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Introduction

We propose a new class of neural survival models (“survival kernets”):

e Based on learning a similarity score between any two data points
o Key features: > called a kernel function
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e Achieves prediction accuracy competitive with existing state-of-the-art

e Has a finite-sample accuracy guarantee (for a special case)

e Represents each point as a combination of “exemplar” training points
= Helptul for model interpretation
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No other survival analysis approach has all of these features

Existing interpretable survival models: can work poorly if assumptions don't hold

e some models assume linearity and/or survival curve shape constraints
no accuracy

e decision trees with few |leaves guarantees;
. . . some scale
e survival-supervised clustering soorly with

e survival-supervised topic models dataset size

Background

Survival Data Example tabular dataset

Feature vector Observed time

Age (years) Sex Diabetic Temp. (C) # comorbidities Time until death (days) when we stop
92.7 female yes 36.0 1 719 C.O|.|ect|ng

training data,

/8.0 male no 38.7 1 969 / not everyone
35.5 female no 39.5 2 "> 796 has died

Training data (i.i.d.): {(X;,Y;, D)y
raw input e

(e.g., teature vector)

event indicator 1 = Y} is a survival time

0 = Y; Is a censoring time
observed time > 0

Prediction for Test Point x with the Conditional Kaplan-Meier Estimator
1. Find all unique observed times in which someone died in training data

D0<ty <tg<--- <tm_ /m:#uniquetimesofdeath

2. Build table below with the help of a kernel function (e.g., K(z, X;) = e~ Ilz=X:lI")

Time t1 to 3 s tm
# deaths among training dl (ZC) dg(ﬂf) dg(.il?) o dm(CU)
points who look like =
# training points still alive r () ro () ro(z) o ()
among those who look like
dj(z) = > Kz, X)) Dil{Yi = t;},  rj(x) =Y Kz, X)) 1{Y; > t;}
i=1 i=1
3. Predict survival curve for test point x (across time t > 0): /
d; () this is a function of time ¢
P(survive beyond time t|z) ~ H (1 / ) (monotonically decreases
j=1,....m s.t. t;<t rj(x) starting from 1 at time ¢t = 0)
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Survival Kernets
Key high-level ideas

e Use the conditional Kaplan-Meier estimator, where we automatically learn the kernel
function using deep kernel survival analysis

K(z, Xi) = exp(—[l¢(z) — (X))

o At test time, to avoid computing the similarity between a test point and every training
point, "compress" the training data using kernel netting

¢ = user-specified base neural net

This helps with model interpretation!
* To get theoretical analysis to work out, use sample splitting:

WX Y, D)1y WX, Vi, Di) fizy

“pre-training” data “training” data
for base neural net training for constructing test-time predictor

Training Step 1

(For Step 3, we use an e-net which
has theoretical guarantees;
larger € = fewer clusters)

[(X°.Y?, DoY) Deep kernel
1t e ) Je=1 '

b survival analysis
“pre-training” data

Step 3
b ~ ~ Exemplar-based
X1,...,X, > — Xq.,..., X, —> ,
learned neural net clustering
training data training
Step 2 embedding N
X, = qg( X;) vectors Q

set of exemplars
(each training point

Step 4: For each exemplar § € Q, compute summary functions:
assigned to 1 exemplar)

Dg5(¢) := # deaths at time ¢, among training points in ¢'s cluster

R7({) := # still alive at time t, among training points in ¢'s cluster

Prediction for Test Point « .
Embedding space

Raw feature space (the circle not shaded)

<)

. ~>

radius TV
Predicted survival curve for z
only depends on exemplars

within the shaded ball

(): exemplar training embeddings
(all the green points)

-----------------------------------------------------------------------

K(z, raw representation of ¢)Dz(7)

qgeQ s.t. |lg—o(z)| <7

ri(r) = D

qgeQ s.t. |lg—o(x)| <7

K(z, raw representation of ¢)Rz(j)

Implementation Remarks (See Paper for Details)

e We show how XGBoost can be used to initialize survival kernet
training, outperforming standard neural net random parameter initialization

e Two modifications improve prediction accuracy but we lack theory to explain these:
(i) set pre-training data = training data, (ii) fine-tune exemplar summary functions

)

https://github.com/georgehc/surv;QgitEernets

Assumptions on neural net's output space (aim to predict well up to time horizon thorizon):

e Distribution of embedding vectors has compact support and low “intrinsic dimension” d’
= contrastive learning can help achieve this ,

e P(Y; > thorizon\gZ(Xi)) > positive constant = so we see enough data up to the time horizon

e Pdfs of survival time given embedding vector & censoring time given embedding vector are
Lipschitz continuous, & censoring cannot almost surely happen for any embedding vector
= close by embedding vectors have similar survival times (also similar censoring times)

Set £ = O(rn~ Y/ (+d))
thorizon - N , .

Then: E{ ! / (S(t\X) _ S(t\X))zdt} < O(n—Z/(Q—I—d )) optimal up to log tfactor
0

thorizon

EXperimentS train on Rotterdam, test on GBSG

Prediction Accuracy Benchmark 70%/30% train/test split—

e \\We use standard datasets \ Rotterdam/GBSG ; '  SUPPORT UNOS KKBOX ;
o . (1=2232,d=7) | ' (n=8873,d=14)  (n=62644,d=49)  (n=2814735, d=15) :
that are sufficiently large ——— _ —_—————————————— ~
astic-net Lox 0.6660 + 0.0045  0.6046 + 0.0013  0.5931 =+ 0.0011 0.8438 + 0.0001
e For every method, hold
out 20% of training data XGBoost 0.6703=0.0128  0.6281+0.0031  0.6028+0.0009  0.8714  0.0000
to treat as validation SeJF Deepsurv 0.6850 + 0.0160  0.6155+ 0.0032  0.5941 = 0.0021 0.8692 + 0.0003
for hyperparameter tuning
DeepHit

. . 0.6792 = 0.0121 0.6354 = 0.0047 0.6170 = 0.0016 0.9148 = 0.0001
e Fvaluation metric:

time-dependent
concordance index

Deep Cox Mixt
eep Lox Mixtures 0.6763 +0.0104  0.6289 =0.0047  0.6101 = 0.0023 0.8830*

Survival kernet (version

) 0.6510 = 0.0212 0.6220 = 0.0026 0.6028 = 0.0032 0.8952 + 0.0002
explained by theory)

. . Survival kernet (with the 2
(h |gher 1S bette r) modifications) 0.6719 = 0.0135 0.6426 + 0.0045 0.6211 + 0.0025 0.9057 = 0.0003

Mean + std dev over 5 experimental repeats
(* only ran once due to excessive computation time)

More detailed results including on
computation time are in the paper

llustration of Interpretation: SUPPORT Dataset

* Choose which exemplars/clusters to focus on
(e.g., largest ones, ones that contribute to the
prediction for a specific test point)

-------------------------------------

Largest 5 clusters, sorted by median survival time (days)
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* Columns: difterent exemplars/clusters Survival curves are interpreted in a standara

e Rows: raw features manner (this is precisely a Kaplan-Meier plot)

The paper includes visualizations for

* Intensity values: fraction of people in an
all datasets along with interpretations

exemplar's cluster with a particular raw feature
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