

95-865 Unstructured Data Analytics

Lecture 9: Wrap up clustering, topic modeling

Slides by George H. Chen

Quiz 1

These stats are typical of my quizzes (means are typically in the 60s/70s)

Remember: letter grades are assigned based on a curve

Solutions are in Canvas -> Files -> "Quiz 1 solutions.pdf"

Regrade requests (use Gradescope's regrade request feature)

are due Monday April 7, 11:59pm

(for if you think there's a genuine grading error)

More Things

- Each problem part/subpart is graded by a single grader
- It's possible that some parts/subparts may appear to be graded harsher than others as a result (e.g., some graders may be harsher)
- Very importantly, we emphasize fairness in grading
 - Two students who make the same amount of progress/same mistake(s) receive the same partial credit
- HW1 scores are also out on Gradescope if you have any sort of regrade request, please use Gradescope's regrade request feature by no later than Monday April 7, 11:59pm

An Alternative Feature Vector Representation for Text: TF-IDF

Intuition: words that appear in more documents are likely less useful (same intuition as stop words!) — let's downweight these words!

An Alternative Feature Vector Representation for Text: TF-IDF

Intuition: words that appear in more documents are likely less useful (same intuition as stop words!) — let's downweight these words!

further normalizes each row to have Euclidean norm 1

An Alternative Feature Vector Representation for Text: TF-IDF

Demo

Clustering on Images

See the demo linked on the course webpage (this is considered **required** reading material so please do take a look sometime after class)

Last Remarks on Clustering

- We only saw two clustering methods (k-means, GMM)
- We only saw one general strategy to automatically choose # of clusters
 - You must specify a score function no score function is perfect
- There are *lots* of clustering methods out there!
 - Many do not require specifying # of clusters (DP-means, DP-GMM, many variants of hierarchical clustering, DBSCAN, OPTICS, ...)
- Ultimately, you have to decide on which clustering method and number of clusters make sense for your data
 - After you run a clustering algorithm, make visualizations to interpret the clusters in the context of your application!
 - Do not just blindly rely on numerical metrics (e.g., CH index)

Is clustering structure enough?

(Flashback) GMM with k Clusters

Cluster 1

Cluster k

Probability of generating a point from cluster $1 = \pi_1$

Probability of generating a point from cluster $\mathbf{k} = \pi_k$

Gaussian mean = μ_1

Gaussian mean = μ_k d-dim.

- d-by-**d** matrices

Gaussian covariance = Σ_1

Gaussian covariance = Σ_k

How to generate points from this GMM:

1. Flip biased coin (side 1 has probability $\pi_1, ..., \text{ side } k$ has probability π_k)

Let Z be the side that we got (it is some value 1, ..., k)

2. Sample 1 point from the Gaussian from cluster Z

Each data point has a single true cluster assignment Z & is generated from the Gaussian for cluster Z

In reality, a data point could have "mixed" membership and belong to multiple "clusters"

For example, for news articles, possible topics could be *sports*, *medicine*, *movies*, or *finance*

A news article could be about sports and also about finance

How do we model this?

Topic Modeling: Latent Dirichlet Allocation (LDA)

- A generative model
- Input: "document-word" matrix, and pre-specified # topics k

• Output: what the k topics are (details on this shortly)

LDA Generative Model Example

LDA Generative Model Example

If food: flip 4-sided coin for food

means figuring out these 4-sided coin probabilities

LDA Generative Model

LDA models each word in document *i* to be generated as:

- 1. Randomly choose a topic Z (use topic distribution for doc i)
- 2. Randomly choose a word (use word distribution for topic Z)

Topic Modeling: Latent Dirichlet Allocation (LDA)

- A generative model
- Input: "document-word" matrix, and pre-specified # topics k

Output: the k topics' distributions over words

LDA

Demo