AN INTRODUCTION TO SURVIVAL ANALYSIS MATH

GEORGE H. CHEN

This note is part of the CHIL 2020 and SIGMETRICS 2021 tutorial “A Tour of Survival Analysis, from Classical
to Modern” and provides an introduction to some of the math used in survival analysis, covering the basic
problem setup (Section , a few classical survival analysis methods (Sections [2| and , and how to measure
prediction accuracy (Section. Throughout the note, we use “log” to denote natural log, and phrase terminology
in terms of predicting time until death, where higher survival times are considered better.

Update (February 15, 2025): I have substantially expanded these original notes from 2020 into a
monograph /book titled “An Introduction to Deep Survival Analysis Models for Predicting Time-to-Event
Outcomes” (Chen, [2024). If you are interested in a much more thorough introduction to survival analysis,
then please see this monograph. A preprint is available on arXiv: https://arxiv.org/abs/2410.01086

1. PROBLEM SETUP

Model. We assume we have access to n training subjects’ data (z1,y1, 1), (€2, ¥y2,02), ..., (Tn, Yn, dn) where the
i-th subject’s feature vector is z; € R?, observed time duration is y; € [0, c0), and event indicator is §; € {0,1}; if
d; = 1, then y; is a survival time, and otherwise, y; is a censoring time. We denote X to be the random variable
corresponding to a generic feature vector, T to be the random variable corresponding to the true (possibly
unobserved) survival time associated with feature vector X, and C' to be the random variable corresponding to
the true (possibly unobserved) censoring time associated with feature vector X. The training data are modeled
to be sampled i.i.d. as follows:

(1) Sample feature vector x; from a feature distribution Px

(2) Sample true survival time z; from a conditional survival time distribution Pz x—j,

(3) Sample true censoring time ¢; from a conditional censoring time distribution P¢|x—,

(4) If z; < ¢; (death happens before censoring): output y; = z; and d; = 1 (no censoring)
Otherwise: output y; = ¢; and §; = 0 (true survival time is censored)

Note that the true distributions Px, Py x, and P x are unknown. Also, importantly, the survival time 7" and
censoring time C' are conditionally independent given feature vector X. In our derivations below, we assume
that the conditional survival time distribution Py x has a PDF f(t|x) and CDF F(t|z) = fot f(r|x)dr.

Prediction task. The main prediction task in survival analysis can be stated as estimating (some variant of)
the survival function

S(t|z) = P(subject survives beyond time ¢ | subject’s feature vector is x)
=PT>tX=2)=1-PT <t|X =z)=1- F(t|z). (1.1)

Using the n training data, we aim to construct an estimate S of S such that for any test feature vector z (e.g.,
a new subject/patient), we output the predicted survival curve S(-|x). Note that we are predicting a full curve
per test feature vector and not just a single number (survival time) per feature vector.

As equation (1.1)) indicates, the true survival curve S(-|z) is 1 minus a CDF F(-|z). A few implications:

(a) S(-|x) =1— F(:]z) monotonically decreases from 1 to 0 since CDF’s monotonically increase from 0 to 1.
(b) Estimating the function S is equivalent to estimating the CDF F', which means that we are learning the
conditional survival time distribution P7|x. (The challenge in survival analysis is that in our training
data, only the non-censored data have y; values that come from P7 x. However, the censored data still
have valuable information and should not be discarded!)
(¢c) If we want a single number survival time estimate for feature vector x, we can back one out if we know
(an estimate of) S(-|x). We give two ways of doing this:
o Median survival time. Where a CDF crosses 1/2 corresponds to a median of a distribution, so
finding a time ¢ for which S(t|z) = 1 — F(t|x) = 1/2 gives a median survival time of feature
vector z. In practice, we only have an estimate S(-|z) of S(|z) so we find ¢ such that S(t|z) ~ 1/2.
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Figure 1.1. Example of a survival curve and its median and mean survival times.

e Mean survival time. For any nonnegative random variable Z, recall that E[Z] = fooo P(Z > 7)dr.
Thus, the mean survival time of feature vector z is E[T|X = 2] = [[*P(T > 7|X = z)dr =
fooo S(7|z)dr, the area under the survival curve. In practice, we numerically integrate the survival

curve estimate S(-|z).
See Figure for an example survival curve and its corresponding median and mean survival times.

