Recitation: More on minibatch gradient descent, RNNs, and transformers
Learning a Deep Net

Suppose the neural network has a single real number parameter w

The skier wants to get to the lowest point

The skier should move rightward (positive direction)

The derivative $\Delta L/\Delta w$ at the skier’s position is negative

In general: the skier should move in opposite direction of derivative

In higher dimensions, this is called gradient descent
(derivative in higher dimensions: gradient)
Learning a Deep Net

Suppose the neural network has a single real number parameter w.

![Graph showing the relationship between loss L and parameter w. The loss function is a curve with multiple local minima and the parameter w is being optimized to minimize the loss.](image-url)
Learning a Deep Net

Suppose the neural network has a single real number parameter w.

![Diagram showing the gradient descent process with loss L and parameter w.]
Suppose the neural network has a single real number parameter w.

![Diagram showing the loss function L as a function of w, with a skier descending a hill representing gradient descent.](image-url)
Learning a Deep Net

Suppose the neural network has a single real number parameter w.

In general: not obvious what error landscape looks like!

- we wouldn’t know there’s a better solution beyond the hill.

Popular optimizers (e.g., Adam, RMSProp, Lookahead) are variants of gradient descent.

The optimizer is the skier!

In very high-dimensional parameter spaces, local minima can be rare but we might get stuck in parts of the error landscape where the slope downwards is very gradual/not steep.

Victory!
Handwritten Digit Recognition

28x28 image

Training label: 6

A neural net does function composition!

All parameters: θ

Gradient: $\frac{1}{n} \sum_{i=1}^{n} L(f_2(f_1(x_i)), y_i)$

Overall loss:

$\frac{1}{n} \sum_{i=1}^{n} L(f_2(f_1(x_i)), y_i)$

Automatic differentiation is crucial in learning deep nets!

Careful derivative chain rule calculation: back-propagation
Gradient Descent

We have to compute lots of gradients to help the optimizer know where to go!

Computing gradients using all the training data seems really expensive!
Stochastic Gradient Descent (SGD)

SGD: compute gradient using only 1 training example at a time (can think of this gradient as a noisy approximation of the "full" gradient)
Stochastic Gradient Descent (SGD)

SGD: compute gradient using only 1 training example at a time (can think of this gradient as a noisy approximation of the "full" gradient)
Stochastic Gradient Descent (SGD)

SGD: compute gradient using only 1 training example at a time (can think of this gradient as a noisy approximation of the “full” gradient)
Stochastic Gradient Descent (SGD)

SGD: compute gradient using only 1 training example at a time (can think of this gradient as a noisy approximation of the “full” gradient)
Stochastic Gradient Descent (SGD)

SGD: compute gradient using only 1 training example at a time (can think of this gradient as a noisy approximation of the "full" gradient)
Stochastic Gradient Descent (SGD)

SGD: compute gradient using only 1 training example at a time (can think of this gradient as a noisy approximation of the “full” gradient)
Stochastic Gradient Descent (SGD)

An epoch refers to 1 full pass through all the training data.

SGD: compute gradient using only 1 training example at a time (can think of this gradient as a noisy approximation of the “full” gradient)
Minibatch Gradient Descent

Training example 1

\[\text{loss 1} \]

Training example 2

\[\text{loss 2} \]

Training example 3

\[\text{loss 3} \]

Training example 4

\[\text{loss 4} \]

Training example 5

\[\text{loss 5} \]

...

Training example \(n \)

\[\text{loss } n \]

\[\text{average loss} \]

\[\text{compute gradient} \]

\[\text{& move optimizer} \]
Minibatch Gradient Descent

Batch size: how many training examples we consider at a time (in this example: 2)
Best optimizer? Best learning rate? Best
of epochs? Best batch size?

Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower than CPU!) if you choose # epochs/batch size poorly!!!
UDA_pytorch_utils.py

A look at `UDA_pytorch_classifier_fit`
A special kind of RNN: an “LSTM”
(Flashback) Vanilla ReLU RNN

```python
current_state = np.zeros(num_nodes)
outputs = []

for input in input_sequence:
    linear = np.dot(input, W.T) + b + np.dot(current_state, U.T)
    output = np.maximum(0, linear)  # ReLU
    outputs.append(output)
    current_state = output
```

For simplicity, in today’s lecture, we only use the very last time step’s output.
Time series → RNN layer → output prediction
Vanilla RNN tends to forget things quickly.
Add explicit long-term memory!

But need some way to update long-term memory!
Time $t-1$

Add explicit long-term memory!

But need some way to update long-term memory!

Time t

output $t-1$

output t
Long-term memory

Add explicit long-term memory!

But need some way to update long-term memory!

Time $t - 1$

output $t - 1$

Time t

output t
Long-term memory

Add explicit long-term memory!

But need some way to update long-term memory!

Called a “long short-term memory” (LSTM) RNN

Remembers things longer than vanilla RNN

output $t-1$

output t
Analyzing Times Series with CNNs

• Think about an image with 1 column, and where the rows index time steps: this is a time series!

• Think about a 2D image where rows index time steps, and the columns index features: this is a multivariate time series (feature vector that changes over time!)

• CNNs can be used to analyze time series but inherently the size of the filters used say how far back in time we look

• If your time series data all have the same length (same number of time steps) and do not have long-range dependencies that require long-term memory, CNNs can do well already!

 ⇒ If you need long-term memory or time series with different lengths, use RNNs (not the vanilla one) or transformers

• Note: while it is possible to have a CNN take in inputs that vary in size, we did not cover this in lecture
Full Transformer

Transformer Encoder

Transformer Decoder

Classifier

Figure 1: The Transformer - model architecture.

The feed forward network used is just an MLP

"Norm" refers to LayerNorm

"Masked" just is a reference to the causal dependency enforced (current time step’s output cannot depend on future time step’s inputs)

Figure 1: The Transformer - model architecture.
Decoder-Only Transformer

The feed forward network used is just an MLP.

“Norm” refers to LayerNorm.

“Masked” just is a reference to the causal dependency enforced (current time step’s output cannot depend on future time step’s inputs).

“Pre-norm” version that’s now standard.

Figure 1: The Transformer - model architecture.
Full Transformer

The original full transformer was used for translating between languages.

Encoder sees input text (e.g., English)

Decoder produces text in another language (e.g., French)

Figure 1: The Transformer - model architecture.

In PyTorch, TransformerEncoder allows the user to specify a causal mask, which would turn it into a transformer decoder.

The only difference is the causal masking.

Meanwhile, if you use PyTorch’s TransformerDecoder, it expects that you provide it information from the encoder…which we wouldn’t have if we’re using a decoder-only transformer so that’s why the lecture code demo just uses the TransformerEncoder with a causal mask…
Questions About the Lecture Demo?

Demo