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Abstract

We present a neural network framework for learning a survival model
to predict a time-to-event outcome while simultaneously learning a topic
model that reveals feature relationships. In particular, we model each sub-
ject as a distribution over “topics”, where a topic could, for instance, cor-
respond to an age group, a disorder, or a disease. The presence of a topic
in a subject means that specific clinical features are more likely to appear
for the subject. Topics encode information about related features and are
learned in a supervised manner to predict a time-to-event outcome. Our
framework supports combining many different topic and survival mod-
els; training the resulting joint survival-topic model readily scales to large
datasets using standard neural net optimizers with minibatch gradient de-
scent. For example, a special case is to combine LDA with a Cox model, in
which case a subject’s distribution over topics serves as the input feature
vector to the Cox model. We explain how to address practical implementa-
tion issues that arise when applying these neural survival-supervised topic
models to clinical data, including how to visualize results to assist clini-
cal interpretation. We study the effectiveness of our proposed framework
on seven clinical datasets on predicting time until death as well as hos-
pital ICU length of stay, where we find that neural survival-supervised
topic models achieve competitive accuracy with existing approaches while
yielding interpretable clinical topics that explain feature relationships.

*equal contribution
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1 Introduction

Predicting the amount of time until a critical event occurs—such as death, dis-
ease relapse, or hospital discharge—is a central focus in the field of survival
analysis. Especially with the increasing availability of electronic health records,
survival analysis data in healthcare often have both a large number of subjects
and a large number of features measured per subject. In coming up with an in-
terpretable survival analysis model to predict time-to-event outcomes for these
large-scale datasets, a standard approach is to use the classical Cox propor-
tional hazards model [Cox, 1972], possibly with features selected using lasso
regularization [Simon et al., 2011] or stepwise regression [Harrell et al., 1984].
However, these Cox-based models do not inherently learn how features relate.
Instead, to try to understand feature interactions with a Cox model, one would
have to, for example, introduce a large number of features that encode inter-
actions between the original features. This approach is impractical when the
number of features is very large.

To simultaneously address the two objectives of learning a survival model
for time-to-event prediction and learning how features relate through a topic
model, Dawson and Kendziorski [2012] combine latent Dirichlet allocation
(LDA) [Blei et al., 2003] with Cox proportional hazards to obtain a method they
call SURVLDA. The idea is to represent each subject as a distribution over top-
ics, and each topic as a distribution over which clinical feature values appear.
For example, a topic could correspond to a severe disease state or a particular
age group. The Cox model is given the subjects’ distributions over topics as
input rather than the subjects’ raw feature vectors. Importantly, the topic and
survival models are jointly learned.

In this paper, we propose a general framework for deriving neural survival-
supervised topic models that is substantially more flexible than SURVLDA.
Specifically, SURVLDA estimates model parameters via variational inference
update equations derived specifically for LDA combined with the standard
Cox model; to use another other sort of combination would require re-deriving
the inference algorithm. Moreover, the inference algorithm for SURVLDA as
stated in their paper does not easily scale to large datasets. In contrast, our
approach combines essentially any topic model and any survival model that
can be cast in a neural net framework (precise prerequisites of our framework
are given in Section 2); combining LDA with the Cox proportional hazards
model is only one special case. As a byproduct of taking a neural net approach,
we can readily leverage many deep learning advances. For example, we can
avoid deriving a special inference algorithm and instead use any neural net op-
timizer such as Adam [Kingma and Ba, 2014] to learn the joint model in mini-
batches, which readily scales to large datasets. Importantly, our framework
yields survival-supervised topic models that are amenable to interpretation so
long as the underlying topic and survival models are.

As numerous combinations of neural topic/survival models are possible,
we only demonstrate four combinations, corresponding to combining either
LDA or SAGE [Eisenstein et al., 2011] topic models with either the Cox pro-
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portional hazards model or an accelerated failure time model (e.g., Cox 1972,
Prentice 1978). We make these combinations within the SCHOLAR neural topic
modeling framework by Card et al. [2018] and thus refer to the resulting neu-
ral survival-supervised topic models as SCHOLAR LDA-COX, SCHOLAR LDA-
AFT, SCHOLAR SAGE-COX, and SCHOLAR SAGE-AFT; note that SCHOLAR LDA-
COX is a neural network variant of SURVLDA. We benchmark the four neu-
ral survival-supervised models on seven datasets, finding that they can yield
accuracy competitive with deep learning baselines [Katzman et al., 2018, Lee
et al., 2018] while yielding interpretable topics. In contrast, the deep learning
baselines are not interpretable.

Importantly, we discuss practical challenges encountered in learning these
neural survival-supervised topic models on clinical data to obtain interpretable
topics. For example, we found the standard approach in topic modeling of just
listing the top features per topic to often not be interpretable because this listing
does not explain how these top features’ probabilities of appearing vary across
topics. As an alternative, we propose a new heatmap visualization of learned
topics that we found can better assist clinical interpretation. Separately, we
find encouraging sparsity in learned topics to make the topics less interpretable.
Our observation is that sometimes multiple clinical events/measurements are
taken that altogether help explain a condition, whereas encouraging sparsity
tends to only pick out one among multiple related features. This is essentially
the same problem encountered when using lasso for linear regression: when
there is a group of variables with high pairwise correlation, lasso arbitrarily
chooses one of these variables [Zou and Hastie, 2005]. We do not want this sort
of behavior when our goal is to understand how different features relate.

As a separate issue on interpretability, especially when the number of fea-
tures is large, it is possible that many features do not help explain survival
outcomes. Dawson and Kendziorski [2012] address this issue by using a pre-
processing procedure for SURVLDA. Specifically, they cluster on the subjects’
data based on their survival outcomes. Then they remove features that are not
sufficiently different across the clusters. The issue with this approach is that it
is ad hoc and how it impacts downstream analyses is unclear. Moreover, there
are many possible clustering approaches that can be used each with its own
(hyper)parameter settings that can be tuned. We do not use such a heuristic
preprocessing step to filter features. Instead, we filter features after learning a
survival-supervised topic model. This strategy has been demonstrated to work
as well as filtering features before learning topic models [Schofield et al., 2017]
although it has not been demonstrated in the survival analysis context. Filter-
ing after learning the model is appealing since we can apply different filters
(potentially with clinician input) without having to retrain the model. For ex-
ample, we can screen out features that appear in too few or too many patients
on demand after learning the model.

As a concrete example, on a cancer dataset where we aim to predict time
until death, the topics learned by one of our neural survival-supervised topic
models SCHOLAR LDA-COX are shown as a heatmap in Figure 1. In the heatmap,
the columns correspond to different topics (ordered from left to right corre-
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Figure 1: Topics learned by SCHOLAR LDA -COX on the SUPPORT3 (cancer)
dataset. Columns index topics and rows index features/“words”. The values
are probabilities of each feature conditioned on being in a topic. Note that two
different features that are highly probable (darker shade of red) for the same
topic does not mean that they must co-occur when that topic is present, and it
is possible that neither occurs. A helpful way to think about this is to consider
how topic modeling works when applied to text data such as news articles. In
this case, a learned topic might correspond to sports, which could have highly
probable words such as “basketball” and “skiing”. A text document could be
about sports yet mentions neither of these words. This same idea applies to
our setting where we represent patients in terms of clinical topics.
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sponding to being associated with shorter to longer average survival time),
the rows correspond to different clinical measurements (continuous measure-
ments are discretized into bins), and the color values are probabilities where a
deeper red roughly means that the feature is more prominent for a particular
topic. We explain in Section 4 precisely how this heatmap is constructed and
how the rows are ordered. By looking at this heatmap, we can quickly identify
how feature occurrences tend to differ across the topics. We can interpret the
topics by looking at which features tend to be highly probable for each topic.
Our resulting interpretations are shown in Table 1.

