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Matrix Completion
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Goal: Fill in question marks (subject to constraints)

Largely popularized by the Netflix Prize (Bennett & Lanning 2007)



Application:

Feature vectors

Prediction with Missing Values
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Common approach:

|. Impute missing features with matrix completion

2. Use imputed feature vectors to solve prediction task



Missing Not at Random (MNAR) in MC

MNAR: missingness Is not uniform at random and can depend on value of entry
(if it were forced to be revealed)

« Restaurant ratings: a vegan is unlikely to go to & rate a BBQ restaurant

* Movie ratings: some people refuse to watch horror movies

* Health care: doctor chooses measurements to take for a patient

The vast majority of existing literature on matrix completion assumes entries

are missing with equal probability independent of everything else
(Candes & Recht 2009, Recht 2009, Cai et al 2010, Keshavan et al 2010, ...)

*  Many methods rely on this missing-completely-at-random (MCAR)
assumption and produce biased predictions when the data are MNAR

This paper: new approach to MNAR matrix completion with
(1) finite sample debiasing guarantees & (2) competitive empirical accuracy



Example of Bias in MC (Steck 2010)

True ratings matrix S € R™*" Revealed ratings matrix X
HO'”'TO'” Rom;nce ():set of revealed indices
~ movies movies ] ]
I o SIS IS I ES I o417 |72
R B RS S R S R 7 41 41|72
$1o41 41| —1 -1 +1 0?7 41|77
Romance [-1 —1 -1 |4+1 +1 7 7 7+l +1
lovers | -1 -1 —1 |+1 +1 /S SR S [ B
Goal: Given X, construct estimate S of S Predict all 1's (set S to al |'s)
deally, minimize:  Ligeamse(S) = — S‘Y = 1.92
1=1 9=1
. L ~ 1 ~
In practice, minimize: Ly aive-MsE(S) = @ Z (Xi;—S;5)° =0
(4,5) €

I every entry revealed with equal probability:

Laive-Msg(S) is unbiased estimate of Lideal_MSE(g)



Model

True ratings matrix S € R™*" Revealed ratings matrix X
HO”TO'” Rom;nce ():set of revealed indices

movies movies
oo | LD AL -1 -1 -1 -1 7 |7 7]
overs +1 +1 +1 -1 -1 7 4+1 —1 | 7 ?
+1 +1 41 |—-1 -1 +1 7 4107 7
Romance [-1 —1 -1 |4+1 +1 7 7 7 =1 +1
lovers | -1 —1 —1 [+1 +1 T T 41 7

Goal: Given X, construct estimate §of S

mXxXn

Probabilities of entries being revealed P € [0, 1]

0.5 0.5 0.5 /0.0 0.0
0.5 0.5 0.5 10.0 0.0 Generative process:

0.0 0.5 0.5 /0.0 0.0 |. Reveal entries of S based on P
0.0 0.0 0.0 0.5 0.5

00 0.0 00 /05 0.5 2. Add noise to revealed entries




Debiasing MC with Propensity Scores

Goal: Given X, construct estimate §of S

Probabilities of entries being revealed P € |0, 1]

0.5
0.5

|. Construct estimate ﬁof P

2. Minimize:

0.9
0.9

----------------------

mXxXn

0.5 OOOO‘/'\/\/HI need probabilities > 0

0.5 0.0 0.0 Think of revealing an entry a a “treatment’
0.5 0.0 0.0 (Schnabel et al 20\ 6)

-------------

Use Inverse propensity scorg weighting

e T 0:10. e (Horvitz & Thompson 19b2, ...)
Matrix of propensity scores

mn <
(4,7)€82

Unbiased estimate of Lideal_MSE(g) fP=P

(Other welighting schemes are also possible)



Debiasing MC

|. Construct estimate P of P

Typically done via parametric model (logistic regression, naive Bayes)
(for MC: Liang et al 2016, Schnabel et al 2016,Wang et al 2018/2019, ...)

« Usually requires auxiliary information (on rows/cols, some MCAR data)

* Unclear what error is for estimating propensity scores

2. Solve modified version of standard MC problem:

--------

S = argmin {L(Z|P)+ X Z ||} Convex program
Ze[=1,1)men nuclear norm

(encourages low rank)
where

~ 1 (Xij — Zij)?
L(Z|IP)=— ) e
mn < P; .
(4,7)€Q ]

Standard approach uses Luaive-msk (Z) instead of L(Z|P) (Mazumder et al 2010)



Debiasing MC

|. Construct estimate 16 of P

z s
> w‘,,,*" - -

=={ Main contribution: New strategy to estimating P with

* Finite sample bounds for Hﬁ — P||r & ]L(g\ﬁ) — Lideal-MSE(g)\

« Competitive empirical performance

= No auxiliary information on rows or columns needed! S
\_ _/

2. Solve modified version of standard MC problem:

--------

S = argmin {L(Z|P)+ N Z ||} Convex program
Ze[=1,1)men nuclear norm

(encourages low rank)
where

~ 1 (Xz _ ZZ.’.)2
L(Z|P) = — Z ]]3 J
(i,j)EQ 0J

Standard approach uses Lyaive-MSE (£ ) instead ofL(Z]ﬁ) (Mazumder et al 2010)




What do missingness patterns
look like?