Keep in mind that we do not know the ground truth S(¢|x) even in our labeled training data. Consequently,
we cannot compute an error such as S(t|z) — S(t|z) even for the training data without imposing assumption(s)
on S. We discuss how to measure prediction accuracy in Section [

Different survival analysis methods make different assumptions on S and often estimate transformed variants
of S rather than estimating S directly. We discuss two transformed versions that are commonly used.

Cumulative hazard function. A first commonly estimated variant of S is the so-called cumulative hazard
function, which we get by taking the negative log of S:

1
S(tlz)”

This function is just another way to represent .S: if we know H (¢|x), then we can recover S(t|x) = exp(—H (t|x)).
Some survival analysis methods directly estimate the cumulative hazard function such as random survival forests
(Ishwaran et all [2008). In terms of the shape of H(-|z), note that taking the log of a probability yields a value
from —oo to 0. Taking the negative of a log probability thus yields a nonnegative value. Thus, whereas
S(+|#) monotonically decreases from 1 to 0, H(-|z) monotonically increases from 0 to co. We remark that log
probabilities are regularly used in machine learning, often due to numerical issues (e.g., taking products of many
small probabilities can underflow whereas doing this calculation in log space is more numerically stable).

H(t|z) £ —log S(t|x) = log

Hazard function. A key reason for why the cumulative hazard function H is interesting is that its derivative
with respect to time has a simple interpretation in survival analysis; this derivative is called the hazard function
and is the second commonly estimated variant of S that we discuss:

0 0 SiS(t|z) by equation Sl = F(tlz)] _ f(t|z)
h(tlz) 2 = H(t|lz) = ——log S(t|z) = — 2L i _ ot _
(t) = gy () = =5 log S(tl) S(t|x) S(t|z) S(tlz)’
where as a reminder, f(:|x) is the PDF corresponding to CDF F(-|z) of distribution Ppjx—,. The right-most

expression reveals that the hazard function is the instantaneous rate of death conditioned on surviving up to
time t for feature vector x. Perhaps the most widely used survival model, the Cox proportional hazards model

(1.2)
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Figure 1.2. The survival curve S from Figure along with its cumulative hazard H and
hazard h functions.
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(Coxl 11972)), places a structural assumption on the hazard function. Note that if we know the hazard function
h(t|x), then integrating it with respect to time recovers H(t|z) = fo (r|z)dr (motivating the terminology of H
being the cumulative hazard function), from which we can recover S(t|x) = exp(—H (t|x)).

An example survival function S(-|z) and its corresponding cumulative hazard function H(:|z) and hazard func-
tion h(-|x) are shown in Figure Note that whereas S and H are monotonic functions, h need not be
monotonic.

2. THE KAPLAN-MEIER ESTIMATOR AND ITS CONDITIONAL VARIANTS

We now discuss some classical survival analysis methods. For the moment, let’s disregard feature vectors,

treating our training data as (y1,01), (y2,02),-- ., (Yn,dn), and setting our prediction goal to be the marginal

survival function Sparg(t) £ P(subject survives beyond time t) = P(T > t). [Kaplan and Meier| (1958) suggested

the following approach for estimating Spmarg(t). We first compute the unique times of death t1,%2,...,tr. Let

d; be the number of deaths at time ¢;, and n; be the number of subjects “at risk” (could possibly die) at time ¢;:
n n

d; & Z 1{y; = t:}9;, and n; = Z 1{y; > ti},

j=1 j=1
where 1{-} is the indicator function. Then the Kaplan-Meier estimate for Spmarg(t) is

L

§marg<t) N H (1 B i)l{t <t}.

N
i=1 v

This estimator has an intuitive explanation: it is the product of the probabilities of surviving from time 0 to t1,
t1 to to, and so forth up until time ¢. For example:

e When 0 <t < tq, §marg(t) =1.
o When t; <t < ty, Smarg(t) = (1 — ).
o When ty <t < t3, Smarg(t) = (1 — L)(1 —

ny

da

na ) .

As t increases, we multiply more and more probabilities, 50 Synarg monotonically decreases in a piecewise constant
fashion, like a descending staircase.

We can incorporate feature vectors in a straightforward manner. Suppose that our training data have feature
vectors: (21,¥1,01), (T2,Y2,92), ..., (Tn,Yn,0n). Then for a feature vector x that we want to predict the survival
curve S(-|z) for, we first compute the k nearest neighbors to x among the training data according to a user-
specified distance function (e.g., find the k different x;’s that are closest to = according to Euclidean distance).
Then we compute the Kaplan-Meier estimator restricted to only using the y; and §; values from these k nearest
neighbors. Thus, the predicted survival curve now depends on the test feature vector z! This approach was
proposed by Beran| (1981), who also proposed a more general kernel variant. These variants are sometimes
called conditional Kaplan-Meier estimators. Theory is well understood for how well conditional Kaplan-Meier
estimators approximate the true survival curve S(t|x); finite-sample error bounds are provided by [Chen| (2019).