Extremely importantly, the interpretation of the learned topics requires an
abundance of caution. While our learned topic models are competitive with
various state-of-the-art baselines in terms of prediction accuracy, the best accu-
racy scores possible are not high for the various prediction tasks we consider
in our experiments. Thus, we cannot claim that the learned topics are “cor-
rect”, and we believe that they require more extensive validation if they are to
be deployed for clinical use. However, the learned topics can be very helpful
in model debugging. By visualizing them with our heatmap strategy, we can
spot inconsistencies between topics learned and clinical intuition, which could
suggest ways to improve the model (e.g., adding additional constraints or reg-
ularization, changing speci�c data preprocessing steps). In contrast, state-of-
the-art deep learning baselines that we benchmark against are not interpretable
and do not provide straightforward visualizations to assist model debugging
and improvement.

With the above disclaimer, if we suppose for the moment that the learned
topics in Figure 1/Table 1 capture valid associations, then the topics could pro-
vide actionable insights. In the problem of predicting time until death for can-
cer patients, we may want to tease apart elderly cancer patients in terms of
their risk of mortality. Topics 1, 4, and 5 (as numbered in Table 1) would be
particularly relevant in this case as they focus more on elderly patients and are
associated with different risks of mortality. By looking at what differentiates
these topics, we see that fever, infection, and in�ammation are key indicators,
which we could consider interventions for. Note that whether a patient is more
associated with topic 1 vs 5 can be distinguished by other characteristics such
as blood pressure and white blood cell count. One might want to consider
more aggressive interventions for patients mostly associated with topic 1 since
their prognosis is worse collectively.

In summary, our main contributions are as follows:

• We propose a general neural network framework for combining neural
topic models with survival models. This framework is meant for large
datasets in which both the number of subjects and the number of features
are large, where a key goal is to discover possible feature relationships.

• We discuss practical issues that arise when applying our framework to
clinical data, including visualization strategies to assist clinical interpre-
tation.
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Table 1: Summary of topics learned by SCHOLAR LDA -COX on the SUPPORT3
(cancer) dataset. Higher Cox regressionb coef�cient is associated with shorter
survival time.

Topic number b Topic interpretation

1 0.63 old otherwise normal
2 0.11 cardiorenal problems with comorbidities
3 0 baseline
4 � 0.04 old, feverish, infection/in�ammation
5 � 0.16 old with in�ammation
6 � 0.23 normal healthier

• We experimentally show that neural survival-supervised topic models
often work as well as deep learning baselines but have the added ad-
vantage of producing clinically interpretable topics. The deep learning
baselines are not interpretable.

Outline The rest of the paper is organized as follows. We provide back-
ground and prerequisites of our framework in Section 2. We then explain how
to construct neural-survival supervised topic models with an explicit back-
ground topic in Section 3, with examples given for how to combine LDA and
SAGE topic models with the Cox and log-logistic accelerated failure time sur-
vival models. We then benchmark these models against classical and deep
learning baselines in Section 4, where we also discuss model interpretability.
We end the paper with a discussion in Section 5.

2 Background and Prerequisites for Our Framework

We begin with some background and notation, �rst stating the format of the
data we assume we have access to. Then we review key ideas of topic mod-
eling and survival analysis most pertinent to our proposed framework. Im-
portantly, we state what properties our framework requires of the topic and
survival models that will be combined to form a neural survival-supervised
topic model. For ease of exposition, we phrase notation in terms of predicting
time until death; other critical events are possible aside from death.

2.1 Data Format

We assume that we have access to a training dataset ofn subjects, and we pre-
specify d historical clinical events to keep track of, where each event either
occurs or not. For example, a clinical event could be whether a patient was
ever diagnosed with diabetes up to present time. Continuous-valued clinical
measurements could be discretized into bins to come up with such binary his-
torical clinical events. For example, white blood count could be discretized
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into �ve quintiles. Thus, one of the d events would then be “white blood count
reading is in the bottom quintile”; this event could occur multiple times. For a
given subject, we can count how many times each of the d events happened up
to present time. We denote X i ,u to be the number of times event u 2 f 1, . . . ,dg
occurred for subject i 2 f 1, . . . ,ng.1 Viewing X as an n-by-d matrix, the i-th
row of X (denoted by X i ) can be thought of as the feature vector for the i-th
subject. Importantly, whether death has occurred is not one of the d historical
events tracked by the matrix X since we will be predicting time until death.

As for the training label for the i-th subject, we have two recordings: in-
dicator di 2 f 0, 1g speci�es whether death occurred for the i-th subject, and
observed time Yi 2 [0,¥ ) is the i-th subject's “survival time” (time until death)
if di = 1 or the “censoring time” if di = 0. The idea is that when we stop collect-
ing training data, some subjects are still alive. The i-th subject still being alive
corresponds to di = 0 with a true survival time that is unknown (“censored”);
instead, we know that the subject's survival time is at least the censoring time.

2.2 Topic Modeling

Representing subjects using the matrix X above corresponds to topic model-
ing. Developed originally to analyze text [Blei et al., 2003], classically, a topic
model represents each text document (in our case, each text document is a sub-
ject/patient) by raw counts of how many times d different “words” appear in
the document (in our case, each word is a binary indicator for whether a past
clinical event occurred). These raw counts are stored as the feature vector X i
described previously. A topic model transforms the i-th subject's feature vec-
tor X i into a topic weight vector Wi 2 Rk, where Wi ,g measures how much
of topic g 2 f 1, 2, . . . ,kg is present in the i-th subject. A common assumption
is that the i-th subject's feature vector Wi forms a probability distribution, i.e.,
the Wi ,g � 0 for all words g and å k

g= 1 Wi ,g = 1. In the context of text docu-
ments, examples of topics include “sports”, “�nance”, and “movies”, so that a
text document could be partially about both sports and �nance but not movies,
etc. In our case, topics could correspond, for example, to different patient age
groups or having a speci�c severe illness. The goal is to automatically learn
these topics.

1For simplicity, especially as the focus of our paper is not on feature engineering or preprocess-
ing (which often needs to be tailored to speci�c datasets), when working with continuous-valued
features, we use the simple quintile binning strategy we described along with counting how often
each discretized event occurs across time to obtain the raw counts matrix X. In practice, one could
of course use other discretization strategies, whether based on known threshold values that are
already in clinical use for speci�c features, or based on automatically learned threshold values.
Moreover, rather than counting how often a (discretized) measurement occurs over time, we could
instead look at, for instance, the most recent value of that measurement, or the maximum value
ever taken of that measurement across a time period, etc. Once again, choosing between these op-
tions could be done using existing clinical knowledge or learned automatically. We provide speci�c
example approaches of how to discretize or summarize features over time in A.3, including taking
advantage of recently developed machine learning methods. Importantly, our proposed frame-
work accommodates any of these feature preprocessing strategies. We defer studying the effect of
using different feature preprocessing strategies to future work.
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As a concrete example of a topic model, we review the LDA model by
Blei et al. [2003]. LDA assumes the topic weight vectors Wi 's to be generated
i.i.d. from a k-dimensional Dirichlet distribution. Next, to relate feature vector
X i to its topic weight vector Wi , let X i ,u denote the fraction of times a word ap-
pears for a speci�c subject, meaning that X i ,u = X i ,u/

�
å d

v= 1 X i ,v
�
. Then LDA

assumes the factorization

X i ,u =
k

å
g= 1

Wi ,gAg,u (2.1)

for a “topic-word” matrix A 2 Rk� d, where each row of A is a distribution over
the d vocabulary words; rows of A are assumed to be sampled i.i.d. from a d-
dimensional Dirichlet distribution. Importantly, the different rows of A corre-
spond to the different topics. Ideally each topic reveals words (or in our usage,
historical clinical events) that are considered related or that tend to co-occur.
A standard approach is, for example, to examine the most probable words per
topic (i.e., identify the words with the highest values per row of A). We remark
that equation (2.1) is commonly written compactly as the nonnegative matrix
factorization X = WA, where the matrix W has rows given by the different
subjects' topic weight vectors Wi 's.

Given matrix X, LDA estimates the matrices W and A (along with the pa-
rameters of the two Dirichlet distributions that generate rows of W and A) us-
ing variational inference (as done in the original paper by Blei et al. [2003]) or
Gibbs sampling [Porteous et al., 2008]. Recently, Srivastava and Sutton [2017]
showed how to approximate LDA in a neural net framework so that off-the-
shelf neural net optimizers such as Adam [Kingma and Ba, 2014] can then be
used to learn the model.

