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Quiz 1
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These stats are typical of my quizzes (means are typically in the 60s/70s)
Remember: letter grades are assigned based on a curve
Solutions are in Canvas -> Files -> “Quiz 1 solutions.pdf”

Regrade requests (use Gradescope's regrade request feature)
are due Monday April 7, 11:59pm
(for if you think there's a genuine grading error)



More Things

Each problem part/subpart is graded by a single grader

It's possible that some parts/subparts may appear to be graded
harsher than others as a result (e.g., some graders may be harsher)

Very importantly, we emphasize fairness in grading

e Two students who make the same amount of progress/same
mistake(s) receive the same partial credit

HW1 scores are also out on Gradescope — if you have any sort of
regrade request, please use Gradescope’s regrade request feature
by no later than Monday April 7, 11:59pm



An Alternative Feature Vector Representation
for Text: TF-IDF

Intuition: words that appear in more documents are likely less useful
(same intuition as stop words!) — let's downweight these words!
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An Alternative Feature Vector Representation
for Text: TF-IDF

Intuition: words that appear in more documents are likely less useful
(same intuition as stop words!) — let's downweight these words!
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An Alternative Feature Vector Representation
for Text: TF-IDF

Demo



Clustering on Images

See the demo linked on the course webpage
(this is considered required reading material
so please do take a look sometime after class)



Last Remarks on Clustering

We only saw two clustering methods (k-means, GMM)
We only saw one general strategy to automatically choose # ot clusters

e You must specify a score function — no score function is pertect

There are lots of clustering methods out there!

e Many do not require specitying # of clusters (DP-means, DP-GMM,
many variants of hierarchical clustering, DBSCAN, OPTICS, ...)

Ultimately, you have to decide on which clustering method and number
of clusters make sense for your data

e After you run a clustering algorithm, make visualizations to interpret
the clusters in the context of your application!

e Do not just blindly rely on numerical metrics (e.g., CH index)



Is clustering structure enough?



(Flashback) GMM with k Clusters

Cluster 1 Cluster k
Probability of generating a Probability of generating a
pooint from cluster 1 = m point from cluster k =
Gaussian mean = /i Gaussian mean = iy, " d-dim.
(Gaussian covariance = X1 (Gaussian covariance = Zk
\—d—by—d matrices

How to generate points from this GMM:

1. Flip biased coin (side 1 has probability =y, ..., side k has probability )

---------------------------------------------------------------------------------------

Let Zbe the side that we got (it is some value 1, ..., k):

2 Sample 1 point from the Gaussian from cluster Z

---------------------------------------------------------------------------------------

Each data point has a single true cluster assignment Z
& is generated from the Gaussian for cluster Z



In reality, a data point could have “mixed”
membership and belong to multiple “clusters”

For example, for news articles, possible topics could be sports,
medicine, movies, or finance

A news article could be about sports and also about finance



Topic Modeling:
Latent Dirichlet Allocation (LDA)

e A generative model

e |nput: “document-word” matrix, and pre-specitied # topics k
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e Qutput: what the k topics are (details on this shortly)



LDA Generative Model Example
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LDA Generative Model Example

Topic
weather food
Alice’s text 0.1 0.9
Document e ‘
Bob's text .05 0.5;
Word
cold _hot apple pie
0307 00 00
""""""""""" ke

“Learning the topics”

means figuring out

these 4-sided coin
orobabilities



LDA Generatlve Model
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LDA models each word in document i to be generated as:
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1. Randomly choose a topic Z (use topic distribution for doc i)

2. Randomly choose a word (use word distribution for topic 2)



Topic Modeling:
Latent Dirichlet Allocation (LDA)

e A generative model

e |nput: “document-word” matrix, and pre-specitied # topics k
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e Qutput: the k topics’ distributions over words



LDA

Demo



