Motivation

How do we model population-level brain response to a
given cognitive task such as reading sentencese

Challenge: Even it we pre-aligned brains (so everyone has
the same brain), brain activations due to a cognitive task
can vary in location in the normalized space!
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Model Results

Generative process for signaln =1, ..., N: Language processing data:
« Substantial functional variability!

« 82 subjects reading sentences vs. non-words

« Observed signals y,, are t-statistic images from standard
fMRI preprocessing
- higher intensity at voxel implies higher statistical

* significance for language processing at that voxel
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1. Choose weights for each
Example: w, = (0.3,1,0)

2. Form a weighted sum of
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Coniributions

sparse, smooth, localized, ,
Graphical model

diverse
« Extended sparse coding to handle deformations
Goal: Find & deformations maximizing p(0, ®|y) » Uses existing image alignment algorithms as subroutine
> use EM-like inference algorithm « Can be interpreted as aligning a group with images
(iferate between updating weights, deformations, with spatially adapftive intensity equalization
dictionary) « Applied model to functional neuroimaging dato
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