Prerequisites on the topic model for use with our framework Our proposed
strategy for combining topic modeling with survival analysis can use any topic
model with a neural net formulation that can output an estimate bW of the topic
weight matrix W stated above. We shall feed bW as input to a survival model.
We remark that our approach technically does not require the rows of W to
be probability distributions, although as we show later, constraining W to be
nonnegative can ease interpretation of the survival model used.

Aside from LDA, examples of neural topic models that can be used in our
survival-supervised topic modeling framework include correlated topic mod-
els [Lafferty and Blei, 2006], supervised LDA [McAuliffe and Blei, 2008], SAGE
[Eisenstein et al., 2011], ProdLDA [Srivastava and Sutton, 2017], and the Em-
bedded Topic Model [Dieng et al., 2020]. As there are many neural topic models
at this point, we refer the interested reader to the survey by Zhao et al. [2021].

2.3 Survival Analysis

Many standard topic models, including LDA, do not solve a prediction task.
To predict time-to-event outcomes, we turn to survival analysis models. In this
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section, we review some key concepts from survival analysis. More details can
be found in standard textbooks (e.g., Kalb�eisch and Prentice 2002, Klein and
Moeschberger 2006). At the end of this section, we state what our approach to
combining topic and survival models requires of the survival model used.

Suppose we take the i-th subject's feature vector to be Wi 2 Rk instead of
X i . As this notation suggests, when we combine topic and survival models,
Wi corresponds to the i-th subject's topic weight vector; this strategy for com-
bining topic and survival models was �rst done by Dawson and Kendziorski
[2012], who extended the original supervised LDA formulation by McAuliffe
and Blei [2008]. We treat the training data to the survival model as (W1,Y1, d1),
. . . , (Wn,Yn, dn). Thus, the survival model does not get direct access to the
“raw” feature vectors X i 's. Instead, it only gets information about the raw fea-
ture vectors through the topic weight vectors Wi 's.

The prediction task The standard survival analysis prediction task can be
stated as using the training data (W1,Y1, d1), . . . ,(Wn,Yn, dn) to estimate, for
any test subject with feature vector w 2 Rk, the subject-speci�c survival func-
tion

S(t jw) = P(subject survives beyond time t j subject's feature vector is w).

As with standard classi�cation and regression settings, the training and test
data are assumed to be i.i.d. samples from the same underlying distribution.

In survival analysis literature, often the prediction task is instead stated
as estimating a transformed version of S(�jw) called the hazard function. For-
mally, let W0 and T0 be continuous random variables corresponding to the
test subject's feature vector and the test subject's true survival time. We de-
note the cumulative distribution function (CDF) of T0 given W0 by F(t jw) =
P(T0 � t jW0 = w), and the probability density function (PDF) of this distri-
bution by f (t jw) = ¶

¶t F(t jw). The survival function is precisely S(t jw) =
1 � F(t jw). The hazard function is

h(t jw) := �
¶
¶t

log S(t jw) =
� ¶

¶t S(t jw)
S(t jw)

=
� ¶

¶t [1 � F(t jw)]
S(t jw)

=
f (t jw)
S(t jw)

, (2.2)

which (from the right-most expression) is the instantaneous rate of death at
time t divided by the probability of surviving up to time t, all conditioned on
the feature vector being w. Given how the hazard function is de�ned, know-
ing S(�jw) means that we know h(�jw) and vice versa (i.e., if we know h(�jw),
then S(t jw) = exp(�

Rt
0 h(t jw)dt )). Naturally, survival models differ in the

assumptions they place on the underlying survival function S(�jw).
The technical challenge in estimating S(�jw) from training data is that in

general, we do not observe the survival times for all of the training subjects: the
observed times Yi 's are equal to survival times only for subjects who have di =
1; all other Yi values are censoring times. We assume that thei-th training sub-
ject has survival time Ti and censoring time Ci that are conditionally indepen-
dent given feature vector Wi , and if the survival time occurs before censoring
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(Ti � Ci ), then Yi = Ti and di = 1; otherwise Yi = Ci and di = 0. This setup is
referred to as random censoring.

Measuring survival prediction accuracy Although the prediction task can be
described as estimating the survival function S(�jw) (or a variant of it such as
the hazard function), when it comes to evaluating accuracy, we do not know
the true function S(�jw) even in the training data. A number of evaluation
metrics have been devised, for which we use the time-dependent concordance
index Ctd by Antolini et al. [2005]. Roughly, Ctd measures the fraction of pairs
of subjects correctly ordered by a survival model (based on estimated subject-
speci�c survival functions) among pairs of subjects that can be unambiguously
ordered. Thus, Ctd scores are fractions between 0 and 1, and the highest accu-
racy corresponds to a value of 1.

Prerequisites on the survival model for use with our framework Our neu-
ral survival-supervised topic modeling framework requires that the survival
model used can be learned by (sub)gradient descent using standard neural
net optimizers. We will need to backpropagate through both the survival and
topic models, which are linked via the topic weight matrix W (estimated by the
topic model and treated as the input “feature vectors” by the survival model).
Numerous survival models satisfy the criterion above of being learnable via
(sub)gradient descent including the classical Cox proportional hazards model
[Cox, 1972] and accelerated failure time (AFT) models (e.g., Cox 1972, Prentice
1978). We state the modeling assumptions of these models next along with
their differentiable loss functions and how to construct an estimate bS(�jw) for
the subject-speci�c survival function S(�jw) after minimizing each model's loss
function.

2.3.1 Example: Cox Proportional Hazards

The Cox model assumes that the hazard function has the form

h(t jw) = h0(t) exp(b> w) for t � 0, w 2 Rk, (2.3)

where the two parameters are the baseline hazard function h0 : [0,¥ ) ! [0,¥ ),
and the vector of regression coef�cients b 2 Rk. Under random censoring (and
actually more general censoring models), we can estimate b without know-
ing h0 via maximizing a pro�le likelihood, which is equivalent to minimizing
the differentiable loss function

LCox(bjW) = �
1
n

n

å
i= 1

di

h
b> Wi � log

n

å
j= 1 s.t.Yj � Yi

exp(b> Wj )
i
. (2.4)

After computing parameter estimate bb by minimizing LCox(b), we can esti-
mate survival functions S(�jw) via the following approach by Breslow [1972].
Denote the unique times of death in the training data by t1, t2, . . . ,tm. Let di be
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the number of deaths at time t i . We �rst compute the so-called hazard function
bhi := di /

�
å n

j= 1 s.t.Yj � Yi
exp( bb> Wj )

�
at each time index i = 1, 2, . . . ,m. Next, we

form the “baseline” survival function bS0(t) := exp(� å m
i= 1 s.t. t i � t

bhi ). Finally,
subject-speci�c survival functions are estimated to be powers of the baseline

survival function: bS(t jw) := [ bS0(t)]exp( bb > w) .
Importantly, under the Cox model, whether a subject with feature vector w

is predicted to have overall higher or lower survival probabilities across time is
determined by the inner product bb> w = å k

g= 1
bbgwg. When this inner product

is larger, then bS(t jw) = [ bS0(t)]exp( bb > w) is smaller across time. Recall that we
shall take w to be a nonnegative topic weight vector, so the g-th topic being
present for a subject means that wg > 0. Note that the g-th topic's contribu-
tion to the inner product bb> w is precisely bbgwg. Thus, the g-th topic having
a larger bbg coef�cient means that the topic is associated with lower survival
functions/probabilities, and thus lowermean (or median) survival times. 2 By
ranking topics based on their bbg values, we can thus get a sense of which topics
are associated with lower vs higher survival times.

For the above loss LCox(b), we remark that one can regularize the Cox re-
gression coef�cients b. For example, adding a lasso, ridge, or more gener-
ally elastic-net penalty on b leads to the loss minimized by Simon et al. [2011].
Adding this regularization does not change how the hazard and survival func-
tions are estimated once we have an estimatebb of b. Standard neural net opti-
mizers can accommodate such a regularization term.

