

Missing Not at Random in Matrix Completion

Any bounded low rank A

Wei Ma*, George H. Chen* (* = equal contribution)

https://github.com/georgehc/mnar_mc

Introduction

MNAR: probability of entry being missing is unknown (can relate to the entry's value)

- Restaurant ratings: a vegan is unlikely to go to & rate a BBQ restaurant
- Movie ratings: some people refuse to watch horror movies
- Health care: doctor chooses measurements to take for a patient

The vast majority of existing literature on matrix completion assumes entries are missing with equal probability independent of everything else (Candès & Recht 2009, Cai et al 2010, Keshavan et al 2010a/b, Recht 2011, Chatterjee 2015, ...)

• Many methods rely on this missing-completely-at-random (MCAR) assumption and produce biased predictions when the data are MNAR

> This paper: new approach to MNAR matrix completion with (I) finite sample debiasing guarantees & (2) competitive empirical accuracy

Debiasing Matrix Completion

Bias in matrix completion, illustrated using an example by Steck (2010)

True ratings matrix $S \in \mathbb{R}^{m \times n}$ Horror movies Romance movies $\begin{bmatrix} -+1 & +1 & +1 & | -1 & -1 \end{bmatrix}$ Horror lovers |+1 + 1 + 1 + 1 - 1 - 1|+1 +1 +1 |-1 -1Romance lovers

Revealed ratings matrix X Ω : set of revealed indices

$$\begin{bmatrix} +1 & +1 & ? & ? & ? \\ ? & +1 & +1 & ? & ? \\ +1 & ? & +1 & ? & ? \\ \hline ? & ? & +1 & +1 \\ ? & ? & ? & +1 & ? \end{bmatrix}$$

Goal: Given X, construct estimate \widehat{S} of S

Predict all I's (set S to all I's)

 $L_{\text{ideal-MSE}}(\widehat{S}) = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} (\widehat{S}_{i,j} - S_{i,j})^2 = 1.92$ Ideally, minimize: In practice, minimize: $L_{\text{naive-MSE}}(\widehat{S}) = \frac{1}{|\Omega|} \sum_{\widehat{S}} (\widehat{S}_{i,j} - X_{i,j})^2$

If every entry revealed with equal probability: $L_{ ext{naive-MSE}}(\widehat{S})$ is unbiased estimate of $L_{ ext{ideal-MSE}}(\widehat{S})$

Model (heterogeneous missingness probabilities)

Assume that there is an unknown propensity score matrix $P \in [0,1]^{m \times n}$

- I. Reveal entry (i,j) of S with probability $P_{i,j}$ independent of everything else
- 2. Add noise to revealed entries to obtain X

Debias matrix completion using inverse probability weighting (Schnabel et al 2016)

- . Somehow construct estimate \hat{P} of P
- 2. For user-specified matrix completion algorithm, minimize debiased loss:

$$L(\widehat{S}|\widehat{P}) = \frac{1}{mn} \sum_{(i,j) \in \Omega} \frac{(\widehat{S}_{i,j} - X_{i,j})^2}{\widehat{P}_{i,j}}$$

Proposed Approach: Debias Matrix Completion Using More Matrix Completion

Problem: Propensity score matrix P is usually estimated using logistic regression or naive Bayes (Liang et al 2016, Schnabel et al 2016, Wang et al 2018/2019, ...)

- Usually requires auxiliary information (e.g., row/column features, some missing-at-random ratings)
- Unclear what error is for estimating propensity scores

Strategy: Estimate propensity score matrix P using matrix completion/denoising algorithm instead No auxiliary information needed, and we get finite sample bounds for $\|\widehat{P}-P\|_F \& |L(\widehat{S}|\widehat{P})-L_{\mathrm{ideal-MSE}}(\widehat{S})|$

We use the 1-bit matrix completion (IbitMC) algorithm by Davenport et al (2014), which relies on low nuclear norm structure in P

Why should the proposed strategy work? In real data, missingness mask matrix M is low rank

Possible explanation: M is generated from low rank P

Algorithm IbitMC (Davenport et al 2014). Given M, constructs estimate for P as follows. Step 2. Compute