-1 -1 7 ? ? 1 1 0 0 O
7 41 =17 ? 0O 1 1 0 O
+1 7 41| 7 7 » |11 0 1 0 O
? ? 7 |21 +1 | If not missing, 0O 0 0 1 1
? ? I O If missing 0O 0 0 1 0

Revealed ratings matrix X Missingness matrix M



Missingness Matrices in Real Data

Movielens (Harper and Konstan 2015)
Coat (Schnabel et al 2016)

There i1s block structure
| ow rank

(Can also show that there Is topic modeling structure) —

Goal: Given M, estimate P under low nuclear norm structure
(will In some sense also cover low rank)



General Low Nuclear Norm Structure
(Davenport et al 2014)

Parameterize P with user-specified link function ¢ : R — [0, 1]

P i=0(A;;) Fxample: standard logistic function
olx)=1/(14+e %)
for parameter matrix A € R™*"

|dea: impose constraints on A instead of P
(helpful for theoretical analysis)

Assumption Al: There exists 8 > 0 st. [|[A|l« < 0v/mn  (low nuclear norm)

Assumption A2: There exists & > 0 st. max |4; ;] < «
1

J R ‘

-------

-
Block structure, clustering, topic models are all special cases!

Any bounded low rank A satisfies Al and A2
— _J

Technical detail: with some changes to theory & algorithm, can make upper bound ||




Algorithm: |bitMC (Davenport et al 2014)

|. Solve a nuclear-norm-regularized maximum likelihood estimation problem:

mono standard Bernoulli Jog ikelihood
A = argmax: >\ \]\47_7 logo(A; )+ (1 — M; ;) log(l —o(A; J))
AER™MmXn i:; j:;‘ """"""""""""""""""""""""""""""""""""""""" '

subject to: HAH < f+/mn, max ‘Az J‘ < a' constraints correspond to
©J . Assumptions Al & A2

------------------------------------------------

Convex program depending on choice of o

2. Estimate propensity scores as follows:

AN AN

P = o (A; ,J)

Davenport et al developed this algorithm for
binary matrix completion with MCAR entries



Key idea: apply matrix completion algorithm to
fully-observed matrix M to estimate P

We are debiasing matrix completion with more matrix completion!

Can also use other algorithms designed for matrix completion
aside from [bitMC to estimate P, such as collaborative filtering

(Technically, we are doing matrix denoising not matrix completion for M)



Theoretical Guarantees

Theorem (1bitMC): Choose link o(x) =1/(1 + e~ 7).
Under assumptions Al and A2, if # rows m & # cols n are large

enough, then with high probability, we simultaneously have: /4
| _ 1 1 .
—Z(Pi,j—Pi»j)ng(e[ | )
mn i, \/m \/ﬁ_ m=n

o L * )

‘L(glﬁ) — Lideal—MSE(S\)’ < O([J(—&)P 1/4 nl/4

Theorem (CF): If there’s clustering structure (across rows/columns),

we can get faster debiasing rate m /% instead of m~1/4
(uses collaborative filtering to estimate P instead of |bitMC)



Matrix Completion (MovielLens, Coat)

Experiment (per dataset):
e

« Separate revealed entries
into train/test split

 S-fold cross-validation for
hyperparameter selection

* [bvaluate prediction error
on test entries

Main findings:

* [britMC debiasing tends to
outperform naive Bayes and
logistic regression debiasing

* [bitMC debiasing often
improves existing methods,
at times yielding the best or
nearly the best accuracies

Coat has rits own train/test split
MovielLens: 90/10 split with 10 experimental repeats

. Coat MovieLens-100k
Algorithm
MSE SNIPS-MSE MSE SNIPS-MSE

PMF 1.000 1.051 0.896 +£0.013 0.902 +0.013
NB-PMF 1.034 1.117 N/A N/A
LR-PMF 1.025 1.107 N/A N/A
IBITMC-PMF 0.999 1.052 0.845 +=0.012 0.853 +0.011
SVD 1.203 1.270 0.862 =0.013 0.872+0.012
NB-SVD 1.246 1.346 N/A N/A
LR-SVD 1.234 1.334 N/A N/A
IBITMC-SVD 1.202 1.272 0.821 + 0.011 0.832 + 0.011
SVD++ 1.208 1.248 0.838 =0.013 0.849 +0.012
NB-SVD++ 1.488 1.608 N/A N/A
LR-SVD++ 1418 1.532 N/A N/A
IBITMC-SVD++ 1248 1.274 0.833 £0.012 0.843 +0.011
SOFTIMPUTE 1.064 1.150 0.929 +=0.015 0.950 +0.015
NB-SOFTIMPUTE 1.052 1.138 N/A N/A
LR-SOFTIMPUTE 1.069 1.156 N/A N/A
IBITMC-SOFTIMPUTE 0.998 1.078 0933 +-0.014 0953+0.014
MAXNORM 1.168 1.263 0911 £0.011 0.925+0.011
NB-MAXNORM 1460 1.578 N/A N/A
LR-MAXNORM 1.537 1.662 N/A N/A
IBITMC-MAXNORM 1471 1.590 0.977 =0.017 0.992 +0.019
WTN 1.396 1.509 0.939 +-0.013 0.952+4+0.013
NB-WTN 1.329 1.437 N/A N/A
LR-WTN 1.340 1.448 N/A N/A
IBITMC-WTN 1.396 1.509 0.934 +-0.013 0.946 +-0.013
EXPOMF 2.602 2.813 2.461 +=0.077 2.558 +0.083

Our paper also has results on synthetic data

|6



Conclusions & Future Work

Main takeaways:

We recommend using |bitMC to estimate propensity scores If;
|. You don't want parametric assumptions
2. Your data matrix is sufficiently large (e.g., at least hundreds of rows/cols)

Other MNAR matrix completion methods lack debiasing guarantees; some
do not estimate the propensity score matrix (possibly useful for other tasks)

Future directions:

More robust way to debias MC using propensity score estimates
(that neatly handles propensity scores that are O)

Handling the case entries are not revealed independently
(revealing one entry makes another more/less likely to be revealed)

Debiasing guarantees for prediction tasks using MNAR imputed features

Any benefits to using this approach in causal reasoning context!



