HDFES Architecture

Gregory Kesden, CSE-291 (Cloud Computing) Fall 2016

Based Upon: http://hadoop.apache.org/docs/13.0.0-alphal /hadoop-
project-dist/hadoop-hdfs/HdfsDesign.html

Assumptions

* At scale, hardware failure 1s the norm, not the exception

recovery is key

. * Continued availability via quick detection and work-around, and eventual automatic rull

* Applications stream data for batch processing
* Not designed for random access, editing, interactive use, etc

* Empbhasis is on throughput, not latency

* Large data sets

* Tens of millions of files many terabytes per instance

Assumptions, continued

* Simple Coherency Model = Lower overhead, higher throughput

* Write Once, Read Many (WORM)
. * Gets rid of most concurrency control and resulting need for slow, blocking coordination

* “Moving computation is cheaper than moving data”

* The data is huge, the network is relatively slow, and the computation per unit of data 1s
small.

* Moving (Migration) may not be necessary — mostly just placement of computation
* Portability, even across heterogeneous infrastructure

* At scale, things can be different, fundamentally, or as updates roll-out

Overall Architecture

HDFS Architecture

Metadata (Name, replicas, ...):
/homeffoo/data, 3, ...

Metadata_,ops"" Namenode

Block ops
Read Datanodes Datanodes
T | |
O O - - Replication B 8 u
[] — gu Blocks
- ~ \ - \ /
Rack 1 Write Rack 2

NameNode

Master-slave architecture

Ix NameNode (coordinator)

* Manages name space, coordinates for clients

* Directory lookups and changes
* Block to DataNode mappings
* Files are composed of blocks

* Blocks are stored by DataNodes

Note: User data never comes to or from a NameNode.

* The NameNode just coordinates

DataNode

* Many DataNodes (participants)
- ° One per node in the cluster. Represent the node to the NameNode

* Manage storage attached to node
* Handles read(), write() requests, etc for clients

* Store blocks as per NameNode

* Create and Delete blocks, Replicate Blocks

Namespace

* Hierarchical name space

* Directories, subdirectories, and files
- * Managed by NameNode

* Maybe not needed, but low overhead

* Tiles are huge and processed in entirety
* Name to block lookups are rare
* Remember, model is streaming of large files for processing

* Throughput, not latency, 1s optimized

Access Model

* (Just to be really clear)

* Read anywhere

* Streaming 1s in parallel across blocks across DataNodes
* Write only at end (append)
* Delete whole file (rare)

* No edit/random write, etc

Replication

* Blocks are replicated by default
* Blocks are all same size (except tail)
* Fault tolerance

* Opportunities for parallelism

* NameNode managed replication

* Based upon heartbeats, block reports (per dataNode report of available blocks), and
replication factor for file (per file metadata)

Replication

Block Replication

Namenode (Filename, numReplicas, block-ids, ...)
/users/sameerp/data/part-0, r:2, {1,3}, ...
/users/sameerp/data/part-1, r:3, {2,4,5}, ...

Datanodes

L.ocation Awareness

* Site + 3-Tier Model 1s default

Replica Placement and Selection

* Assume bandwidth within rack greater than outside of rack

. * Detault placement

* 2 nodes on same rack, one different rack (Beyond 3? Random, below replicas/rack
limit)

* TFault tolerance, parallelism, lower network overhead than spreading farther

* Read from closest replica (rack, site, global)

Filesystem Metadata Persistence

EditLog keeps all metadata changes.

* Stored in local host FS

FSImage keeps all FS metadata

* Also stored in local host FS

FSImage kept in memory for use
* Periodically (time interval, operation count), merges in changes and checkpoints

* Can truncate EditLog via checkpoint

Multiple copies of files can be kept for robustness

* Keptin sync

* Slows down, but okay given infrequency of metadata changes.

T —— P —— et e e - . T

Failure of DataNodes

* Disk Failure, Node Failure, Partitioning
* Detect via heartbeats (long delay, by default), blockmaps, etc
* Re-Replicate

* Corruption
* Detectable by client via checksums

* Client can determine what to do (nothing is an option)

* Metadata

Datablocks, Staging

* Data blocks are large to minimize overhead for large files

. * Staging

* Initial creation and writes are cached locally and delayed, request goes to NameNode
when 1% chunk 1s full.

* Local caching is intended to support use of memory hierarchy and throughput needed
for streaming. Don’t want to block for remote end.

* Replication is from replica to replica, “Replication pipeline”

* Maximizes client’s ability to stream