The Kaplan-Meier estimator and its conditional variants are examples of a nonparametric methods as they don’t
assume survival curves to come from parametric distributions. We now examine a model with parameters.

3. THE Cox PROPORTIONAL HAZARDS MODEL

The extremely popular Cox proportional hazards model (Coxl,|1972) is essentially the linear regression analogue
in survival analysis (although it’s nonlinear). The Cox model assumes that the hazard function factorizes as

h(t|z) = ho(t) exp(8 " z) proportional hazards assumption (3.1)

for a feature weighting vector 3 € R? and a baseline hazard function hg, which takes as input a nonnegative
time and outputs a nonnegative value. Note that hy and § are parameters that need to be estimated. Different
feature vectors = change the weighting term exp(3'x) but the overall hazard function is constrained to always
be proportional to ho(t). Note that the Cox model is considered semi-parametric since, whereas the influence
of B has a parametric form, commonly no parametric form is assumed for hg. As a side remark, the log of the
hazard function is linear in x: logh(t|x) = 8Tz + log ho(t).

Implications for survival curves. Suppose we know what hg and 3 are for the moment. Let’s look at what
the proportional hazards assumption implies about the shapes of survival curves that are allowed by the model.
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Figure 3.1. Under the proportional hazards assumption, possible survival curves are all powers
of the baseline survival curve Sy as shown in panel (a); note that we can always unambiguously
order these curves based on the inner product value ' z. In contrast, the green curve shown
in panel (b) is not possible under a proportional hazards model and is neither uniformly better
nor worse than the baseline survival curve.

Recall from Section |1f that by knowing the hazard function h(t|z), we can recover H(t|z) = fot h(r|x)dT and
S(t|z) = exp(—H (t|z)). We now just plug in equation (3.1). First, we have the cumulative hazard function

t

H(t|$):/0 h(T|£L’)dT:/O ho(7) exp(ﬁTac)dT:exp(ﬁTx)/O ho(7)dr, (3.2)
—_——

£Ho(t)
where Hj is referred to as the baseline cumulative hazard function. Then we recover the survival curve

S(t|lz) = exp(—H(t|x)) = exp ( — exp(8 x)Ho(t)) = [e Ho@®))exp(8 ") (3.3)

250(t)
Thus, all possible survival curves under the proportional hazards assumption are powers of the baseline survival
curve So(t) — see Figure a) for an illustration. This is a strong assumption! Survival curves that are not
powers of So(t) are not allowed by the model (e.g., the green curve in Figure[3.1](b)). As shown in Figure a),
the allowed survival curves that are closer to the origin—which have higher 8Tz value—are uniformly worse
than ones farther away from the origin, regardless of what time ¢ we look at. In particular, under a proportional
hazards assumption, whether a subject with feature vector x has shorter or longer survival time is entirely
determined by the inner product value B7x: higher values of 3" correspond to shorter survival times. In
real-world problems, different subjects’ survival curves need not satisfy the proportional hazards assumption,
and we could have survival curves that crisscross like the ones in Figure b).

Parameter estimation. The Cox model parameters hy and § are estimated via maximum likelihood. We
state how to do this where no parametric form is assumed for hg. We first estimate 5 without knowing hy by
solving the convex program

B = arg greuRnk Z d; [ — BT+ log (Z 1{y; > yi}exp(ﬁ—rwj))} (3.4)
i=1 j=1

This problem can be solved using, for instance, gradient descent or Newton-Raphson.
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Next, we estimate a discretized version of hg(t), specifically at the time points given by the unique times of
death t1,t2,...,tr. Let d; denote the number of deaths at time ¢;, and hg; denote the estimate of hy(t;) for
each time index i = 1,2,..., L. We compute

- d;

hoﬂ‘ = - =
> Y > tife? "

(3.5)

Lastly, we mention how to back out estimates of the cumulative hazard function H(t|z) and the survival
function S(t|x). Recall from equation that H(t|z) = exp(8Tz)Hy(t) where Hy(t) = fot ho(7)dT is the
baseline cumulative hazard function. Since we are using a discrete approximation for hg(t), we estimate Ho(t)
via a finite summation:

~

Ho(t) =S 1{t; < t}ho,.