2.3.2 Example: Accelerated Failure Time Models

As another example of a survival model that our neural survival-supervised
topic modeling framework can use, consider the log-logistic AFT model that
assumes each subject's (possibly unobserved) survival time Ti has the form

log Ti = m+ q> Wi + s#i , (2.5)

where m 2 R, q 2 Rk, and s > 0 are model parameters, and noise variables

#i 's are i.i.d. standard logistic, i.e., #i has PDF f#(s) = es/
�
1 + es

� 2
and CDF

F#(s) = 1/
�
1 + es

�
. Thus, Ti given Wi is distributed as a log-logistic distribu-

tion and, in particular, the underlying survival function S(�jWi ) has a closed-
form expression:

S(t jWi ) =
1

1 + t1/ s expf� (m+ q> Wi )/ sg
for t � 0. (2.6)

2Note that the area under the survival function
R¥

0 S(t jw)dt is precisely the mean survival time
for a subject with feature vector w. The time t for which S(t jw) crosses 1/2 is a median survival
time for feature vector w. Thus, when the survival function decreases across all of time (except at
time t = 0, where it is 1), then the mean and median survival times decrease.
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Under random censoring, maximum likelihood estimation for m, q, and s is
equivalent to minimizing the differentiable loss function

LAFT(q, m, s jW)

:= �
1
n

n

å
i= 1

�
di log f#(zi ) � di log s + ( 1 � di ) log

�
1 � F#(zi )

�	
, (2.7)

where zi = ( log Yi � m� q> Wi )/ s. Hence, after minimizing the loss function
LAFT(q, m, s jW), we have estimates bq, bm, and bs for q, m, and s respectively. We
can plug these estimates into equation (2.6) to come up with an estimate bS(�jw)
for any feature vector w.

Interpretation of the log-logistic AFT model is similar to that of the Cox
model. As we take the feature vector w to be a topic weight vector with nonneg-
ative values, once again whether the predicted survival function has higher or
lower probabilities is determined by an inner product, this time bq> w. However,
unlike in the Cox model, where the g-th topic having larger Cox regression co-
ef�cient bbg means that the g-th topic is associated with shortermean/median
survival times, for the above AFT model, having larger regression coef�cient
bqg means that the g-th topic is associated with longermean/median survival
times.3

Other AFT models are also possible where, for example, Ti given Wi has a
log-normal, Weibull, gamma, generalized gamma, or inverse-Gaussian distri-
bution instead of a log-logistic distribution. These different models arise from
changing the distribution of the i.i.d. noise terms #i 's in equation (2.5). More-
over, just as with the Cox model, we could introduce regularization.

As stated previously, in this paper we use the time-dependent concordance
index accuracy metric, which is based on ranking pairs of subjects. As such, us-
ing a ranking-based regularization term when learning a survival model tends
to yield higher c-index values, which has been previously reported by other
researchers (e.g., Chapfuwa et al. 2018, Lee et al. 2018, Kvamme et al. 2019).
Accounting for these previous researchers' �ndings, in our experiments later
when we use an AFT model, we use the same regularization strategy as Chap-
fuwa et al. [2018] by adding the ranking loss by Steck et al. [2007]:

Lranking(q) = � 1 +
1

jE j å
( i ,j)2E

log2

�
1 + exp

�
q> (Wi � Wj )

�	
, (2.8)

where E consists of pairs of subjects ( i , j) such that di = 1 (death is observed
for the i-th training subject) and moreover Yj > Yi (the observed time for the
j-th training subject is higher than that of the i-th subject). Steck et al. [2007]
show that � Lranking(q) is a lower bound on a variant of concordance index;
thus, minimizing Lranking(q) aims to maximize concordance index. Note that

3Under the log-logistic AFT model, the median survival time for a subject with feature vector w

is exp(m+ q> w). The mean survival time exists only if s < 1 for which it is given by ps exp(m+ q> w)
sin(ps ) .
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the Cox model does not need a ranking regularizer since it already approxi-
mately maximizes concordance index [Steck et al., 2007].

Importantly, in how we combine neural topic models with survival anal-
ysis, for the resulting overall model to be readily interpretable, choosing a
simple interpretable survival model is crucial, as we have illustrated with the
above Cox and log-logistic AFT examples. Thus, although our approach is in-
deed compatible with survival models given by deep neural net extensions of
Cox and AFT models (e.g., Faraggi and Simon 1995, Katzman et al. 2018, Chap-
fuwa et al. 2018, Kvamme et al. 2019, Kvamme and Borgan 2021) that can be
more accurate at time-to-event predictions than classical non-neural-net meth-
ods and that can learn highly nonlinear functions of the input feature vector,
these deep survival models are typically dif�cult to interpret.

3 Neural Survival-Supervised Topic Models

We now present our proposed neural survival-supervised topic modeling frame-
work that can combine any neural topic model and any survival model meet-
ing the prerequisites stated in Sections 2.2 and 2.3. For ease of exposition, we
�rst explain how to combine LDA with the Cox proportional hazards model,
similar to what is done by Dawson and Kendziorski [2012] except we do this
combination in a neural net framework. To show the �exibility of our frame-
work, we explain how to combine LDA with the log-logistic AFT model, and
how to replace LDA with the SAGE topic model.

3.1 A Neural Formulation of the LDA/Cox Combination

We �rst need a neural net formulation of LDA. We can use the SCHOLAR frame-
work by Card et al. [2018]. Card et al. do not explicitly consider survival anal-
ysis in their setup although they mention that predicting different kinds of
real-valued outputs can be incorporated by using different label networks. We
use their same setup and have the �nal label network perform survival anal-
ysis. We give an overview of SCHOLAR before explaining our choice of label
network. Note that for clarity of presentation, we present a slightly simpli�ed
version of SCHOLAR .

The SCHOLAR framework speci�es a generative model for the data, includ-
ing how each individual word in each subject is generated. In particular, recall
that X i ,u denotes the number of times the word u 2 f 1, 2, . . . ,dg appears for
the i-th subject. Let vi denote the number of words for the i-th subject, i.e.,
vi = å d

u= 1 X i ,u. We now de�ne the random variable y i ,` 2 f 1, 2, . . . ,dg to be
what the `-th word for the i-th subject is (for i = 1, 2, . . . ,n and ` = 1, 2, . . . ,vi ).
Then the generative process for SCHOLAR with k topics is as follows, stated for
the i-th subject:

1. Generate thei-th subject's topic distribution:
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(a) Sample eWi � N (� 0, diag(� 2
0)) , where � 0 2 Rk and � 2

0 2 [0,¥ )k

are user-speci�ed, and diag (�) constructs a diagonal matrix from a
vector.

(b) Set thei-th subject's topic weights vector to be Wi = softmax( eWi ).

2. Generate thei-th subject's words:

(a) Compute the i-th subject's word distribution f i = fword(Wi ), where
fword is a generator network.

(b) For word ` = 1, 2, . . . ,vi : Sampley i ,` � Multinomial (f i ).

3. Generate thei-th subject's output label:

SampleYi from a distribution parameterized by label network flabel(Wi ).

Different choices for the parameters � 0, � 2
0, fword, and flabel lead to different

topic models. To approximate LDA where topic distributions are sampled from
a symmetric Dirichlet distribution with parameter a > 0, we set� 0 to be the all
zeros vector, � 2

0 to have all entries equal to (k � 1)/ (ak), and fword(w) = w> A,
where A 2 Rk� d has a Dirichlet prior per row; in fact the matrix A is the same
as the one in equation (2.1). Standard LDA is unsupervised so step 3 of the
above generative process would be omitted. In terms of implementation, we
set the g-th row of A to be Ag = softmax(Hg) for an unconstrained matrix
H 2 Rk� d, and for simplicity, we assume the prior on each row of A to be
uniform (a special case of a Dirichlet prior).

3.1.1 Learning Topic Model Parameters

The topic model parameters are learned via amortized variational inference
[Kingma and Welling, 2014, Rezende et al., 2014]. We summarize this pro-
cedure for the above unsupervised LDA neural net approximation including
stating the loss function. For the derivation of this procedure and loss func-
tion, see Section 3.2 of Card et al. [2018].

