SQL, NoSQL,
MongoDB

CSE-291 (Cloud Computing) Fall 2016
Gregory Kesden

SO Databases

Really better called “Relational Databases”

Key construct is the “Relation”, a.k.a. the table
* Rows represent records

* Columns represent attribute sets
Find things within tables by brute force or indexes, e.g. B-Trees or Hash Tables

Cross-reference tables via shared keys, basically an optimized cross-product, known
as a “jomn”

o Expensive operation

SO Databases

* Backbone of modern apps

* Very, very high throughput can be achieved

* Scaling is challenging because there is no good way to partition tables while
still achieving semantics

* Amazing work-arounds are possible — virtualize SANS to large storage
devices, etc

° But, the model is what it is.

NoSQL Databases '

* Any of the more modern databases that essentially give up the ability to do
. joins in order to be able to avoid huge monolith tables and scale

* Key-Value (Dynamo or basic Cassandra)
* Column-based (Hbase)
* Document-based (MongoDB)

* Usually has more flexible scheme (no rigid tables means no rigid NxM
structure)

MongoDB

* Document-based NoSQI. database
* Max 16MB per document

* Documents are rich BSON (Binary [SON) key-value documents

Collections hold documents and can share indexes

* Some like to suggest they are analogous to tables, but not all documents in a collection must
have the same structure.

* They just have some of the same keys

Databases hold collections hold documents

MongoDB Document

* Note field:value
name: "sue”, field: value tuples
age: 26, field: value
status: "A", field: value
groups: ["news”, "sports”] field: value

https://docs.mongodb.com/manual/_images/crud-annotated-document.png

Embedded Documents

var mydoc = {

¥

_id: ObjectId(“labcd45b123456754321abcd"),

name. { first: “Gregory", last: “Kesden" },

classes. [“CSE-291", “CSE-110", “CSE-500"],

contact: { phone: { type: "cell", number: “412-818-7813" } },

Array access: classes.O
Embedded doc access: contact.phone.number

Join Operations?

* In general, not a MongoDB thing

* Get data from different places

* Slow and expensive operation

Much better to take advantage of denormalized structure to embed related things

* Can also “chase pointers” by chasing an id from one document into another
document via another query. (More like using a foreigh key in SQL than a join)

* Worst case? Multiple passes using shared key.

Indexes (Much like any other DB) =

Collection Query Criteria Sort order

! ’ '
db.users.find({ score: { "$1t": 30 } }).sort({ score: -1 })

{ score: 1 } Index

min 18 30 45 75 max

https://docs.mongodb.com/manual/indexes/

o e . B e

Single Field Indexes

{ score: 1 } Index

https://docs.mongodb.com/manual/indexes/

collection
{

store: 30,
}n.

T T T e

Compound Indexes

collection

score: 30,
userid: ...,
min "aal”, "ca2", "ca2", "ca2", “nb1"”, "xyz", max
- i o5 3@ 36 9@

{ userid: 1, score: -1 } Index
https://docs.mongodb.com/manual/indexes/

T T T e

Multi-Key (Array Field) Indexes

collection
[
{ . ‘
AUSCTId "xyz", NOtCZ Oﬂe lﬁdCX fOr =
addr

A =) ch element of the

{ zip ki

{ zip:"94301", ...} arra

) 3
)

{ "addr.zip”: 1 } Index
https://docs.mongodb.com/manual/core/index-multikey/

More About Indexing

* Matches, Range-based results, etc

* Geospatial searches

* Text searches, language based, includes only meaningful words

* Partial indexes filter and only index matching documents
* TTL indexes, internally used to age out documents, where desired

* Covered queries are quertes that can be answered directly from indexes, without
scanning

* Intersection of indexes.

Ageregation Pipeline: Filter, Group, Sort, Ops

(Average, Concatenation, etc)

Collection

v
db.orders.aggregate([
$match stage » { $match: { status: "A" } },
$group stage— { $group: { _id: "$cust_id”,total: { $sum: "$amount” }

1)
{
cust_id: "A123",
amount: 500,
status: "A"
: ‘ id 123
cust_id: "A123",
amount: 500, Results
{ status: "A"
cust_id: "A123", } {
amount: 250, -id: "A123%,
status: "A" total: 750
} { }
cust_id: "A123",
amount: 250,
{ $match > st.a:us " $group >
cust_id: "B212", } (
amount: 200,
status: "A" total: 200
’ cust_ia: w2, !
amount: 200,
{ status: "A"
cust_id: "A123", }
amount: 300,
status: "D"
} .
. https://docs.mongodb.com/manual/aggregation/
oraers

