids head-of-line blocking behind them
* Enables them to be parallelized

* Enables finer grained load balancing




Work-Arounds: Probation

* Temporarily exclude pootly responding servers
. ° After a certain amount of bad requests
* Can exponentially back-off, etc

* Can 1ssue shadow requests to find out when okay again

* Many sources of latency are temporary
* Daemons, garbage collection, backups, checkpointing and pruning, network storms

* Just wait for them to pass




Good Enough

* Large Information Retrieval Systems may not need exact answer
* Top 10 best advertisements? Might 10 of the top 15 due?

* Justignore a small fraction of slow responses and move on




Canaries

Requests which miss caches, etc are not common

* They are more likely to find bad code paths

* Test to a few servers first, then try again to all

Since canaries are only to a few servers, unlikely to hit server having a bad
moment and add significant latency. These aren’t scaled.




Going To Get Better? (Naw)

The faster hardware gets, the greater the variability between it and zero

Energy efficiency and heat shedding are getting more complex

* Taster speeds in some cases yield trouble in others
Scale is growing
As scale shrinks, variance within same class of devices becomes more significant

(But, there is some hope, in general, things are getting faster, wider, and more
directly connected and parallel)




