
Networking Recap

Storage Intro

CSE-291 (Cloud Computing), Fall 2016

Gregory Kesden

Networking Recap

Storage Intro

Long Haul/Global Networking

• Speed of light is limiting; Latency has a lower bound (.)

• Throughput is a cost, but not otherwise a limitation

• Running more fiber optic is technologically reasonable, within reason

• Demand will drive growth

Vs. Networking Within A Data Center

• Speed of light not limiting, short distance

• Serialization can be limiting, as bits clocked into and off of media

• Parallelization helps, but quickly limited in practice

• Bandwidth (Throughput) needs to be managed, both by distributing load and

relieving bottlenecks

• Task drives access pattern, drives hot spots

Traditional 3-Tier Network

• Convenient for distribution

• All links same width

• More links at lower layers = More bandwidth lower layers

• Works if strong locality at leaf (access layer)

• Challenged if leaf-to-leaf up-and-down patterns

• Challenged if request distributed and wait reply (inflow)

• Maximizing work within time budget means replies at same time collide

Fat Tree Topology

• Multi-Rooted Tree = All paths same width

• Only useful if load distributed

• Doesn’t work if all pick same spanning tree

• Can distribute via Layer-1,-2, or -3 techniques

Utilizing Multiple Paths

• Layer-4
• Schedule flows

• Not all flows are equal

• Can change

• Big vs small can’t be balance

• DCTCP; Multiplex flows
• Positive Feedback to balance, not

based upon interpreting drops.

• Adaptive, balanceable

• Layer-2

• Forwarding tables; Consider

PortLand

• Hard to be adaptive

• Layer-3

• ECMP; Can do via routing

• Suffer collision of paths under load

• Slow to adapt, slow implementation

• Handles failure slowly

PortLand

• Uses FatTree Topology

• Provides way of using multiple paths

• Separates Identifier (IP address) from Locator (PMAC)

• Facilitates migration (Benefit over other solutions)

• Fabric Manager enables failure management, mapping, etc

• Link Discovery enables Auto-Configuration

Clos Networks

• Obvious benefit to flatter, all-to-all Connectivity

• Presently enables 2-Layer topologies in many cases

• Fabric has limits. Only possible to a point.

• Scale may more commonly outgrow fabric in near future leading to migration b ack to
3-Tier

• Manage scale limitations by using locally within pods, among cores, etc.

• Provides local density where needed, without blowing up interconnectivity scale
globally

Software Defined Networks (SDNs)

• Separate Control Plane (Management) from Data Plane (Forwarding)

• Enable central management of entire control plane

• Essentially makes a programmable network

• Enables management applications with appropriate abstraction for use case (enterprise,

public cloud, etc) and management goal (traffic management, isolation, etc)

• Dramatically reduces management overhead, correctness, and security

• This is a “killer app”, by itself, at scale

• Critically important for virtualization

• Enable on-demand management, and real-time adaptation to failure.

• Replace multiple types of devices with single, generic, programmable devices

Networking Recap

Storage Intro

Types of Storage

• General Purpose File System

• Special Purpose File System

• NoSQL Database (Key-Value Store, Column-oriented, Etc)

• Relational Databases, i.e. SQL

• In Memory (Critical)

General Purpose File System

• Emulate traditional file systems at larger scale and/or distributing near users

• E.g., Manage named user data with hierarchical access and protections,

• Andrew File System (AFS) is classical global example, many more like NFS
approximate at DC or campus scale

• Friendly for end users, but how useful?

• Commonness of global use case

• Can be very distant with reasonable latency.

• Disk = 10mS; Network = 10mS/1,000mi (very approximate)

• High cost

• Synchronization, concurrency, etc

Special Purpose File System

• Relax constraints to limit complexity

• Accessing programmatically? Use index, drop directory hierarchy.

• Upload-based creation? Version and don’t support edits. Limits concurrency problem to version number

• Logging? Append-only writes. Limits concurrency problem to allocation.

• Single application? Access model limited to roles, let app manage permissions

• Stale okay? Easier replication.

• Etc.

• Relieving concurrency problems

• Improves caching, replication

• Decreases latency

NoSQL Databases

• Break up limitations associated with table (relation)

• CAP: Trade consistency for accessibility and partition tolerance.

• Speed at scale

• Not likely ACID

• Can do some SQL-like things, but some are hard, e.g. generalized join

• Many kinds, e.g. key-value, column-oriented, etc

In-Memory

• When reacting to human users in real time, time budget is limited

• Trip from client to service, trip from front-end to back-ends, processing, trip from back-ends to front-
end, processing, trip back to client, etc.

• There isn’t time to constantly hit disk in many ways

• Would need a huge amount of disk time to be able to sustain throughout at scale

• What is reasonable response time for human user? 0.5 second (500 mS)?

• 75mS round trip to east coast

• The rest is data center latency, queuing for services, and actual work

• Best solution is to have the answer waiting

• Or, at least the components of the answer

• Sadly, sometimes block for slowest component