For the i-th subject, we keep track of a distribution qi := N (� i , diag(� 2
i )) ,

where � i 2 Rk and � 2
i 2 [0,¥ )k will be de�ned shortly. Distribution qi

approximates the posterior of unnormalized topic weights eWi given the ob-
served words y i := ( y i ,1, y i ,2, . . . ,y i ,vi

). We introduce a multilayer perceptron

fe : Rd ! Rd0
that takes as input X i (the word counts for the i-th subject)

and outputs an embedding � i = fe(X i ), where the embedding dimension d0 is
user-speci�ed. Then we set

� i = Wm� i + bm, (3.1)

log(� 2
i ) = Ws � i + bs . (3.2)

The variables Wm 2 Rd0� k, bm 2 Rk, Ws 2 Rd0� k, and bs 2 Rk are parameters.
In the latter equation, log is applied element-wise. In summary, the model
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parameters we aim to learn are Wm, bm, Ws , and bs , the parameters for the
multilayer perceptron fe, and �nally the matrix H (recall that for LDA, we set
fword(w) = w> A with Ag = softmax(Hg) in step 2 of the SCHOLAR generative
process). We collectively refer to all the parameters as QLDA. Meanwhile, the
number of topics k, constant a > 0 (used in the Dirichlet prior for unnormal-
ized topic weights), and the neural architecture of fe are hyperparameters that
are user-speci�ed.

As is standard now in amortized variational inference, the loss function
is randomly computed given parameters QLDA; hyperparameters and the in-
put raw counts matrix X are treated as �xed. For the i-th subject, we sample

an unnormalized topic weight vector eW(s)
i � qi . Then following steps 1(b)

and 2(a) of the SCHOLAR generative process, we compute the topic weight vec-

tor W(s)
i = softmax( eW(s)

i ) and word distribution z(s)
i := W(s)>

i A 2 [0, 1]d. We
repeat this across all subjectsi. Then the loss function minimized by SCHOLAR

for LDA is

eLLDA(QLDA) = �
1
n

n

å
i= 1

�
log likelihood of observed words

z }| {
d

å
v= 1

X i ,v log(z(s)
i ,v )

�
1
2

k

å
g= 1

� � 2
i,g + � 2

i,g

(k � 1)/ (ak)
� k + log

(k � 1)/ (ak)
� 2

i,g

�

| {z }
KL divergence between qi and true posterior

�
.

(3.3)

When we apply this framework to clinical data, one practical issue is that some
subjects have dramatically more historical clinical measurements than other
subjects. For example, in one dataset in our experiments, one subject has a to-
tal of 59824 measurements (note that the same “word”/past historical clinical
event could occur multiple times) whereas there is another subject who has a
total of 3 measurements! When there is such heterogeneity in how many words
are present per “document”/subject, the subjects with a very large number of
historical clinical measurements will dominate the entire loss function above.
To prevent this behavior, for all datasets, we replace the raw word counts X
with its normalized version X stated in Section 2.2 (X is obtained by taking X
and dividing each row by the sum of the row), which effectively weights every
subject equally (despite subjects possibly having varying amounts of measure-
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ments present).4 Thus, the loss function we minimize is instead

LLDA(QLDA) = �
1
n

n

å
i= 1

� d

å
v= 1

X i ,v log(z(s)
i ,v )

�
1
2

k

å
g= 1

� � 2
i,g + � 2

i,g

(k � 1)/ (ak)
� k + log

(k � 1)/ (ak)
� 2

i,g

� �
.

(3.4)

We can minimize this loss with respect to QLDA using standard neural net op-
timizers as well as train in minibatches to scale to large datasets. Empirically,
Srivastava and Sutton [2017] and Card et al. [2018] have found that for training
neural topic models, training with high momentum and using batch normal-
ization is essential in preventing the topics learned from being the same (the
so-called issue of “mode collapse”); for the interested reader, see the imple-
mentation notes in Appendix C of Card et al. [2018].

Recall from Section 2.2 that we require the neural topic model used in our
framework to be able to output estimated topic weight vectors bWi 's for the
different subjects as these will be used as inputs to the survival model. We

could simply set bWi to be the topic weight vector W(s)
i = softmax( eW(s)

i ) con-

structed based on the random unnormalized topic weight vector eW(s)
i � qi .

Alternatively, rather than only using one sample eW(s)
i , we could draw multiple

samples eW(s),1
i , . . . , eW(s),`

i
i.i.d.� qi , and output bWi = 1

` å `
j= 1 softmax( eW(s),j

i ).

3.1.2 Survival Supervision

To incorporate the Cox survival loss, we set step 3 of the SCHOLAR generative
process to use flabel(Wi ) = b> Wi for parameter vector b 2 Rk, where we ex-
plicitly constrain bk = 0, i.e., how much of the k-th topic is present is ignored
in the inner product calculation. This is done so that the k-th topic acts as a
background topic. We remark that flabel(Wi ) is simple to implement: given Wi ,
we drop the entry corresponding to the k-th topic and then feed the result to a
standard linear layer with a single output node and no bias term. The weights
of this fully-connected layer thus correspond to (b1, b2, . . . ,bk� 1). The last co-
ef�cient bk = 0 is not stored.

Note that b precisely consists of the Cox regression coef�cients in equa-
tion (2.3). Meanwhile, flabel(Wi ) precisely takes the role of the b> Wi terms in
the Cox loss (2.4). Of course, as we do not observe the true topic weight vector

4Other approaches are possible for weighting different subjects. For instance, instead of using
the row-normalized matrix X or the raw counts matrix X, we could interpolate between these two

choices by using X
(x)
i ,u := X i ,u / (å d

v= 1 X i ,v)x, where x 2 [0, 1] is a user-speci�ed hyperparameter
(setting x = 1 corresponds to using X i ,u, whereas setting x = 0 corresponds to using the raw count
X i ,u). For simplicity, we simply use X in our experiments later.
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Wi , we plug in its estimate bWi from the topic model. To summarize, the Cox
loss we use with the neural topic model is

LCox-with-background-topic(b1, . . . ,bk� 1j bW)

= �
1
n

n

å
i= 1

di

h
flabel( bWi ) � log

n

å
j= 1 s.t.Yj � Yi

exp( flabel( bWj ))
i
, (3.5)

where we have left out regression coef�cient bk as it is constrained to be 0.
We can now state the overall loss function that we minimize for the neural

LDA-Cox model:

LLDA-Cox(QLDA, b1, . . . ,bk� 1)

= LLDA(QLDA) + l survivalLCox-with-background-topic(b1, . . . ,bk� 1j bW), (3.6)

where hyperparameter l survival > 0 weights the importance of the survival loss.
We refer to the resulting model as SCHOLAR LDA -COX.

3.1.3 Model Interpretation

For the g-th topic learned, we can look at its distribution over words Ag 2
[0, 1]d (the g-th row of A given in equation (2.1)) and, for instance, rank words
by their probability of appearing for topic g. The g-th topic is also associated
with Cox regression coef�cient bg, where each bg is the parameter from equa-
tion (3.5). Again, the k-th topic is constrained to have Cox regression coef�cient
bk = 0. Under the Cox model, bg being larger means that the g-th topic is asso-
ciated with shortermean/median survival times, as discussed in Section 2.3.1.

3.2 Using Other Choices of Topic or Survival Models

To give a sense of the generality of our proposed framework, we explain how
to derive neural survival-supervised topic models corresponding to combin-
ing LDA with an AFT model (Section 3.2.1) as well as combining the SAGE
topic model [Eisenstein et al., 2011] with either Cox or AFT survival models
(Section 3.2.2).

