BigTable

CSE-291 (Cloud Computing)
Fall 2016

Data Model

* Sparse, distributed persistent, multi-dimensional sorted map

* Indexed by a row key, column key, and timestamp

* Values are uninterpreted arrays of bytes

* (row:string, column:string, time:int64) =2 string

Slice of an Example Table

“contents:” "anchor:cnnsi.com” "anchor:my.look.ca"
l | 1

IO N N O RSO S

1 ")

O L L= R S - -
"com.cnn.www" — = =Rt g - "CNN" (=t CNN.com” {= tg

"<html>.-"g 1y . : ; H

Figure 1: A slice of an example table that stores Web pages. The row name is a reversed URL. The contents column family con-
tains the page contents, and the anchor column family contains the text of any anchors that reference the page. CNN’s home page
is referenced by both the Sports Illustrated and the MY-look home pages, so the row contains columns named anchor:cnnsi.com
and anchor:my.look.ca. Each anchor cell has one version; the contents column has three versions, at timestamps t3, t5, and fs.

Rows

* Arbitrary strings

Reads and writes of rows are atomic (even across columns)

* Makes it easier to reason about results

* Data 1s lexicographically sorted by row

* Row range partitioned into Zablets
* Used for distribution and load balancing
* Reads of short row ranges are efficient

* If data has good locality w.r.t. tablets, efficiency boost

Column Families

* Not columns, groups of columns

* Unit of access control, disk and memory accounting

* Column families group column keys
* Data within column family is usually same type, compressed together
* Columns within column family rarely change

* Relatively few column families

Timestamps

* Cells are versioned

o Timestamps are times 1in microseconds

* O, alternately, user can assign, e.g. version number, etc
* Need user-assighed unique timestamps, if want to avoid collisions
* Automated garbage collection

* Most recent #

* Within 7z amount of time

APL

* Create and destroy tables and column families

* Change metadata, e.g. access control, etc

* Write or delete values

® Iterate across rows

* Jterate over subset of data

* Single row transactions (read-update-write)
* Cells to be used as counters

* Client-provided server-side scripts for transformation, filtering, summarizationetc.

Building blocks

* Uses GFS for log and data files

* Shares servers with other applications

Building blocks: $$Tables i

* SSTuble file format used to store tables
. ° Sorted String Table
» Key-value pairs, sorted by key

Blocks of data followed by binary-searchable index at end

Index in memory, one seek to data

* Ort, load all into memory

Lookup value by key, iterate over key/value pairs in range

Building Blocks: Chubby

Distributed lock service

5 active replicas, one 1s master
* Only master serves requests
* Needs majority to work
* Paxos based
Namespace is directories and tiny files
* Directories and files can be used as locks

Locks are leased and callbacks can be requested

Used to ensure one active master, location of tablet servers, schema information, access control
lists

Master Server

* Master server
* Assigns tablets to tablet servers
* Detecting and managing changes to tablet servers

* Load balancing across tablet servers

Tablet Server

* Tablet server
* (Can be dynamically added and removed
* Manages read and writes

* Split tablets that are too large

BigTable Cluster

Cluster stores Tables
Tables store Tablets

Tablets store Row Range

Initially, one Tablet per Table, then split with growth

Chubby file ~ (1stMETADATA uuu)/'}

C O—

Tablet Assignment

Each tablet lives on one server at a time
Master keeps track of live tablet servers and assighments

Chubby used to keep track of tablet servers

* Master monitors Chubby directory
Tablet servers can’t serve if they lose exclusive lock on tablet
Tablets reassigned when not reachable

* Notify master if lost lock

* Master heartbeats (asks for status of lock from tablet server)

Tablet Serving

* Persistent stores redo record stored in GFS

* Commit 10g ‘ memtable

* Recent updates in in-memory wenitable
Memory

* Older updates in sstable GFS

tablet log

Figure 5: Tablet Representation

SSTable Files

Locality Groups

* Grouping of multiple column families together

* Separate SSTable for each locality group

* Makes it faster to access data that 1s accessed together

Compression

® Per block or across blocks

- * Per block enables small portions to be read without decompression of larger block

* Sometimes 2 pass schemes

* Want to emphasize speed over compression

Read Caching

®* Scan cache

* Key-value pairs from sstable

* Block cache

* Sstable blocks read from GFS

Bloom Filters

* Reads need to read from all SStables that make up table

* Bloom filters reduce the number that are accessed by don’t have matching

row/column pait.

* Ditto for non-existent pairs

Commit Log

* Logs are written concurrently

* Different purposes
. * Different files would mean different locations on disk

* Use one per tablet server, not one per tablet
p > p

* Reduces the number of files written, improves seek locality, reduces overhead, etc.

* Complicates recovery
* Few log entries relate to any one tablet server

* Parallel sort by key first, then entries for one server are together.

Tablet Migration

* Process
* Compact
a5 Rreeze
* Compact

* Migrate

* Log is clean for move with only a short freeze time

Immutability

Only memtable allows reads and writes
Everything else 1s versioned
Allows asynchronous deletes

Mitigates need for locking,

