Nearest Neighbor and Kernel Survival Analysis: s

Nonasymptotic Error Bounds and Strong Consistency Rates BN
George H. Chen

Carnegie Mellon University

Hemnz(ollege

INFORMATION SYSTEMS ¢ PUBLIC POLICY « MANAGEMENT

https://github.com/georgehc/npsurvival

Theory

Focus on sup-norm error:  sup |S(t|z) — S(t|x)| for time horizon 7
te|[0,7]

Introduction

Survival analysis Reason about time durations until a critical event happens, such as in:

e Health care: time until death, or time until a disease relapses
 Manufacturing: time until a device fails
e Criminology: time until a convicted criminal reoffends

Critical event need not be death but we use this as the running example

Assumptions

* Probability of seeing Y values above 7 is large enough: 36 € (0,1/2] s.t. P(Y > 7| X =) > 0 Vx
= With training set size n large enough, enough Y values exceed 7

 Conditional distributions Pr|x & P x are continuous r.v.'s
> Ensures no ties In when people die and that these conditional distributions have pdf’s

Older index «)

lllustrative Example Data

Gluten Immuno- Low resting  Irregular . ime of * Pdfs of Prix & Pcix are smooth w.rt. feature space (
High BMI -> Feature vectors close by have similar death/censoring time distributions
allergy  suppressant heart rate  heart beat death y 9
(close enough neighbors in training data will provide useful information for prediction)
ﬁ x x / x x Day 2 e [eature space Is separable metric space, Px Is Borel probability measure
> Ensures probabillity of balls well-defined, probability of feature vector landing in support of Px Is 1

X Y
/ J x x J Day 10 Theorem (informal): k-NN estimator with k& = ©(n?*/(22+4)) has strong consistency rate:
sup |S(t|z) — S(t[x)| < O(n=o/ et d
te[0,7]
ﬁ x x x J x Day. =6 * The kernel variant also satisfies this bound (different constants)
* |f no censoring: upper bounds match lower bound by up to log factor
Goal: Estimate S(t|x) = P(survive beyond time t | feature vector x) R arror in k-NN CDF error in k-NN regression
Main observation: |log S(t|z) —log S(t|x)| < fate of P N oq P Kk
This paper analyzes k-NN and kernel Kaplan-Meier estimators for S(t|z) estimate ot 'y x probiem assuming Iy x KNown

CDF estimation/regression decomposition:

Contributions . . . .
Controlling bias/variance for k-NN estimators:

Key proof ideas: {

 Most general finite sample error upper bounds for k-NN and kernel survival estimators (nearly optimal)
e Experimental evidence that learning a kernel with random survival forests ( ) often Also: new finite sample results for k-NN and kernel Nelson-Aalen estimators, choosing k via validation set
works well in practice (theory for this adaptive kernel variant remains an open problem)
P ro b I el I I Set u p Datasets Dataset "pbc” ConT;r;lilndices Dataset "gbsg2" Conc:)[r;ance Indices
Model Generate each point (X,Y,9) i.i.d.; Kaplan-Meier Estimator ( ) Dataset| Description |# subjects|# dim. NN L2 CTH NN L2 —
f -~ : - : ' ' : primary biliary k-NN L1 —{ k-NN L1 HH
1. Sample feature vector X ~ Px For given data points, estimate P(survive beyond time t): pbe | PTEY O 276 | 17 AN (o L2 =D AN (o L2 |
2. Sample time of death T ~ IP)T‘X 1. Sort unique times of death: t; <ty < --- < tp gbsg2 | breast cancer | 686 8 k-NN (triangle) L1 —{H -NN (triangle) L1 — T
. . . id idivi 1445 14 kernel (box) L2 ———— 1 H kernel (box) L2 — [ H
3. Sample time of censoring C' ~ P¢x 2. Construct the following table: coney | cianes | 104 | 53 . | - el () L1 T T
4. |f death IS before Censorlng (T S C) -L— -L— t -L— | kernel (tr?angle) L2 — [ kernel (tr?angle) L2 {H
Set Y _ T 5 - 1 1 2 3 L Accuracy: concordance IﬂdeX kernel (triangle) L1 =~ —] — kernel (triangle) L1 [TH
— ’ — . random survival forest H T random survival forest H [—
OtherWISe # peOp|e WhO dle dl d2 d3 dL BaSiC eXperlment adaptive kernel — | H adaptive kernel H
' 0.65 0.70 0.75 0.80 0.85 0.60 0.65 0.70
Seh Y C’ 5 O # people at rISk " "2 3 L 1 : Raﬂdomly d|V|de data II’T[O 70%/ Dataset "recid" Concordance Indices Dataset "kidney" Concordance Indices
Goal: Estimate S(t|lz) =P(T >t | X = x) 3 G o the follows timate (blue function) 30% train/test pieces e {H:]H} e H[;E:H
. Compute the following estimate (blue function): 2. Select alg. parameter(s) via NN L . NN L 0

k-NN Estimator ( ) IP)(SUFViVG bGYOnd time t) ; 5-fold cross val on traiﬂiﬂg set k-NN (triangle) L2 —{ T H k-NN (triangle) L2 —{—
k data J 3. Evaluate on test set " “”f‘(”bg'e; ) - + kaN“l(bg'; ) 1 T

T —> find closest & points} Kaplan- > ST . Repeat basic experiment 10 times kernel (box) L1 — T kernel (box) L1~ +—{_}—

tralﬂlﬂg da.ta Meler (t ‘ '/'E) kernel (triangle) L2 — [ H kernel (triangle) L2 —
Com pare to: kernel (triangle) L1 (T kernel (triangle) L1 HT_

, , random survival forest — [ — random survival forest HT
e Beran also proposed kernel version, showed ( e (Cox proportional hazards sdapiive kern — sdaptive korme —
consistency for both (Euclidean feature space) e Random survival forest (RSF) 655 776607766 650" "055” 060" 065" 670" 675

e Kernel survival estimator with kernel
earned using RSF (“adaptive kernel”)

e Kernel version finite sample bounds (Euclidean):