3.2.1 LDA/AFT

To combine LDA with an AFT survival model, we use the same idea as how
we combined LDA with a Cox model. The changes are as follows. First off, in
step 3 of the SCHOLAR generative process, we now set flabel(Wi ) = q> Wi + m,
again constraining the k-th regression coef�cient qk = 0 to correspond to a
background topic. Effectively, we are taking the survival time Ti to be of the
form log Ti = flabel(Wi ) + s#i in equation (2.7), where parameters m, q, and s
are the same as described in Section 2.3.2 except with the new constraint that
qk = 0.
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Note that flabel(Wi ) can be implemented by taking the input Wi , dropping
the k-th topic's weight, and then feeding the result through a standard linear
layer with one output node and a bias term. The bias term is precisely mand
the weight matrix of the linear layer precisely gives (q1, q2, . . . ,qk� 1). As the
true Wi is unknown, we plug in its estimate bWi from the topic model.

We use the regularized survival loss function

LAFT-with-background-topic(m, s, q1, . . . ,qk� 1j bW)

= �
1
n

n

å
i= 1

�
di log f#(Zi ) � di log s + ( 1 � di ) log

�
1 � F#(Zi )

�	

+ l rankingLranking(q1, . . . ,qk� 1), (3.7)

where Zi = [( log(Yi )) � flabel( bWi )]/ s, f#(s) = es/
�
1 + es

� 2
, F#(s) = 1/

�
1 + es

�
,

and l ranking � 0 is a user-speci�ed hyperparameter, and Lranking(q1, . . . ,qk� 1) is
the same as in equation (2.8) except with the constraint qk = 0. Since param-
eter s needs to be strictly positive, we instead have the neural net keep track
of log s, which is unconstrained and we initialize with a random sample from
N (0, 10� 4). The overall loss to be minimized is thus

LLDA-AFT(QLDA, m, s, q1, . . . ,qk� 1)

= LLDA(QLDA) + l survivalLAFT-with-background-topic(m, s, q1, . . . ,qk� 1j bW), (3.8)

for a user-speci�ed hyperparameter l survival > 0. The rest of neural net training
works exactly the same way as in the LDA-Cox combination.

As for model interpretation, just as with the LDA-Cox model, for the g-th
topic, we can inspect its distribution over words given by the g-th row of the
matrix A. As discussed in Section 2.3.2, theg-th topic has an associated regres-
sion coef�cient qg for which larger values mean that the g-th topic is associated
with longer mean/median survival times.

3.2.2 Replacing LDA with SAGE

The above LDA/Cox and LDA/AFT combinations can easily accommodate
replacing LDA with a different neural topic model. For example, to replace
LDA with SAGE [Eisenstein et al., 2011], we make the following changes. First,
recall that in step 2(a) of the SCHOLAR generative process, the neural net fword

maps an input topic weight vector w to a distribution over d words. For SAGE,
we set fword to be

fword(w) = softmax(g + w> H ),

where g 2 Rd and H 2 Rk� d are parameters. Note that in a neural net frame-
work, fword is implemented as a linear layer followed by softmax activation.
Speci�cally, the linear layer has a bias term and maps feature vectors of size
k to output vectors of size d. The linear layer's weight matrix and bias term
correspond to H and g, respectively.
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The interpretation is as follows: given a subject with topic weight vector w,
the v-th word (a historical clinical event) occurs with probability proportional
to exp(gv + å k

g= 1 wgHg,v). In this sense,gv can be thought of as a background
log frequency of the v-th word. The g-th topic is then represented by the g-th
row of H and can be thought of as log deviations from the background log fre-
quency vector. Phrased informally, SAGE represents each topic as a deviation
from background word frequencies. This representation is convenient in that
there often are many “background” words that appear in a very large fraction
of subjects and are not helpful in distinguishing between the topics. For LDA,
these background words would have to be removed either as a preprocessing
or as a postprocessing step. SAGE on the other hand inherently accounts for
these background words.

For SAGE, to interpret the g-th topic, we can rank words the words from
largest to smallest deviation from background according to the values in the
g-th row of H. The values are of course not probabilities. For example, for the
g-th topic, if the v-th word has a log deviation value Hg,v = 3, then it means
that it occurs exp(3) times more than word v's background frequency. It is of
course possible to have negative log deviation values.

The loss function we use to learn the SAGE topic model is almost the same
as for LDA and is given by

LSAGE(QSAGE) = �
1
n

n

å
i= 1

� d

å
v= 1

X i ,v log(z(s)
i ,v )

�
1
2

k

å
g= 1

� � 2
i,g + � 2

i,g

(k � 1)/ (ak)
� k + log

(k � 1)/ (ak)
� 2

i,g

� �

+ l small-deviation

k

å
g= 1

d

å
v= 1

H2
g,v, (3.9)

where the differences are that: (a) we rede�ne z(s)
i = softmax(g + W(s)>

i H ),
and (b) we add an `2 regularization term on the log deviations, with a user-
speci�ed weight l small-deviation � 0. The rest of the setup is the same as for LDA,
and we collectively denote the complete set of parameters that we minimize
the loss over asQSAGE. By combining this topic model with the Cox and log-
logistic AFT survival models, we obtain SCHOLAR SAGE-COX and SCHOLAR

SAGE-AFT.
We remark that the original SAGE model actually also uses `1 regulariza-

tion on the log deviations in H, but in preliminary experiments, we found that
encouraging sparsity yields topic models that are not clinically interpretable.
The issue is that in healthcare, often times, a collection of clinical measurements
help explain a condition. When these measurements are collinear or have high
pairwise correlation, enforcing sparsity would favor just retaining one of these
measurements and zeroing out the contributions of the others [Zou and Hastie,
2005, Section 2.3]. Consequently, we lose valuable co-occurrence information
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Table 2: Basic characteristics of the survival datasets used.

Dataset Description
Number of Number of Fraction

subjects features censored

SUPPORT1
acute respiratory failure/multiple organ

4194 14 35.6%
system failure

SUPPORT2 COPD/congestive heart failure/cirrhosis 2804 14 38.8%
SUPPORT3 cancer 1340 13 11.3%
SUPPORT4 coma 591 14 18.6%
METABRIC breast cancer 1981 24 55.2%

UNOS heart transplant 62644 49 50.2%
MIMIC -ICH intracerebral hemorrhage 961 1530 23.1%

of related clinical features. For this reason, as well as the previous empirical
�nding by Card et al. [2018] that encouraging sparsity results in worse topics
learned in terms of other standard topic modeling metrics of perplexity and
coherence, we do not encourage sparsity in learning the topic log deviations
matrix H.

4 Experiments

4.1 Data

We conduct experiments on seven datasets: data on severely ill hospitalized
patients from the Study to Understand Prognoses Preferences Outcomes and
Risks of Treatment (SUPPORT) [Knaus et al., 1995], which—as suggested by
Harrell [2015]—we split into four datasets corresponding to different disease
groups (acute respiratory failure/multiple organ system failure, cancer, coma,
COPD/congestive heart failure/cirrhosis); data from breast cancer patients
(METABRIC) [Curtis et al., 2012]; data from patients who received heart trans-
plants in the United Network for Organ Sharing (UNOS); 5 and lastly patients
with intracerebral hemorrhage (ICH) from the MIMIC-III electronic heath rec-
ords dataset [Johnson et al., 2016]. For all except the last dataset, we predict
time until death; for the ICH patients, we predict time until discharge from
a hospital ICU. Basic characteristics of these datasets are reported in Table 2.
More details on the datasets and on data preproprocessing are in A. We ran-
domly divide each dataset into a 80%/20% train/test split.

4.2 Experimental Setup

We benchmark SCHOLAR LDA -COX, SCHOLAR LDA -AFT, SCHOLAR SAGE-COX,
and SCHOLAR SAGE-AFT against 5 baselines:

5We use the UNOS Standard Transplant and Analysis Research data from the Organ Procure-
ment and Transplantation Network as of September 2019, requested at: https://www.unos.org/
data/

20



• 2 classical methods (lasso-regularized Cox [Simon et al., 2011], and ran-
dom survival forests (RSF) [Ishwaran et al., 2008])

• 2 deep learning methods (DeepSurv [Katzman et al., 2018] and DeepHit
[Lee et al., 2018])

• a naive two-stage decoupled LDA/Cox model (�t unsupervised LDA
�rst and then �t a Cox model)

For all methods, we hold out 20% of the training data as a validation set to
select hyperparameters. Hyperparameter search grids are included in B. For
evaluating a model's prediction accuracy on the validation set as well as the
�nal test set, we use the time-dependent concordance Ctd index [Antolini et al.,
2005]. For every test setCtd index reported, we also compute its 95% con�dence
interval, which we obtain by taking 1000 bootstrap samples of the test set with
replacement, recomputing the Ctd index per bootstrap sample, and taking the
2.5 and 97.5 percentile values among theCtd indices computed.

