Networking Recap
Storage Intro

CSE-291 (Cloud Computing), Fall 2016
Gregory Kesden




Networking Recap
Storage Intro




Long Haul/Global Networking

* Speed of light 1s limiting; Latency has a lower bound (.)
. * Throughput is a cost, but not otherwise a limitation

* Running more fiber optic is technologically reasonable, within reason

* Demand will drive growth




Vs. Networking Within A Data Center

* Speed of light not limiting, short distance

* Serialization can be limiting, as bits clocked into and off of media

* Parallelization helps, but quickly limited in practice

* Bandwidth (Throughput) needs to be managed, both by distributing load and
relieving bottlenecks

* Task drives access pattern, drives hot spots




Traditional 3-Tier Network

* Convenient for distribution

* All links same width

* More links at lower layers = More bandwidth lower layers

* Works if strong locality at leat (access layer)
Challenged if leaf-to-leat up-and-down patterns 5
* Challenged if request distributed and wait reply (inflow) L

* Maximizing work within time budget means replies at same time collide




Fat Tree Topology

* Multi-Rooted Tree = All paths same width

- * Only useful if load distributed

* Doesn’t work if all pick same spanning tree

Core

: Aggregation

Edge




Utlizing Multiple Paths

* Layer-2 * Layer-4
. * Forwarding tables; Consider * Schedule flows
Portl.and * Notall flows are equal
* Hard to be adaptive * Can change

* Big vs small can’t be balance

° )
aE e * DCTCP; Multiplex flows
* ECMP; Can do via routing * Positive Feedback to balance, not
* Suffer collision of paths under load based upon interpreting drops.
* Slow to adapt, slow implementation * Adaptive, balanceable

* Handles failure slowly




Portl.and

Uses FatTree Topology

Provides way of using multiple paths

Separates Identifier (IP address) from Locator (PMAC)
Facilitates migration (Benefit over other solutions)

Fabric Manager enables failure management, mapping, etc

Link Discovery enables Auto-Configuration




Clos Networks

* Obvious benefit to flatter, all-to-all Connectivity

* Presently enables 2-Layer topologies in many cases
* TFabric has limits. Only possible to a point.

* Scale may more commonly outgrow fabric in near future leading to migration b ack to

3-Tier
* Manage scale limitations by using locally within pods, among cores, etc.

* Provides local density where needed, without blowing up interconnectivity scale

globally




Software Defined Networks (SDNs)

Separate Control Plane (Management) from Data Plane (Forwarding)

Enable central management of entire control plane

* Essentially makes a programmable network
Enables management applications with appropriate abstraction for use case (enterprise,
public cloud, etc) and management goal (traffic management, 1solation, etc)
Dramatically reduces management overhead, correctness, and security

* 'This is a “killer app”, by itself, at scale
Critically important for virtualization

* Enable on-demand management, and real-time adaptation to failure.

Replace multiple types of devices with single, generic, programmable devices




Networking Recap
Storage Intro




Types ot Storage

General Purpose File System

Spectal Purpose File System
NoSQL Database (Key-Value Store, Column-oriented, Etc)
Relational Databases, 1.e. SQL,

In Memory (Critical)




General Purpose File System

Emulate traditional file systems at larger scale and/or distributing near users

* E.g, Manage named user data with hierarchical access and protections,

Andrew File System (AFS) 1s classical global example, many more like NFS

approximate at DC or campus scale

Friendly for end users, but how useful?
* Commonness of global use case
* Can be very distant with reasonable latency.
* Disk = 10mS; Network = 10mS/1,000mi (very approximate)
& Hioh cost

* Synchronization, concurrency, etc

T —— T p— . R e aa . ——————



Spectal Purpose File System

* Relax constraints to limit complexity

* Accessing programmatically? Use index, drop directory hierarchy.

* Upload-based creation? Version and don’t support edits. Limits concurrency problem to version number
p PP yp

*  Logging? Append-only writes. Limits concurrency problem to allocation.

* Single application? Access model limited to roles, let app manage permissions
* Stale okay? Easier replication.
e

* Relieving concurrency problems
* Improves caching, replication

* Decreases latency




NoSQL Databases

Break up limitations associated with table (relation)

* CAP: Trade consistency for accessibility and partition tolerance.

* Speed at scale

Not likely ACID

Can do some SQL-like things, but some are hard, e.g. generalized join

Many kinds, e.g. key-value, column-oriented, etc




In-Memory

* When reacting to human users in real time, time budget is limited

* Trip from client to setrvice, trip from front-end to back-ends, processing, trip from back-ends to front-
P P % g, tip
end, processing, trip back to client, etc.

* There isn’t time to constantly hit disk in many ways
*  Would need a huge amount of disk time to be able to sustain throughout at scale
* What is reasonable response time for human user? 0.5 second (500 mS)?
® 75mS round trip to east coast
* The restis data center latency, queuing for services, and actual work
* Best solution is to have the answer waiting
*  Or, at least the components of the answer

* Sadly, sometimes block for slowest component