M=

i=1
This leads to the cumulative hazard function estimate H(t|z) = exp(3T #)Ho(t). Finally, recalling that S(t|z) =
exp(—H (t|z)), we can estimate S(t|z) = exp(—H (t|z)). An alternative approach to computing this same quantity
follows from equation (3.3): we first compute baseline survival curve estimate So(t) = exp(—Hy(t)), and then
compute S(t|z) = [§0(t)]exP(ET£”).
In the procedure above, estimating S by solving optimization problem was suggested by |Cox]| (1972),
whereas estimating hy with equation is due to Breslow| (1972)). Why this two-step procedure maximizes a
joint likelihood over 8 and hg is explained by |Johansen (1983) using counting processes; see also the paper by

Andersen and Gill| (1982). A simpler derivation that does not use counting processes but that treats the unique
times of death as fixed can be found in Section 3.A of (Chen) 2024)).

4. ASSESSING PREDICTION ACCURACY: CONCORDANCE INDEX

One of the most common accuracy metrics used in survival analysis is Harrell’s concordance index (Harrell
et al., [1982), often abbreviated as “c-index”. The c-index is the fraction of pairs of subjects that are correctly
ranked by a prediction procedure among pairs of subjects that can be ranked unambiguously, which as we will
see shortly neatly handles censored data. As it is a fraction, the c-index ranges from 0 to 1, where 1 is the best
performance. C-indices can be computed for a validation or test set and not just the training data.

Let’s work out a simple example. Consider if we have three patients Alice, Bob, and Charlie. Suppose that
Alice dies after 2 days, Bob dies after 10 days, and Charlie’s survival time is unknown but we know that he
was still alive after 6 days. In other words, their respective observed times (y; values) and event indicators (J;
values) are (2, 1) for Alice, (10,1) for Bob, and (6,0) for Charlie. We know for sure that Alice died before Bob
and that Alice died before Charlie. However, we do not know which of Bob or Charlie has a shorter survival
time. Thus, in this example, only two pairs (Alice & Bob, Alice & Charlie) have subjects that can be ranked
unambiguously. If a prediction procedure ranks Alice as having shorter survival time than Bob, and Alice as
having a longer survival time than Charlie, then only one of the pairs is correctly predicted so the c-index is 1/2.

Computing c-indices requires translating a survival analysis method’s prediction output into some way to rank
subjects. This can easily be done for the Cox proportional hazards model. As mentioned previously, under the
proportional hazards assumption, how different feature vectors’ survival curves differ is entirely determined by
the inner product 8T z. Thus, after we estimate B, for any pair of feature vectors x and z’, we have a ranking
for which feature vector has a lower survival curve (and thus shorter survival time) — whichever of BTz and
B' a2’ is larger corresponds to the feature vector with shorter survival time.

For other survival models, especially ones that do not operate under a proportional hazards assumption (such
as the nearest-neighbor Kaplan-Meier estimator from Section , translating a prediction output into a ranking
could be less straightforward. One approach is to use predicted median or mean survival times to rank subjects.
Alternatively, random survival forests use a “mortality” metric for ranking subjects (Ishwaran et al., |2008).
Here’s how this works (slightly simplified for ease of exposition). Let the unique times of death in the training
data be t1,to,...,tr. Let Hbea predicted cumulative hazard function (random survival forests directly predict
cumulative hazards functions). Then the mortality approach says that a subject with feature vector x has a
shorter survival time than a subject with feature vector z’ if
L ~ ~
> H(tile) > Y H(til2'). (4.1)
i=1

L
=1

3
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For the Cox model, this mortality approach to ranking actually is the same as using the inner product since
L L L
Y H(tilz) = exp(B2)Holts) = exp(B 2) Y Ho(t:),
i=1 i=1 i=1
i.e., inequality happens precisely when

L L
exp(BT z) ZHO(ti) > exp(BT2) ZHO(ti) & BTa>pTa.
i=1 i=1
Other accuracy metrics are possible as well. There is the time-dependent concordance index by |[Antolini et al.
(2005). Separately, there are accuracy metrics such as the Brier score and its integrated variant (Graf et al.)
1999; |Gerds and Schumacher, |2006) that are quite different from concordance index and focus directly on how
well the survival curve S is estimated. For more details on evaluation metrics, see Section 2.5 of (Chen, [2024)).
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