4.3 Results

Test setCtd indices are reported in Table 3 with the 95% bootstrap con�dence
intervals. The main takeaways are that:

1. Random survival forest is clearly a strong baseline for the datasets con-
sidered, often outperforming the deep learning baselines DEEPSURVand
DEEPHIT. That said, no single model is consistently the best.

2. The different neural survival-supervised topic models tested have accu-
racy scores that are often quite similar with each other.

3. The neural survival-supervised topic models often achieve accuracy scores
as good as deep neural net baselines. For example, if we ignore the con�-
dence intervals for a moment and go by test set Ctd index alone, SCHOLAR

LDA -COX's accuracy scores onSUPPORT3, UNOS, and MIMIC -ICH are bet-
ter than those of DEEPSURV. Meanwhile, SCHOLAR LDA -COX's accuracy
scores on SUPPORT1, SUPPORT3, METABRIC , UNOS, MIMIC -ICH are bet-
ter than those of DEEPHIT. However, the differences are often small and,
especially once we account for the con�dence intervals, we would not
claim that neural survival-supervised topic models yield more accurate
predictions than the deep learning baselines or vice versa.

4. Clearly, the naive approach (NAIVE LDA -COX) of �tting an unsupervised
topic model �rst and then separately training a Cox model using the top-
ics learned tends to achieve worse accuracy scores than its supervised
counterpart SCHOLAR LDA -COX.

To supplement our third takeaway above, speci�cally for SCHOLAR LDA -COX,
we also use bootstrap sampling to compute differences between Ctd indices of
SCHOLAR LDA -COX vs different baseline models. Speci�cally, we repeat the
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Table 3: Test setCtd indices with 95% bootstrap con�dence intervals.

Model
Dataset

SUPPORT1 SUPPORT2 SUPPORT3 SUPPORT4 METABRIC UNOS MIMIC -ICH

COX

0.632 0.557 0.581 0.508 0.675 0.594 0.612
(0.609, (0.523, (0.543, (0.437, (0.630, (0.585, (0.551,
0.658) 0.592) 0.617) 0.578) 0.715) 0.602) 0.659)

RSF

0.658 0.578 0.558 0.547 0.712 0.604 0.618
(0.632, (0.545, (0.516, (0.480, (0.670, (0.596, (0.567,
0.685) 0.609) 0.601) 0.612) 0.755) 0.612) 0.666)

DEEPSURV

0.649 0.568 0.556 0.538 0.706 0.597 0.615
(0.625, (0.535, (0.515, (0.466, (0.667, (0.588, (0.565,
0.673) 0.600) 0.597) 0.606) 0.745) 0.604) 0.667)

DEEPHIT

0.633 0.563 0.564 0.516 0.666 0.585 0.587
(0.606, (0.531, (0.526, (0.449, (0.620, (0.576, (0.533,
0.658) 0.596) 0.603) 0.583) 0.710) 0.593) 0.637)

LDA -COX
NAIVE

0.602 0.544 0.515 0.554 0.639 0.540 0.537
(0.577, (0.512, (0.475, (0.485, (0.589, (0.532, (0.484,
0.626) 0.578) 0.555) 0.621) 0.686) 0.549) 0.591)

LDA -COX
SCHOLAR

0.637 0.560 0.569 0.510 0.696 0.600 0.639
(0.612, (0.527, (0.533, (0.439, (0.653, (0.591, (0.588,
0.663) 0.591) 0.607) 0.572) 0.737) 0.608) 0.687)

LDA -AFT
SCHOLAR

0.632 0.586 0.551 0.529 0.688 0.596 0.634
(0.607, (0.554, (0.512, (0.457, (0.643, (0.588, (0.585,
0.657) 0.617) 0.591) 0.599) 0.728) 0.604) 0.680)

SAGE-COX
SCHOLAR

0.605 0.558 0.560 0.470 0.708 0.603 0.629
(0.580, (0.526, (0.522, (0.405, (0.669, (0.595, (0.579,
0.631) 0.593) 0.598) 0.529) 0.746) 0.611) 0.677)

SAGE-AFT
SCHOLAR

0.635 0.550 0.564 0.550 0.700 0.599 0.631
(0.611, (0.516, (0.526, (0.484, (0.659, (0.591, (0.579,
0.660) 0.583) 0.600) 0.621) 0.742) 0.606) 0.681)

following 1000 times: (a) take a bootstrap sample from the test set, (b) com-
pute the bootstrap sample's predictions using SCHOLAR LDA -COX as well as a
baseline model, (c) compute the CTD index of SCHOLAR LDA -COX's predictions
minus that of the baseline model's predictions. Thus, we have 1000 differences
in CTD indices, for which we then take the 2.5 and 97.5 percentiles to get a 95%
con�dence interval. We report these con�dence intervals in Table 4. We �nd
that 0 is in all the con�dence intervals for SCHOLAR LDA -COX vs DEEPSURVand
nearly in all the ones for SCHOLAR LDA -COX vs DEEPHIT (in fact, the only times
0 is not included for DEEPHIT is for the UNOS and MIMIC -ICH datasets, in which
SCHOLAR LDA -COX is more accurate). We omit tables that compare the other
neural survival-supervised topic models with various baselines as they follow
similar trends. To reiterate, we do not claim that our proposed models outper-
form the various baselines tested. Instead we claim that they achieve accuracy
that is competitive with deep learning baselines. In fact, Tables 3 and 4 suggest
that SCHOLAR LDA -COX is competitive with COX and RSFas well. On the other
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Table 4: 95% bootstrap con�dence intervals for the test set Ctd index of
SCHOLAR -LDA minus that of various baselines (when this difference is posi-
tive, it means that SCHOLAR -LDA is more accurate than a particular baseline).

Baseline
Dataset

SUPPORT1 SUPPORT2 SUPPORT3 SUPPORT4 METABRIC UNOS MIMIC -ICH

COX
(-0.010, (-0.024, (-0.045, (-0.073, (-0.015, (0.002, (-0.029,
0.018) 0.026) 0.024) 0.074) 0.059) 0.010) 0.088)

RSF
(-0.038, (-0.050, (-0.026, (-0.103, (-0.041, (-0.010, (-0.027,
-0.006) 0.014) 0.047) 0.032) 0.009) -0.000) 0.070)

DEEPSURV
(-0.029, (-0.042, (-0.020, (-0.098, (-0.039, (-0.002, (-0.010,
0.004) 0.026) 0.046) 0.044) 0.019) 0.009) 0.059)

DEEPHIT
(-0.016, (-0.035, (-0.041, (-0.095, (-0.006, (0.007, (0.010,
0.024) 0.030) 0.051) 0.081) 0.069) 0.024) 0.100)

LDA -COX
NAIVE (0.013, (-0.020, (0.013, (-0.133, (0.028, (0.053, (0.031,

0.058) 0.054) 0.096) 0.036) 0.088) 0.066) 0.170)

hand, the NAIVE LDA -COX baseline does appear to be signi�cant less accurate
than SCHOLAR LDA -COX for all datasets except SUPPORT2 and SUPPORT4.

4.4 Interpretability of Baselines

Importantly, we remark that the deep learning baselines DEEPSURVand DEEP-
HIT do not produce interpretable models and they were not designed to be
interpretable. Random survival forests are also not easily interpretable: while
a single decision tree could be interpretable if its depth and number of leaves
are not too large, the dif�culty in interpreting a learned random survival forest
model is that there are many trees (in our experiments, we use 100 trees for
each model), and the best-performing models tend to have learned trees that
are moderate in size (e.g., a depth of 6 with 64 leaves). Having to look at 100
moderate-sized trees to interpret a single random survival forest model is not
that simple, and it is not straightforward teasing apart how features are related
without instead using some post hoc explanation approach like SHAP [Lund-
berg and Lee, 2017] or TreeExplainer [Lundberg et al., 2020]. Of the models
evaluated, only the Cox model and the survival-supervised topic models can
readily be interpreted. However, as mentioned in Section 1, Cox models do not
inherently learn how features relate, and one would have to introduce new fea-
tures that encode interactions, which becomes impractical when the number of
features is large.