Map-Reduce

Collection

db.orders.mapReduce(
map — function() { emit(this.cust_id, this.amount); },

reduce —— function(key, values) { return Array.sum(values) },

{
query —
output —»

cust_id: "A123",
amount: 500,

query: { status: "A" },
out: "order_totals”

status: "A"

cust_id: “A123",
amount: 250,

amount: 500,
status: "A"

status: “A"

cust_id: "B212",
amount: 200,

}

amount: 250,
status: "A"

status: "A"

{

}

cust_id: "A123",
amount: 300,

status: "D"

orders

_id: "A123",
{ FAIZ3Y: [500, 250] }|memmmell| yalue: 750
| |reduce 3

—

[{ - 2o)

|—

value: 200

}

order_totals

https://docs.mongodb.com/manual/aggregation/

St
g '.;»‘.\-?:...”gm

"

Concurrency

Multiple options, Wired Tiger the default

Document-level concurrency control for write operations. As a result, multiple clients
can modify different documents of a collection at the same time.

For most read and write operations, WiredTiger uses optimistic concurrency
control. WiredTiger uses only intent locks at the global, database and collection
levels. When the storage engine detects conflicts between two operations, one will
incur a write contlict causing MongoDB to transparently retry that operation.

Some global operations, typically short lived operations involving multiple
databases, still require a global “instance-wide” lock. Some other operations, such as
dropping a collection, still require an exclusive database lock.

https://docs.mongodb.com/manual/core/wiredtiger/

Snapshots and Checkpoints

At the start of an operation, WiredTiger provides a point-in-time snapshot of the data to the transaction. A
snapshot presents a consistent view of the in-memory data.

When writing to disk, WiredTiger writes all the data in a snapshot to disk in a consistent way across all data
files. The now- data act as a checkpoint in the data files. The checkpoint ensures that the data files are
consistent up to and including the last checkpoint; i.e. checkpoints can act as recovery points.

MongoDB configures WiredTiger to create checkpoints at intervals of 60 seconds or 2 gigabytes of journal
data.

During the write of a new checkpoint, the previous checkpoint is still valid.

The new checkpoint becomes accessible and permanent when WiredTiger’s metadata table is atomically
updated to reference the new checkpoint. Once the new checkpoint is accessible, WiredTiger frees pages
from the old checkpoints.

Journaling needed to recover changes ahead of checkpoints

https://docs.mongodb.com/manual/core/wiredtiger/

T P —— . _— - B o

PSRRI

https://docs.mongodb.com/manual/reference/glossary/#term-durable

Journaling

Compressed write-ahead log (WAL)

Used to recover state more recent than most recent checkpoint

Buffered in memory, synced every 50ms

Deleted upon clean shutdown

Depending on file system, can preallocate log to avoid slow allocation

Replica Sets: Asynchronous Replication =

Client Application
' Driver
- WItes Reids

Primary
S/ & & Heartbeat
'\(:b G
?/ \%& Secondary By g Secondary

Secondary https://docs.mongodb.com/manual/replication/

B B S

Arbiters for Quorumes:
Real World Student-like Move

(vote only)

https://docs.mongodb.com/manual/replication/

T - B e

[eaiyats
e

L:-—u,-\h——tw
e

Automatic Failover =

m * Missing heartbeats for 10sec? Call election
* Secondary with most votes becomes new

primary, temporarily

But, uses bully-like primary to agree on top
dog in the end

Can be non-voting secondaries. Can be
read, but not elected or voting.

§] Replication ° s - :

"" https://docs.mongodb.com/manual/replication/
T e e ey - s e—————————

Supporting Scale

* Vertical — bigger host

* Horizontal -- Sharding

* More hosts
* Higher throughput

* Greater capacity

, j
~ L B e AR i
* DI L e b el RS 0l D A S S 20 8 2

A T o P e I R g -

Sharding

* Documents w/in sharded collection have

shard key
Router Router :
(mongos) (mongos) * Immutable, sued for shardlng

* Choice is very important, because key
must be found in range by index. Can be

... bottleneck
BRRE= Config Servers ' S
PR (cFlica ser) * Collection pattitioned by shard key range ;
o into chunks ~
e = ® Chunks are distributed and replicated

replica sets
Shard Shard b)

(replica set) (replica set)

Chunks

Chunk |

. |Chunk 2

jjcmmk 3 e
U A

Chunk 4
AN

—

—

> <

>

> <

> <%

‘
{ x: minKey }

{x:-75)

{x:25)

{x: 175}

{ x: maxKey }

* Sharded into
chunks by shard

key

* Can be migrated
manually or
balancer

* Can be split if too
large