Step I. Solve Bernoulli maximum likelihood problem with constraints:
$$\widehat{A} = \underset{\widetilde{A} \in \mathbb{R}^{m \times n}}{\operatorname{argmax}} \sum_{i,j} [M_{i,j} \log \sigma(\widetilde{A}_{i,j}) + (1 - M_{i,j}) \log (1 - \sigma(\widetilde{A}_{i,j}))]$$

subject to: $\|\widetilde{A}\|_* \leq \theta \sqrt{mn}$, $\max_{i \in A} |\widetilde{A}_{i,j}| \leq \alpha$

Example: standard logistic function $\sigma(x) = 1/(1 + e^{-x})$

 $\widehat{P}_{i,j} = \sigma(\widehat{A}_{i,j})$

Results

Theoretical analysis

Assumptions:

• General low nuclear norm structure (Davenport et al 2014):

There is a true parameter matrix $A \in \mathbb{R}^{m \times n}$, with $P_{i,j} = \sigma(A_{i,j})$, satisfying: satisfies these

- Low nuclear norm. There exists $\theta > 0$ s.t. $||A||_* \le \theta \sqrt{mn}$
- Bounded probabilities. There exists $\alpha>0$ s.t. $\max_i |A_{i,j}|\leq \alpha$ (i.e., $P_{i,j}\in [\sigma(-\alpha),\sigma(\alpha)]$)
- ullet Bounded ratings. The true ratings S and estimated ratings \widehat{S} are bounded in entry-wise max norm

Theorem. Using **IbitMC** to estimate P, for large enough m and n, w.h.p. we have:

$$\frac{1}{mn} \sum_{i,j} (\widehat{P}_{i,j} - P_{i,j})^2 \le \mathcal{O}\left(\theta \left[\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}}\right]\right)$$
$$|L(\widehat{S}|\widehat{P}) - L_{\text{ideal-MSE}}(\widehat{S})| \le \mathcal{O}\left(\frac{\sqrt{\theta}}{[\sigma(-\alpha)]^2} \left[\frac{1}{m^{1/4}} + \frac{1}{n^{1/4}}\right]\right)$$

Longer version of paper (forthcoming): faster debiasing $m^{-1/2}$ is possible with stronger structure (clustering) using collaborative filtering algorithm to estimate P

Numerical experiments

Experiment (per dataset):

- Separate revealed entries into train/test split
- MovieLens: 90/10 split with 10 experimental repeats
- Coat comes with its own train/test split
- 5-fold cross-validation for hyperparameter selection
- Evaluate prediction error on test

Main findings:

- Our proposed strategy debiases better than naive Bayes & logistic regression baselines
- Our debiased matrix completion methods can achieve the best prediction accuracy per dataset

See paper for experiments on synthetic data

Test Set Mean Squared Error

Algorithm	MovieLens-100k	Coat
PMF (Mnih & Salakhutdinov 2008)	0.896 ± 0.013	1.000
NB-PMF	N/A	1.034
LR-PMF	N/A	1.025
Our proposed debiased PMF	0.845 ± 0.012	0.999
SVD (Funk 2006)	0.862 ± 0.013	1.203
NB-SVD	N/A	1.246
LR-SVD	N/A	1.234
Our proposed debiased SVD	0.821 ± 0.011	1.202
SVD++ (Koren 2008)	0.838 ± 0.013	1.208
NB-SVD++	N/A	1.488
LR-SVD++	N/A	1.418
Our proposed debiased SVD++	0.833 ± 0.012	1.248
SoftImpute (Mazumder et al 2010)	0.929 ± 0.015	1.064
NB-SoftImpute	N/A	1.052
LR-SoftImpute	N/A	1.069
Our proposed debiased SoftImpute	0.933 ± 0.014	0.998
MaxNorm (Cai & Zhou 2016)	0.911 ± 0.011	1.168
WTN (Srebro & Salakhutdinov 2010)	0.939 ± 0.013	1.396
ExpoMF (Liang et al 2016)	2.461 ± 0.077	2.602,
	'.' '' '' '' ''	1 1 1 1 1 1 1 2 2

Baselines that already handle entries missing with different probabilities

Code available at https://github.com/georgehc/mnar_mc