4.5 Interpretability of Neural Survival-Supervised Topic Mod-
els

We next discuss interpretability of neural survival-supervised topic models.
As there are many models considered, for ease of exposition, we only present
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results for SCHOLAR LDA -COX, for which we provide a complete summary of
all topics learned for the seven datasets along with a detailed look at a few
datasets. We remark that clinical expertise is required to interpret the topics.

We begin with summaries of the topics learned. Back in Section 1, we al-
ready presented one such summary for the SUPPORT3 dataset in Table 1. The
summaries for the rest of the datasets are in Tables 5, 6, 7, 8, 9, and 10. For each
topic, we state both the Cox b regression coef�cient as well as the topic inter-
pretation. For all datasets except MIMIC -ICH , larger b corresponds to shorter
mean/median survival time. For MIMIC -ICH , larger b corresponds to shorter
mean/median hospital length of stay. Note that sometimes, spurious topics
are found, where a clinical interpretation readily reveals that we could have
used a fewer number of topics (although the hyperparameter selection proce-
dure we use that chooses the best model based on validation Ctd index would
not know this). Overall, seeking a clinical interpretation of topics was straight-
forward. In contrast, when, for example, we presented topics learned using a
neural survival-supervised topic model that encouraged sparsity, a clinical ex-
pert was unable to determine what the topics meant, with a key problem raised
being that the features that are most probable per topic did not appear to be re-
lated to each other. We suspect that this has to do with the known issue with
lasso regularization where within a group of features that have high pairwise
correlation, lasso will arbitrarily choose one of these features and give 0 weight
to the others [Zou and Hastie, 2005, Section 2.3].

To obtain the topic interpretations for each dataset, we �lter out features
that appear in too few or too many patients. Importantly, following the work
of Scho�eld et al. [2017], we �lter features after learning a topic model in con-
trast to doing so beforelearning the model. Scho�eld et al. empirically �nd no
advantage in �ltering features before learning a topic model compared to doing
it afterward. For our purposes, �ltering features before learning a topic model
presents problems since there are too many possible ways to do this �ltering,
and it is unclear how these different �ltering approaches impact the topics that
are learned. Dawson and Kendziorski [2012] for example use a heuristic pre-
processing step in how they use SURVLDA where they cluster subjects based
on their survival outcomes and screen out features that are not suf�ciently dif-
ferent between the clusters. The problem is that there are far too many choices
of how to do this clustering and how to decide what features are suf�ciently
different even before learning the topic model. By instead �ltering features
after learning the model, we leave this choice up to the user to specify. The
bene�ts are that there is no need to retrain the model when we try different
�lters, and moreover, the �ltering is fast so it can be adjusted on demand, for
example accounting for clinician input. For the results that we show on learned
topics by SCHOLAR LDA -COX, we speci�cally �lter out features that appear in
fewer than 2% of the patients or more than 50% of the patients. Essentially
features that are too rare do not help explain enough of the patient cohort, and
features that are too common do not help with interpretation. We tried differ-
ent thresholds and found ones that appear to work reasonably well across all
datasets.
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Table 5: Summary of topics learned by SCHOLAR LDA -COX on the SUPPORT1
(acute respiratory failure, multiple organ system failure) dataset. Higher b is
associated with shorter survival time.

b Topic interpretation

0 with cancer, metastases, electrolyte abnormalities, vitals
� 5.05 protective, female, diabetic
� 5.43 protective, young, no comorbidity

Table 6: Summary of topics learned by SCHOLAR LDA -COX on the SUPPORT2
(COPD, congestive heart failure, cirrhosis) dataset. Higher b is associated with
shorter survival time.

b Topic interpretation

5.30 old, comorbid
2.72 middle age, less comorbid, tachycardia

0 Young healthy baseline, tachycardia

Table 7: Summary of topics learned by SCHOLAR LDA -COX on the SUPPORT4
(coma) dataset. Higher b is associated with shorter survival time.

b Topic interpretation

0.47 kidney failure, tachycardia, hypertensive, comorbid
0.08 respiratory distress/MV, infection/in�ammation, hypothermic
0.01 hypothermic otherwise normal

0 normal baseline
� 0.00011 kidney failure, old, infection/in�ammation

� 0.58 healthy

Table 8: Summary of topics learned by SCHOLAR LDA -COX on the METABRIC

(breast cancer) dataset. Higherb is associated with shorter survival time.

b Topic interpretation

1.29 er- pr- her2+, high mortality, advanced grade
0 similar to 1, focus on group 4 not 1, site 1 not 3

� 1.20 protective her2_status1 (-) er- pr-
� 1.29 protective but high cellularity luma; pr+ er+

� 1.37
these last two topics are both on protective low npi

� 1.38
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Table 9: Summary of topics learned by SCHOLAR LDA -COX on the UNOS (heart
transplant) dataset. Higher b is associated with shorter survival time.

b Topic interpretation

6.92 old, old donor, renal failure, with transfusions, liver failure, previous trans-
plant

0 baseline, heart failure, diabetes, with lvad
� 1.45 panel reactive antibodies, middle age, low ischemic time, inotropes, body mea-

surements (height weight bmi)
� 5.04 pediatric cases, young, donor with infection

� 5.09 these last two topics appear to be spurious and are a mix of the topics
with b coef�cients 0 and� 5.04� 5.17

Table 10: Summary of topics learned by SCHOLAR LDA -COX on the MIMIC -
ICH (intracerebral hemorrhage) dataset. Higher b is associated with shorter
hospital length of stay.

b Topic interpretation

2.08 relatively healthy, anticoagulated, protective demographic factors
1.34 severe anemia, renal failure, in�ammatory pro�le
1.14 hematuria, thrombocytopenia

0 negative drug screening
� 2.05 glycosuria screen, electrolyte abnormalities

In addition to �ltering features, we also provide heatmap visualizations.
These heatmaps were presented to a clinician to obtain the summaries in Ta-
bles 1, 5, 6, 7, 8, 9, and 10. In Section 1, we already presented one such heatmap
for the SUPPORT3 dataset in Figure 1. Heatmaps for the other datasets are
shown in Figures 2, 3, 4, 5, 6, and 7; note that for the UNOS and MIMIC -ICH

datasets, due to the large number of features, we truncate the heatmap to only
show the top � 80 features (since we only display categorical variables as a
block of features at once, we do not get to exactly 80). In these heatmaps, the
columns index different topics (with Cox b regression coef�cient displayed per
topic; the topics are sorted in decreasing order of b coef�cient). The rows in-
dex different features. The features are sorted based on the maximum word
probability across topics (i.e., for the k-by-d topic-word matrix A, for the v-th
column/word, we sort based on the score max g= 1,...,k Ag,v). Furthermore, af-
ter doing this sorting, we group together features corresponding to the same
categorical variable. Note that we only show features that meet the �ltering
requirements stated previously.

In producing these heatmaps, we also tried a few variations on the plots to
present to a clinician. We sorted the words instead based on the largest differ-
ence between word probabilities across topics (i.e., rank words based on the
score (maxg= 1,...,k Ag,v) � (min g= 1,...,k Ag,v) for the v-th word) and also based

on the average probability across topics ( 1
k å k

g= 1 Ag,v). Qualitatively, we did
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Figure 2: Topics learned by SCHOLAR LDA -COX on the SUPPORT1 (acute res-
piratory failure/multiple organ system failure) dataset. Columns index topics
and rows index features/“words”. The values are probabilities of each feature
conditioned on being in a topic.

27



Figure 3: Topics learned by SCHOLAR LDA -COX on the SUPPORT2
(COPD/congestive heart failure/cirrhosis) dataset. Columns index topics and
rows index features/“words”. The values are probabilities of each feature con-
ditioned on being in a topic.
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