
95-865 Unstructured Data Analytics

Slides by George H. Chen

Lecture 5: PCA (cont’d), manifold learning

Principal Component Analysis (PCA)

Demo

PCA Recap
• PCA reduces high-dimensional data to k dimensions

• Fitting a PCA model means:

• These k dimensions (the principal component directions) are the
k orthogonal directions that explain the most variance in the data

• Figuring out the center of mass of the data we’re fitting the model to

• Figuring out “weights” for each principal component direction

• We saw how to compute the PCA coordinates by taking an inner
product (also called a dot product)

• After fitting a PCA model, we can also compute the fraction of
variance explained by each principal component

• Reminder: a 3D PCA model contains the solution to a 2D PCA model
as well as a 1D PCA model

• More generally: if you have a k-dimensional PCA model, then we also
have PCA models for number of dimensions from 1 up to k

When does PCA not work well?

Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VfncdNOETcI/AAAAAAAAGp8/
Hea8UtE_1c0/s1600/Blog%2B1%2BIMG_1821.jpg

2D Swiss Roll

PCA would just flatten this thing and
lose the information that the data actually lives

on a 1D line that has been curved!

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

This is the desired result

Manifold Learning
The dataset here is clearly 3D

Another example: Earth is approximately a 3D sphere,
but zooming a lot on any point, around the point it’s

approximately a 2D sheet

In general: if we have d-dimensional data where when you
zoom in a lot, the data dimensionality is smaller than d,
then the lower-dimensional object is called a manifold

Image source: “Head Pose Estimation via Manifold Learning” (Wang et al 2017)

But when we zoom in a lot on any point,
around the point it looks like a flat 2D sheet!

• Manifold learning is nonlinear whereas PCA is linear
(this will make more sense after we see code demos)

• We have the data’s high-dim. coordinates, but we want to find the
low-dim. coordinates (on the manifold) ➜ this is manifold learning

Do Data Actually Live on Manifolds?

Image source: http://www.columbia.edu/~jwp2128/Images/faces.jpeg

Do Data Actually Live on Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png

Do Data Actually Live on Manifolds?

Mnih, Volodymyr, et al. Human-level control through deep reinforcement learning.
Nature 2015.

There are many manifold learning methods

We begin with one that’s easy to describe
(but it often doesn't work well in practice…)

Manifold Learning with Isomap
Step 1: For each point, find its
nearest neighbors, and build a
road (“edge”) between them

(e.g., find closest 2
neighbors per point
and add edges to

them)

Step 2: Compute shortest
distance from each point to

every other point where
you’re only allowed to travel

on the roads

Step 3: It turns out that given all the distances between pairs of points,
we can compute what the low-dimensional points should be

(the algorithm for this is called multidimensional scaling)

Isomap Calculation Example

A
B

C

D

E

Build "symmetric 2-NN" graph
(add edges for each point to its 2

nearest neighbors)

2 nearest neighbors of A: B, C

2 nearest neighbors of B: A, C

2 nearest neighbors of C: B, D

2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

5

In orange: road lengths

5

5

5

8
8

A B C D E

A

B

C

D

E

Shortest distances between
every point to every other point

where we are only allowed to
travel along the roads

A B C D E

A 0

B 0

C 0

D 0

E 0

A B C D E

A 0 5

B 0 5

C 0 5

D 0 5

E 0

A B C D E

A 0 5 8

B 0 5

C 0 5

D 0 5

E 0

A B C D E

A 0 5 8 13

B 0 5

C 0 5

D 0 5

E 0

A B C D E

A 0 5 8 13 16

B 0 5

C 0 5

D 0 5

E 0

A B C D E

A 0 5 8 13 16

B 0 5 10

C 0 5

D 0 5

E 0

A B C D E

A 0 5 8 13 16

B 0 5 10 13

C 0 5

D 0 5

E 0

A B C D E

A 0 5 8 13 16

B 0 5 10 13

C 0 5 8

D 0 5

E 0

A B C D E

A 0 5 8 13 16

B 5 0 5 10 13

C 8 5 0 5 8

D 13 10 5 0 5

E 16 13 8 5 0

Isomap Calculation Example

A
B

C

D

E

Build "symmetric 2-NN" graph
(add edges for each point to its 2

nearest neighbors)

2 nearest neighbors of A: B, C

2 nearest neighbors of B: A, C

2 nearest neighbors of C: B, D

2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

5

In orange: road lengths

5

5

5

8
8

A B C D E

A

B

C

D

E

Shortest distances between
every point to every other point

where we are only allowed to
travel along the roads

A B C D E

A 0

B 0

C 0

D 0

E 0

A B C D E

A 0 5

B 0 5

C 0 5

D 0 5

E 0

A B C D E

A 0 5 8

B 0 5

C 0 5

D 0 5

E 0

A B C D E

A 0 5 8 13

B 0 5

C 0 5

D 0 5

E 0

A B C D E

A 0 5 8 13 16

B 0 5

C 0 5

D 0 5

E 0

A B C D E

A 0 5 8 13 16

B 0 5 10

C 0 5

D 0 5

E 0

A B C D E

A 0 5 8 13 16

B 0 5 10 13

C 0 5

D 0 5

E 0

A B C D E

A 0 5 8 13 16

B 0 5 10 13

C 0 5 8

D 0 5

E 0

A B C D E

A 0 5 8 13 16

B 5 0 5 10 13

C 8 5 0 5 8

D 13 10 5 0 5

E 16 13 8 5 0

This matrix gets fed into
multidimensional scaling to get 1D

version of A, B, C, D, E

The solution is not unique!

Multidimensional Scaling (MDS)
A B C D E

A 0 5 8 13 16

B 5 0 5 10 13

C 8 5 0 5 8

D 13 10 5 0 5

E 16 13 8 5 0

High-dimensional land

0 1 2 3−1−2−3

Low-dimensional land

C' B' E' A' D'

Suppose we have a guess for where
the low-dimensional points are

A' B' C' D' E'

A'

B'

C'

D'

E'

A' B' C' D' E'

A' 0

B' 0

C' 0

D' 0

E' 0

A' B' C' D' E'

A' 0 4

B' 0

C' 0

D' 0

E' 0

A' B' C' D' E'

A' 0 4 5

B' 0

C' 0

D' 0

E' 0

A' B' C' D' E'

A' 0 4 5 1

B' 0

C' 0

D' 0

E' 0

A' B' C' D' E'

A' 0 4 5 1 3

B' 0

C' 0

D' 0

E' 0

A' B' C' D' E'

A' 0 4 5 1 3

B' 0 1 5 1

C' 0 6 2

D' 0 4

E' 0

A' B' C' D' E'

A' 0 4 5 1 3

B' 4 0 1 5 1

C' 5 1 0 6 2

D' 1 5 6 0 4

E' 3 1 2 4 0

MDS moves the low-dim. points to make the 2 tables as close as possible

Isomap

Original high-dim. data

Low-dim. data

Build k-NN graph,
computed shortest distances

Compute Euclidean
distances between all pairs

of low-dim. points

Distance table
(for high-dim. points)

Distance table
(for low-dim. points)

Make these two as
close as possible

(move low-dim. data)
(Euclidean dist)

fixed

adjustable

Isomap Calculation Example

Demo

Isomap

Original high-dim. data

Low-dim. data

Build k-NN graph,
computed shortest distances

Compute Euclidean
distances between all pairs

of low-dim. points

Distance table
(for high-dim. points)

Distance table
(for low-dim. points)

Make these two as
close as possible

(move low-dim. data)
(Euclidean dist)

fixed

adjustable

If k is set too large and
we connect everything:
Isomap becomes MDS

Some Observations on Isomap
The quality of the result
critically depends on the
nearest neighbor graph

Use small # of nearest neighbors
(edges tend to connect points that

are closer to each other)

Use large # of nearest neighbors
(edges can connect points that

are farther apart)

There might not be enough edges
Might connect points that
shouldn’t be connected

In general: try different parameters for nearest neighbor graph construction
when using Isomap + visualize

Emphasize local
structure

Emphasize global
structure

t-SNE
(t-distributed stochastic neighbor

embedding)

High-level t-SNE Idea
A B C D E

A 0 5 8 13 16

B 5 0 5 10 13

C 8 5 0 5 8

D 13 10 5 0 5

E 16 13 8 5 0

• Don't use deterministic definition
of which points are neighbors

• Use probabilistic notation instead

0

0.1

0.2

A
 and B are "sim

ilar"

A
 and C

 are "sim
ilar"

A
 and D

 are "sim
ilar"

... D
 and E are "sim

ilar"

t-SNE

Original high-dim. data

Low-dim. data

Probability table
(for high-dim. points)

Probability table
(for low-dim. points)

Make these two as
close as possible

(move low-dim. data)

fixed

adjustable

Technical detail: creates probabilities
based on Gaussian distribution

Technical detail: creates
probabilities based on
Student’s t-distribution

Technical details are in separate slides (posted on webpage)

(Technical detail:
KL divergence)

t-SNE Parameters…

Low perplexity value High perplexity value

Emphasize local
structure

Emphasize global
structure

Also: play with # iterations, learning rate

In practice, often people initialize with PCA

Roughly: perplexity is like a
continuous version of “number

of nearest neighbors”

how many times to try to improve
guess of low-dim. representation

each time we try to improve low-dim.
representation, how much we can change it

Manifold Learning with t-SNE

Demo

